
User’s Guide

Mathsoft Engineering & Education, Inc.

US and Canada

101 Main Street
Cambridge, MA 02142

Phone: 617-444-8000
FAX: 617-444-8001

http://www.mathsoft.com/

All other countries

Knightway House
Park Street
Bagshot, Surrey
GU19 5AQ
United Kingdom

Phone: +44 (0) 1276 450850
FAX: +44 (0)1276 475552
i

Mathsoft Engineering & Education, Inc. owns both the Mathcad software program and
its documentation. Both the program and documentation are copyrighted with all rights
reserved by Mathsoft. No part of this publication may be produced, transmitted,
transcribed, stored in a retrieval system, or translated into any language in any form
without the written permission of Mathsoft Engineering & Education, Inc.
U.S. Patent Numbers 5,469,538; 5,526,475; 5,771,392; 5,844,555; and 6,275,866.
See the License Agreement and Limited Warranty for complete information.
International CorrectSpell software © 1993 by Vantage Research.
MKM developed by Waterloo Maple Software.
The Mathcad User Forums Collaboratory is powered by WebBoard, copyright 2001
by ChatSpace, Inc.

Copyright 1986-2002 Mathsoft Engineering & Education, Inc. All rights reserved.
Mathsoft Engineering & Education, Inc.
101 Main Street
Cambridge, MA 02142
USA

Mathcad is a registered trademark of Mathsoft Engineering & Education, Inc. Mathsoft,
MathConnex, QuickPlot, Live Symbolics, IntelliMath and the Collaboratory are trade-
marks of Mathsoft Engineering & Education, Inc.
Microsoft, Windows, IntelliMouse, and the Windows logo are registered trademarks of
Microsoft Corp. Windows NT is a trademark of Microsoft Corp.
OpenGL is a registered trademark of Silicon Graphics, Inc.
MATLAB is a registered trademark of The MathWorks, Inc.
WebBoard is a trademark of ChatSpace, Inc.
Other brand and product names referred to are trademarks or registered trademarks of
their respective owners.

Printed in the United States of America. November, 2002
ii

iii

Contents
Getting Started

About the User’s Guide 1

1: Welcome to Mathcad 3
What Is Mathcad? 3
Highlights of Mathcad 11 Release 4
 System Requirements 7
Installation 7
Technical Support 9

2: Getting Started with Mathcad 11
The Mathcad Workspace 11
Regions 13
A Simple Calculation 16
Definitions and Variables 17
Entering Text 18
Iterative Calculations 19
Graphs 21
Saving, Printing, and Exiting 22

3: Online Resources 23
Mathcad Resources 23
Help 28
Collaboratory User Forums 29
Other Resources 32

4: Working with Math 33
Inserting Math 33
Building Expressions 39
Editing Expressions 42
Math Styles 50

5: Vectors, Matrices, and Data Arrays 53
Creating Arrays 53
Accessing Array Elements 56
Displaying Arrays 58
Working with Arrays 61
Nested Arrays 63

6: Working with Text 65
Inserting Text 65
Text and Paragraph Properties 68
Text Styles 71
Equations in Text 72
Text Tools 73

iv

7: Worksheet Management 77
Worksheets and Templates 77
Rearranging Your Worksheet 80
Layout 83
Safeguarding an Area of the Worksheet 85
Safeguarding an Entire Worksheet 87
Worksheet References 88
Hyperlinks 89
Distributing Your Worksheets 91

Calculating with Mathcad

8: Calculating in Mathcad 99
Defining and Evaluating Variables 99
Defining and Evaluating Functions 106
Units and Dimensions 109
Working with Results 112
Controlling Calculation 118
Animation 121
Error Messages 123

9: Solving and Data Analysis 125
Solving and Optimization Functions 125
Differential Equation Solvers 133
Data Fitting 145

10: Inserting Graphics and Other Objects 151
Overview 151
Inserting Pictures 151
Inserting Objects 155
Inserting Graphics Computationally Linked to Your Worksheet

158

11: 2D Plots 161
Overview of 2D Plotting 161
Graphing Functions and Expressions 163
Plotting Vectors of Data 166
Formatting a 2D Plot 168
Modifying a 2D Plot’s Perspective 171

12: 3D Plots 175
Overview of 3D Plotting 175
Creating 3D Plots of Functions 176
Creating 3D Plots of Data 179
Formatting a 3D Plot 184
Rotating and Zooming on 3D Plots 193

v

13: Symbolic Calculation 195
Overview of Symbolic Math 195
Live Symbolic Evaluation 196
Using the Symbolics Menu 201
Examples of Symbolic Calculation 203
Symbolic Optimization 212

14: Importing and Exporting Data 215
Overview 215
Functions for Reading and Writing Files 215
Exchanging Data with Other Applications 216
Data Input and Output Components 219
Application Components 222

 230

15: Extending and Automating Mathcad 231
Overview 231
Programming within Mathcad 231
Building Function DLLs 243
Creating Your Own Components 243
Accessing Mathcad from Within Another Application 248

Functions and Operators

16: Functions 249
Built-in Functions 249
Function Categories 249
Mathcad Functions Listed Alphabetically 260
Functions 260

17: Operators 391
Arithmetic Operators 394
Vector and Matrix Operators 398
Calculus Operators 402
Evaluation Operators 411
Boolean Operators 415
Programming Operators 417

18: Symbolic Keywords 421
Accessing Symbolic Keywords 421
Finding More Information 422
Keywords 422

vi

Appendices 431

Appendix A: Special Functions 432
Appendix B: SI Units 434
Appendix C: CGS units 436
Appendix D: U.S. Customary Units 438
Appendix E: MKS Units 440
Appendix F: Predefined Variables 442
Appendix G: Suffixes for Numbers 443
Appendix H: Greek Letters 444
Appendix I: Arrow and Movement Keys 445
Appendix J: Function Keys 446
Appendix K: ASCII codes 447
Appendix L: References 448

Index 449

About the User’s Guide

The Mathcad User’s Guide is organized as follows:

! Getting Started
This section contains a quick introduction to Mathcad’s features and workspace,
including resources available in the product and on the Internet for getting more
out of Mathcad. Be sure to read this section first if you are a new Mathcad user.

! Calculating with Mathcad
This section describes in more detail how to create and edit Mathcad worksheets.
It describes how Mathcad interprets equations and explains Mathcad’s
computational features: units of measurement, complex numbers, matrices, built-
in functions, solving equations, programming, and so on. This section also
describes how to do symbolic calculations and how to use Mathcad’s two- and
three-dimensional plotting features.

! Functions and Operators
This section lists and describes in detail all built-in functions, operators, and
symbolic keywords, including how to use them in your calculations.

Notations and Conventions
The User’s Guide uses the following notations and conventions:
Italics represent scalar variable names, function names, and error messages.
Bold Courier represents keys you should type.
Bold represents a menu command. It is also used to denote vector and matrix valued
variables.
An arrow such as that in “Graph⇒X-Y Plot” indicates a submenu command.
Function keys and other special keys are enclosed in brackets. For example, [↑], [↓],
[←], and [→] are the arrow keys on the keyboard. [F1], [F2], etc., are function keys;
[BkSp] is the Backspace key for backspacing over characters; [Del] is the Delete key
for deleting characters to the right; [Ins] is the Insert key for inserting characters to
the left of the insertion point; [Tab] is the Tab key; and [Space] is the space bar.
[Ctrl], [Shift], and [Alt] are the Control, Shift, and Alt keys. When two keys are
shown together, for example, [Ctrl]V, press and hold down the first key, and then
press the second key.
The symbol [↵] and [Enter] refer to the same key.
1

2 / How to Use the User Guide
Additionally, in the Functions and Operators section of this book, the following
specific notation is used whenever possible:
• x and y represent real numbers.
• z and w represent either real or complex numbers.
• m, n, i, j, and k represent integers.
• S and any names beginning with S represent string expressions.
• u, v, and any names beginning with v represent vectors.
• A and B represent matrices or vectors.
• M and N represent square matrices.
• f represents a scalar-valued function.
• F represents a vector-valued function.
• file is a string variable that corresponds to a filename or path.
• X and Y represent variables or expressions of any type.
When spaces are shown in an equation, you need not type the spaces. Mathcad
automatically spaces equations correctly.

Chapter 1
Welcome to Mathcad

! What Is Mathcad?

! Highlights of Mathcad 11 Release

! System Requirements

! Installation

! Technical Support

What Is Mathcad?

Mathcad is the industry standard technical calculation tool for professionals, educators,
and college students worldwide. Mathcad is as versatile and powerful as a programming
language, yet it’s as easy to learn as a spreadsheet. Plus, it is fully wired to take
advantage of the Internet and other applications you use every day.
Mathcad lets you type equations as you’re used to seeing them, expanded fully on your
screen. In a programming language, equations look something like this:

x=(-B+SQRT(B**2-4*A*C))/(2*A)

In a spreadsheet, equations go into cells looking something like this:

+(B1+SQRT(B1*B1-4*A1*C1))/(2*A1)

And that’s assuming you can see them. Usually all you see is a number.
In Mathcad, the same equation looks the way you might see
it on a blackboard or in a reference book. And there is no
difficult syntax to learn; you simply point and click and your
equations appear.

But Mathcad equations do much more than look good. You can use them to solve just
about any math problem you can think of, symbolically or numerically. You can place
text anywhere around them to document your work. You can show how they look with
Mathcad’s two- and three-dimensional plots. You can even illustrate your work with
graphics taken from another application. Plus, Mathcad takes full advantage of
Microsoft’s OLE 2 object linking and embedding standard to work with other
applications, supporting drag and drop and in-place activation as both client and server.
Mathcad comes with online Tutorials; QuickSheets to show you working examples of
Mathcad functions including working with other applications; and Reference Tables
with math, science, and engineering formulas all under the Help menu. Online Help
includes the Author’s Reference and Developer’s Reference for more advanced usage.
3

4 / Chapter 1
Mathcad simplifies and streamlines documentation, critical to communicating and to
meeting business and quality assurance standards. By combining equations, text, and
graphics in a single worksheet, Mathcad makes it easy to keep track of the most complex
calculations. By printing the worksheet exactly as it appears on the screen, Mathcad
lets you make a permanent and accurate record of your work.

Highlights of Mathcad 11 Release

Mathcad 11 features a number of improvements and added capabilities designed to
increase your productivity and Web connectivity. For more in-depth details and live
examples see New Features under Tutorials in the Help menu.

Usability Features
• Undo. Undo in Mathcad now extends far beyond the facility that existed in previous

versions. It is now possible to undo and redo edits to most actions and backtrack in
as many steps as you need.

• Copy/Paste Tables with Mixed Data Format: Data copied and pasted into
matrices from tabular applications, such as Excel, or ASCII worksheets that contain
rows and columns, will preserve data characteristics, including text, numerics,
complex numbers, or empty cells.

• Menus and Toolbar Changes: Mathcad menus and toolbars have been updated to
include new features and make existing features easier to find and use. You can
now add additional buttons to the Standard toolbar by right clicking on it and
choosing Customize including new buttons for exchanging data. New Resources
and Controls toolbars have been added.

• Interface Updates: Pressing [Ctrl] F9 allows you to recalculate an entire
worksheet just as F9 recalculates a single region. Regions can be nudged into
alignment with arrow keys. The Formatting toolbar now includes subscript and
superscript buttons that work in both math and text regions.

• Save to Web: There is now a single choice for saving Mathcad documents as HTML
under the Save As... choice on the File menu and a new Save as Web Page Wizard.
All documents saved as HTML will always be readable back into Mathcad,
regardless of other choices made. This is accomplished by saving the Content
MathML required by Mathcad inside the HTML markup. You can choose how to
save your equations, how to save images, and layout preferences including whether
or not to use a template.

• Save for Microsoft Word: Mathcad documents can now be saved or copied into
Microsoft Word through Rich Text Format (RTF) using positioning tables to retain
all layout features, particularly side-by-side positioning of regions. Microsoft Word
will need to be in the Print Layout view to see all the formatting. We’ve included
a new template with margins set to match Microsoft Word’s margins.

Highlights of Mathcad 11 Release / 5
Data Input/Output
• Data File Reading and Writing: Components for reading and writing data files

now preserve data characteristics, including strings, numerics, complex numbers,
and empty cells. Reading and writing support a variety of delimiters, including
commas, semicolons, tabs, and special characters.

• Excel Data Exchange: When reading in from Excel you can now choose a named
data range and a specific worksheet within the file.

• Binary File Reading and Writing: Two new functions have been introduced to
read and write binary data, READBIN and WRITEBIN, allowing you to set various
parameters on your data.

Math Enhancements
• 1D Partial Differential Solve Blocks: One-dimensional parabolic and hyperbolic

Partial Differential Equations (PDEs) can now be solved inside solve blocks using
the new built-in function pdesolve() or with the new function numol(). Both the
wave equation and the heat equation, systems of PDEs, and PDEs with algebraic
constraints, can be solved numerically in Mathcad, as long as they are linear in their
highest order time derivatives.

• New Bessel Functions: The Bessel functions now accept complex arguments and
negative or fractional order. Most Bessel functions now have an exponentially-
scaled counterpart, as does the Gamma function. This is useful when trying to
evaluate scaled Bessels for large arguments without generating overflow errors.

• New Hankel Functions: The new Hankel functions evaluate following their
definition.

• Thresholded Truncation: New, uppercase versions of the truncation functions
(floor, ceil, round, etc.) take a second threshold argument and scale by the threshold
before performing the truncation, then rescale after truncation. This is useful if you
need to truncate without units. However, the lowercase version of these functions
no longer take arguments with units to avoid ambiguity when converting between
unit systems. Additionally, all truncation functions now accept complex arguments.

• Sinc and Seed: A new function has been added for sin(x)/x and its behavior at x =
0 has improved. The new Seed function resets the seed value used in random number
and random distribution functions dynamically in a Mathcad worksheet. It can also
be used in a program to set different seeds for different loops through a random
generator call.

• Error functions: The error function (erf) and complimentary error function (erfc)
now accept complex arguments.

• Strict Boolean Comparison: When doing comparison operations on floating point
numbers that vary beyond the calculation precision of your machine, you may want
to implement strict Boolean comparison within your worksheet. If you check this
option, the two sides of a Boolean sentence will be compared exactly.

6 / Chapter 1
Programming
• Scriptable Object Improvements: Mathcad Scriptable Object components can

now call other objects and variables in a Mathcad worksheet using the Automation
methods outlined in Help⇒Developer’s Reference under Accessing Mathcad
from Another Application.

• String Support in User EFIs: User-written functions for Mathcad may now be
programmed to pass strings as arguments and outputs. MCSTRING has been added
to define a null-terminated character string pointer.

New Online Resources
• New Tutorials: Getting Started Primers and In-depth Features are entirely new,

geared both for new users and users looking for help on more advanced features.
They are accessible from the Resources toolbar or directly from the Help menu.

• QuickSheets and Application Samples: QuickSheets provide live examples of
most Mathcad functions. They are now all linked from Help. In addition,
application samples are now included under Using Mathcad with Other
Applications in the QuickSheets. These example files are also accessible directly
from the Help menu.

• Developer’s Reference: This online Help now provides more guidance and
examples for custom controls, creating scriptable objects, and Automation. Linked
sample files have been added to help you use these features.

• Web Library: The E-books in the Web Library at www.mathcad.com include
helpful resources for using Mathcad. If you are solving differential equations, we
recommend downloading Differential Equation Solve Blocks: ODEs and DAEs in
Mathcad.

If you are upgrading from a version earlier than Mathcad 2001i, you will find many
more new features. Online Help, QuickSheets, Tutorials, and this User’s Guide will all
help orient you to the current features in Mathcad.

Mathcad Enterprise
• Mathcad 11 Enterprise is designed for organizational use of Mathcad, with

additional capabilities to support networked or server-based deployment. Mathcad
Enterprise supports Microsoft Sharepoint, including networked accessibility,
check-in/check-out, version management, and access control.

System Requirements / 7
System Requirements

In order to run Mathcad 11, the following are recommended or required:
• PC with Pentium/Celeron processor running at 233 MHz. 300 MHz or higher

recommended.
• Windows 98 SE, Me, NT 4.0 SP6, 2000 SP2, XP or higher.
• Minimum 96 MB of RAM. 256 MB or higher recommended.
• SVGA or higher graphics card and monitor.
• At least 150 MB disk space.
• Internet Explorer, version 5.5 or higher is required for full functionality of the Help

system, accessing HTML content within the Resources window, the opening and
saving of web-based files, and automatic product activation. IE 6 can be installed
from the CD. IE does not need to be your default browser.

• CD-ROM drive or DVD drive.
• Keyboard and mouse or compatible pointing device.
Direct Internet connection or Internet access through a service provider is
recommended.

Installation

Note The installation of Mathcad 11 requires the uninstallation of any previous versions of Mathcad
from your computer before installing the new version. We have found that running more than
one version of Mathcad from the same computer can lead to instability and unexpected
behaviors. To uninstall previous versions of Mathcad, use “Add/Remove Programs” from your
Windows Start menu under Settings⇒Control Panel.

Instructions in this section are intended for single-user editions of Mathcad 11.
Enterprise Edition users should refer to the Installation and License Management
Guide included with your copy of Mathcad for installation instructions.

To Install Mathcad
1. Insert the Mathcad CD into your CD-ROM drive. The first time you do this, the

CD will automatically start the installation program. If the installation program does
not start automatically, you can start it by choosing Run from the Start menu and
typing D:\SETUP (where “D:” is your CR-ROM drive). Click “OK.”

2. Click the Mathcad button on the main installation page.
3. When prompted, enter your product code, located on the back of the CD envelope.
4. Follow the remaining on-screen instructions.
To install other items from the Mathcad CD, such as Internet Explorer or Acrobat
Reader, click the button for that item on the main installation page.

8 / Chapter 1
Activating Your Installation
When you finish installing Mathcad, you will be prompted to activate your installation.
If you opt to do so, Mathcad will be launched to activate your installed copy. Activation
ensures that you have purchased a valid licensed copy of Mathcad and can be done
automatically if you have an active Internet connection. If you have Internet access on
your computer, but not an active Internet connection, you should initiate one before
attempting activation.
If you opt to activate Mathcad manually, you will need to provide the following
information to Mathsoft Engineering and Education, Inc. by using the form provided
in contact.txt, available from the Activation Wizard:
• Your email address.
• The product you are registering (in this case, Mathcad 11).
• Your License Number*.
• Your Product Code.
• Your Request Code*.
Entries marked with an “*” are available only from the Activation Wizard. Information
submitted during activation is used only to process your request, and is not stored or
used for any other purposes.
Once you fill out your copy of contact.txt, submit the information to Mathsoft. Users
in the US and Canada may do so by either:
• Faxing a copy of contact.txt to 1-617-444-8001.
• Emailing a copy of contact.txt to activation@mathsoft.com.
• Phoning 1-800-827-1263 and supplying the information from contact.txt when

prompted.
If you purchased Mathcad outside the U.S. and Canada, please contact your local
authorized Mathcad distributor for your activation code. Contact information for
Mathcad distributors is available at:
http://www.mathcad.com/buy/International_Contacts.asp
If you do not have Web access you can contact Mathsoft International for assistance at:

• Email: activation@Mathsoft.co.uk
• Fax: +44 (0)1276 475552
• Telephone: +44 (0)1276 450850
Once you receive your Activation Key, return to the Activation Wizard and attempt a
manual activation. Click “Next” until you reach the Enter Your Activation Key page,
then enter the Activation Key you received. Once the Activation Key is accepted, your
installation of Mathcad will be activated and ready to use.

Technical Support / 9
Questions about Activation

Mathsoft has implemented activation to ensure that you have purchased a valid licensed
copy of Mathcad.
Activation does not transfer any other personal information from your computer.
Mathsoft product activation is completely anonymous and is only used to authenticate
your license.
Activation allows you to install Mathcad on both your work computer and a home
computer used for work or laptop. Most hardware and software upgrades to your
computer will not require reactivation, and you can reinstall Mathcad on the same
machine without using up an additional activation.

Note Activation installs a C_DILLA folder on your C-drive with your license for Mathcad use. If you
delete the C_DILLA folder you may have to contact to Mathsoft to restore your activation.

If your computer’s hardware has changed substantially you may have to contact
Mathsoft to reactivate.

Technical Support

Mathsoft provides free technical support for individual users of Mathcad 11. Please
visit the Support area of www.mathcad.com for more information regarding our support
policies as well as our searchable knowledge base.
U.S. and Canada
• Web: http://support.mathsoft.com
• e-mail: support@mathsoft.com
• automated solution center: 617-444-8102
• FAX: 617-444-8101
International
If you reside outside the US and Canada, please contact your local authorized Mathcad
distributor for technical support. Their contact details can be found at:
http://www.mathcad.com/buy/International_Contacts.asp.

If you do not have web access you can contact Mathsoft International direct
for assistance at:
• E-mail: help@Mathsoft.co.uk
• Fax: +44 (0)1276 475552
• Telephone: +44 (0)1276 450850
Site Licenses
Contact Mathsoft or your local distributor for information about technical support plans
for site licenses.

Chapter 2
Getting Started with Mathcad

! The Mathcad Workspace

! Regions

! A Simple Calculation

! Definitions and Variables

! Entering Text

! Iterative Calculations

! Graphs

! Saving, Printing, and Exiting

The Mathcad Workspace

For information on system requirements and how to install Mathcad on your computer,
refer to Chapter 1, “Welcome to Mathcad.”
When you start Mathcad, you’ll see a window like that shown in Figure 2-1. By default
the worksheet area is white.

Figure 2-1: Mathcad with various toolbars displayed.
11

12 / Chapter 2
Each button in the Math toolbar, shown in Figure 2-1, opens another toolbar of
operators or symbols. You can insert many operators, Greek letters, and plots by
clicking the buttons found on these toolbars:

The Standard toolbar is the strip of buttons shown just below the main menus in
Figure 2-1. Many menu commands can be accessed quickly by using these buttons.

The Formatting toolbar is shown immediately below the Standard toolbar in Figure
2-1. This contains scrolling lists and buttons used to specify font characteristics in
equations and text.

Tip To learn what a button on any toolbar does, let the mouse pointer rest on the button momentarily.
You’ll see a tooltip beside the pointer giving a brief description.

You can choose to show or hide each toolbar from the View menu. To detach and drag
a toolbar around your window, place the mouse pointer anywhere other than on a button
or a text box. Then press and hold down the mouse button and drag.

Tip You can customize the Standard, Formatting, and Math toolbars. To add and remove buttons,
right click on the toolbar and choose Customize from the popup menu.

Button Opens math toolbar...

Calculator: Common arithmetic operators.

Graph: Various two- and three-dimensional plot types and graph tools.

Matrix: Matrix and vector operators.

Evaluation: Equal signs for evaluation and definition.

Calculus: Derivatives, integrals, limits, and iterated sums and products.

Boolean: Comparative and logical operators for Boolean expression.

Programming: Programming constructs.

Greek: Greek letters.

Symbolic: Symbolic keywords.

Regions / 13
Working with Worksheets
When you start Mathcad, you open up a Mathcad worksheet. You can have as many
worksheets open as your available system resources allow.
There are times when a Mathcad worksheet cannot be displayed in its entirety because
the window is too small. To bring unseen portions of a worksheet into view, you can:
• Expand the window as you do in other Windows applications.

• Choose Zoom from the View menu or click on the Standard toolbar and
choose a number smaller than 100%.

Tip Mathcad supports the Microsoft IntelliMouse and compatible pointing devices. Turning the
wheel scrolls the window one line vertically for each click of the wheel. When you press
[Shift] and turn the wheel, the window scrolls horizontally.

See “Appendix I: Arrow and Movement Keys” on page 445 in the Appendices for
keystrokes for moving the cursor. If you are working with a longer worksheet, use Go
to Page from the Edit menu to move quickly through the worksheet.

Tip Mathcad supports standard Windows keystrokes for operations such as file opening, [Ctrl]O,
saving, [Ctrl]S, printing, [Ctrl]P, copying, [Ctrl]C, and pasting, [Ctrl]V. Choose
Preferences from the Tools menu and uncheck “Standard Windows shortcut keys” in the
General tab to use shortcut keys supported in early versions of Mathcad.

Regions

Mathcad lets you enter equations, text, and plots anywhere in the worksheet. Each
equation, piece of text, or other element is a region. Mathcad creates an invisible
rectangle to hold each region. A Mathcad worksheet is a collection of such regions. To
start a new region in Mathcad:
1. Click anywhere in a blank area of the worksheet. You see a small crosshair.

Anything you type appears at the crosshair.

2. If the region you want to create is a math region, just start typing anywhere you put
the crosshair. By default Mathcad understands what you type as mathematics. See
“A Simple Calculation” on page 16 for an example.

3. To create a text region, first choose Text Region from the Insert menu and then
start typing. See “Entering Text” on page 18 for an example.

In addition to equations and text, Mathcad supports a variety of plot regions. See
“Graphs” on page 21.

Tip Mathcad displays a box around any region you are currently working in. When you click outside
the region, the surrounding box disappears. To put a permanent box around a region or regions,
select them, then right click and choose Properties from the popup menu. Click on the Display
tab and check the box next to “Show Border.”

14 / Chapter 2
Selecting Regions
To select a single region, simply click it. Mathcad shows a rectangle around the region.
To select multiple regions:
1. Press and hold down the left mouse button to anchor one corner of the selection

rectangle.
2. Without letting go of the mouse button, move the mouse to enclose everything you

want inside the selection rectangle.
3. Release the mouse button. Mathcad shows dashed rectangles around the regions

you have selected.

Tip You can also select a single region or disconnected regions anywhere in the worksheet by
holding down the [Ctrl] key while clicking on each region. If you click one region and
[Shift]-click another, you select both regions and all regions in between.

Region Properties
The Region Properties dialog box allows you to perform the following actions,
depending on the type of region you’ve selected:
• Highlight the region.
• Display a border around the region.
• Assign a tag to the region.
• Restore the region to original size.
• Widen a region to the entire page width.
• Automatically move everything down in the worksheet below the region when the

region wraps at the right margin.
• Disable/enable evaluation of the region.
• Optimize an equation.
• Turn protection on/off for the region.
You can change the properties of a region or regions by right clicking and choosing
Properties from the menu.

Tip You can change the properties for multiple regions by selecting the regions you want to change,
and either selecting Properties from the Format menu or by right clicking on one of the regions
and choosing Properties from the menu.

Note When you select multiple regions, you may only change the properties common to the regions
selected. If you select both math and text regions, you will not be able to change text-only or
math-only options, such as “Occupy Page Width” or “Disable/Enable Evaluation”.

Regions / 15
Moving and Copying Regions
Once the regions are selected, you can move or copy them.

Moving regions

You can move regions by dragging with the mouse, nudging with the arrow keys, or
by using Cut and Paste.
To drag regions with the mouse:
1. Select the regions.
2. Place the pointer on the border of any selected region. The pointer turns into a small

hand.
3. Press and hold down the mouse button.
4. Without letting go of the button, move the mouse. The rectangular outlines of the

selected regions follow the mouse pointer.
Dragging regions. To move the selected regions into another worksheet, press and
hold down the mouse button, drag the rectangular outlines into the destination
worksheet, and release the mouse button.
Nudging Regions.To nudge the regions, first select them to get a dotted line around
them. If you want to select a single region, press [Ctrl] and then click on the region.
Then you can use the arrows keys to nudge them in different directions.
To move the selected regions by using Cut and Paste:
1. Select the regions.
2. Choose Cut from the Edit menu, [Ctrl] X, or click on the Standard toolbar.

This deletes the selected regions and puts them on the Clipboard.
3. Click the mouse wherever you want the regions moved. Make sure you’ve clicked

in an empty space.
4. Choose Paste from the Edit menu, [Ctrl] V, or click on the Standard toolbar.

Note You can move one region on top of another. To move a particular region to the top or bottom,
right click on it and choose Bring to Front or Send to Back from the popup menu.

Copying Regions

To copy regions by using the Copy and Paste commands:
1. Select the regions.
2. Choose Copy from the Edit menu, [Ctrl] C, or click on the Standard toolbar

to copy the selected regions to the Clipboard.
3. Click the mouse wherever you want to place a copy of the regions. Make sure you’ve

clicked in an empty space and that you see the crosshair.
4. Choose Paste from the Edit menu, [Ctrl] V.

Tip If the regions you want to copy are coming from a locked area (see “Safeguarding an Area of the
Worksheet” on page 85) or an E-book, you can copy them simply by dragging them with the
mouse into your worksheet.

16 / Chapter 2
Deleting Regions
To delete one or more regions:
1. Select the regions.
2. Choose Cut from the Edit menu, [Ctrl] X.
Choosing Cut removes the selected regions from your worksheet and puts them on the
Clipboard. If you don’t want to disturb the contents of your Clipboard, or if you don’t
want to save the selected regions, choose Delete from the Edit menu or press
[Ctrl] D instead.

A Simple Calculation

Although Mathcad can perform sophisticated mathematics, you can easily use it as a
simple calculator. To try your first calculation, follow these steps:
1. Click anywhere in the worksheet. You see a small

crosshair. Anything you type appears at the crosshair.
2. Type 15-8/104.5=. When you type the equal sign or

click on the Evaluation toolbar, Mathcad computes
the result.

This calculation demonstrates the way Mathcad works:
• Mathcad sizes fraction bars, brackets, and other symbols to display equations the

same way you might see them in a book or on a blackboard.
• Mathcad understands which operation to perform first. In this example, Mathcad

knew to perform the division before the subtraction and displayed the equation
accordingly.

• As soon as you type the equal sign or click on the Evaluation toolbar, Mathcad
returns the result. Unless you specify otherwise, Mathcad processes each equation
as you enter it. See the section “Controlling Calculation” in Chapter 8 to learn how
to change this.

• As you type each operator (in this case, − and /), Mathcad shows a small rectangle
called a placeholder. Placeholders hold spaces open for numbers or expressions not
yet typed. As soon as you type a number, it replaces the placeholder in the
expression. The placeholder that appears at the end of the expression is used for
unit conversions. Its use is discussed in “Displaying Units of Results” on page 115.

Once an equation is on the screen, you can edit it by clicking in the appropriate spot
and typing new letters, numbers, or operators. You can type many operators and Greek
letters by clicking in the math toolbars introduced in “The Mathcad Workspace” on
page 11. Chapter 4, “Working with Math,” details how to edit Mathcad equations.

Definitions and Variables / 17
Definitions and Variables

Mathcad’s power and versatility quickly become apparent once you begin using
variables and functions. By defining variables and functions, you can link equations
together and use intermediate results in further calculations.

Defining Variables
To define a variable t, follow these steps:

1. Type t followed by a colon : or click on the Calculator
toolbar. Mathcad shows the colon as the definition symbol :=.

2. Type 10 in the empty placeholder to complete the definition
for t.

If you make a mistake, click on the equation and press [Space]
until the entire expression is between the two editing lines, just as you did earlier. Then
delete it by choosing Cut from the Edit menu ([Ctrl] X). See Chapter 4, “Working
with Math,” for other ways to edit an expression.
These steps show the form for typing any definition:
1. Type the variable name to be defined.

2. Type the colon key : or click on the Calculator toolbar to insert the definition
symbol.

3. Type the value to be assigned to the variable. The value can be a single number or
a more complicated combination of numbers and previously defined variables.

Mathcad worksheets read from top to bottom and left to right. Once you have defined
a variable like t, you can compute with it anywhere below and to the right of the equation
that defines it.
Now enter another definition:

1. Press [↵]. This moves the crosshair below the first
equation.

2. To define acc as –9.8, type: acc:–9.8. Then press [↵]
again. Mathcad shows the crosshair cursor below the last
equation you entered.

Calculating Results
Now that the variables acc and t are defined, you can use them in other expressions:

1. Click the mouse a few lines below the two definitions.
2. Type acc/2[Space]*t^2. The caret symbol (^)

represents raising to a power, the asterisk (*) is
multiplication, and the slash (/) represents division.

3. Press the equal sign [=].

18 / Chapter 2
This equation calculates the distance traveled by a falling body in time t with
acceleration acc. When you enter the equation and press the equal sign [=], or click
on the Evaluation toolbar, Mathcad returns the result.
Mathcad updates results as soon as you make changes. For example, if you click on the
10 on your screen and change it to some other number, Mathcad changes the result as
soon as you press [Enter] or click outside of the equation.

Entering Text

Mathcad handles text as easily as it does equations, so you can make notes while
calculating.
Here’s how to enter text:

1. Click in the blank space to the right of the equations you
entered. You’ll see a small crosshair.

2. Choose Text Region from the Insert menu, or press " (the
double-quote key), to tell Mathcad that you’re about to enter
some text. Mathcad changes the crosshair into a vertical line called the insertion
point. Characters you type appear behind this line. A box surrounds the insertion
point, indicating you are now in a text region. This box is called a text box. It grows
as you enter text.

3. Type Equations of motion. The text appears in the
worksheet.

Note If Ruler under the View menu is checked when the cursor is inside a text region, the ruler resizes
to indicate the size of your text region. To use the ruler to set tab stops and indents in a text
region, see “Changing Paragraph Properties” on page 69.

Tip If you click in blank space in the worksheet and start typing, which creates a math region,
Mathcad automatically converts the math region to a text region when you press [Space].

To enter a second line of text:
1. Press [↵].
2. Then type for falling body under gravity.

3. Click in a different spot in the worksheet or press
[Ctrl][Shift][↵] to move out of the text
region. The text box disappears and the cursor
appears as a small crosshair.

Note Use [Ctrl][Shift][↵] to move out of the text region to a blank space in your worksheet. If
you press [↵], Mathcad inserts a line break in the current text region instead.

You can set the width of a text region and change the font, size, and style of the text in
it. (See Chapter 6, “Working with Text.”)

Iterative Calculations / 19
Iterative Calculations

Mathcad can do repeated or iterative calculations as easily as individual calculations
by using a special variable called a range variable.
Range variables take on a range of values, such as all the integers from 0 to 10.
Whenever a range variable appears in a Mathcad equation, Mathcad calculates the
equation not just once, but once for each value of the range variable.

Creating a Range Variable
To compute equations for a range of values, first create a range variable. In the problem
shown in “Calculating Results” on page 17, for example, you can compute results for
a range of values of t from 10 to 20 in steps of 1.
To do so, follow these steps:
1. First, change t into a range variable by editing its definition.

Click on the 10 in the equation t:=10. The insertion point
should be next to the 10 as shown.

2. Type ,11. This tells Mathcad that the next number in the range
will be 11.

3. Type ; for the range variable operator, or click on the
Matrix toolbar, and then type the last number, 20. This tells
Mathcad that the last number in the range will be 20. Mathcad
shows the range variable operator as a pair of dots.

Defining a Function
Here’s how to add a function definition to your worksheet:
1. First delete the table if you are in the same worksheet.

Now define the function d(t) by typing d(t):
2. Complete the definition by typing this expression:

1600+acc/2[Space]*t^2[↵]
The definition you just typed defines a function. The function name is d, and the
argument of the function is t. You can use this function to evaluate the above expression
for different values of t. To do so, simply replace t with an appropriate number. For
example:

4. Now click outside the equation for t. Mathcad begins to compute
with t defined as a range variable. Since t now takes on eleven
different values, there must also be eleven different answers.
These are displayed in an output table as shown at right.

20 / Chapter 2
1. To evaluate the function at a particular value, such as 3.5,
type d(3.5)=. Mathcad returns the correct value as shown
at right.

Formatting a Result
You can set the display format for any number Mathcad calculates and displays. This
means changing the number of decimal places shown, changing exponential notation
to ordinary decimal notation, and so on.

For example, in the example above, the first two values, and ,
are in exponential (powers of 10) notation. Here’s how to change the table produced
above so that none of the numbers in it are displayed in exponential notation:
1. Click anywhere on the table with the

mouse.
2. Choose Result from the Format

menu. You see the Result Format
dialog box. This box contains
settings that affect how results are
displayed, including the number of
decimal places, the use of
exponential notation, the radix, and
so on.

3. The default format scheme is General which has Exponential Threshold
set to 3. This means that only numbers greater than or equal to are
displayed in exponential notation. Click the arrows to the right of the 3
to increase the Exponential Threshold to 6.

4. Click “OK.” The table changes to reflect the new result format.
(See“Formatting Results” on page 112.)

Note When you format a result, only the display of the result is affected. Mathcad maintains full
precision internally (up to 15 digits).

2. To evaluate the function once for each value of the range variable
t you defined earlier, click below the other equations and type
d(t)=. Mathcad shows a table of values, as shown at right.

1.11 103⋅ 1.007 103⋅

103

Graphs / 21
Graphs

Mathcad provides two-dimensional Cartesian and polar graphs, contour plots, surface
plots, and a variety of other three-dimensional graphs. This section describes how to
create a simple two-dimensional graph showing the points calculated in the previous
section.

Creating a Basic Graph
To create an X-Y plot:
1. Click in your worksheet.
2. Choose Graph⇒X-Y Plot from the Insert menu

or click on the Graph toolbar. Alternatively,
type [Shift]2 or @. Mathcad inserts a blank
X-Y plot.

3. Fill in both the x-axis placeholder (bottom center)
and the y-axis placeholder (left center) with a
function, expression, or variable.

4. Click outside the plot or press [Enter].
Mathcad automatically chooses axis limits for you. If you want to specify the axis limits
yourself, click in the plot and type over the numbers in the placeholders at the ends of
the axes.
Mathcad creates the plot over a default range using default limits. See “Formatting a
2D Plot” on page 168 for how to modify these defaults. For detailed information on
graphs, see Chapter 11, “2D Plots.”

Formatting a Graph
When you first create a graph it has default characteristics: numbered linear axes, no
grid lines, and points connected with solid lines. You can change these characteristics
by formatting the graph. To format the graph created previously:

1. Click on the graph and choose
Graph⇒X-Y Plot from the Format
menu, or double-click the graph to
bring up the formatting dialog box. To
learn more about these settings, see
Chapter 11, “2D Plots.”

2. Click the Traces tab.
3. Click “trace 1” in the scrolling list

under “Legend Label.” Mathcad
places the current settings for trace 1 in
the boxes under the corresponding
columns of the scrolling list.

22 / Chapter 2
4. Click the arrow under the “Type” column
to see a drop-down list of trace types.
Select “bar” from this drop-down list.

5. Mathcad shows the graph as a bar chart
instead of connecting the points with
lines. Note that the sample line under the
d(t) now has a bar on top of it.

6. Click outside the graph to deselect it.

Saving, Printing, and Exiting

Once you’ve created a worksheet, you will probably want to save or print it.

Saving a Worksheet
To save a worksheet:
1. Choose Save from the File menu (keystroke: [Ctrl] S) or click on the

Standard toolbar. If the file has never been saved before, the Save As dialog box
appears.

2. Type the name of the file in the text box provided. To save to another folder, locate
the folder using the Save As... dialog box.

By default Mathcad saves the file in Mathcad (MCD) format, but you have the option
of saving in other formats, such as HTML, as RTF for Microsoft Word, as a template
for future Mathcad worksheets, or in a format compatible with earlier Mathcad versions.
To save as HTML, choose Save as Web Page under the File menu. (See Chapter 7,
“Worksheet Management.”)

Printing

To print, choose Print from the File menu or click on the Standard toolbar. To

preview the printed page, choose Print Preview from the File menu or click on
the Standard toolbar.(See Chapter 7, “Worksheet Management.”)

Exiting Mathcad
To quit Mathcad choose Exit from the File menu. If you have moved any toolbars,
Mathcad remembers their locations for the next time you open the application.

Note To close an individual worksheet while keeping Mathcad open, choose Close from the
File menu.

Chapter 3
Online Resources

! Mathcad Resources

! Resources Window and E-books

! Help

! Collaboratory User Forums

! Other Resources

Mathcad Resources

Note Help resources need to be installed from your CD. If you chose Custom Install and did not install
all of these resources, you can find them on your Mathcad CD.

Help Menu Resources:

• Tutorials includes both Getting Started Primers and Features In-depth.
• QuickSheets are live examples that you can manipulate to see how to use Mathcad

functions, graphs, and programming. Using Mathcad with Other Applications helps
you connect Mathcad to other applications and use Mathcad custom controls.

• Reference Tables provides you with physical constant tables, chemical and
physical data, and mathematical formulas.

• Mathcad Help contains complete help on every feature of Mathcad with links to
live examples.

• The Author’s Reference covers creating E-books in Mathcad; and exporting
Mathcad files in RTF for Microsoft Word and HTML formats for distribution to
non-Mathcad audiences.

• The Developer’s Reference provides information about developing customized
Mathcad components, specialized OLE objects, and controls that allow you to
access functions from other applications and data from remote sources. The
Developer’s Reference also documents Mathcad’s Object Model, allowing you to
access Mathcad’s functionality from another application or an OLE container.

Resources Window and E-books
If you learn best from examples, want information you can put to work immediately in
your Mathcad worksheets, or wish to access any page on the Web from within Mathcad,
open the Resources toolbar or open Tutorials, QuickSheets, or Reference Tables from
the Help menu. The Resources window and Mathcad E-books appear as custom
windows with their own menus and toolbar, as shown in Figure 3-1.
23

24 / Chapter 3
Note A number of Mathcad E-books, which you can download and use, are available in the Web
Library on www.mathcad.com. In addition, a variety of Mathcad E-books are available from the
Mathsoft Webstore at http://www.webstore.mathsoft.com or your local distributor
or software reseller. To open an E-book, choose Open Book under E-books in the Help menu
and browse to find the location of the E-book (HBK) file. E-books install to a Handbook folder
in the directory where you have installed Mathcad. Once you have restarted Mathcad, they will
be listed under E-books in the Help menu. If you create your own E-books, you may have to
create a Handbook folder.

Finding Information in an E-book
As in other hypertext systems, you move around a Mathcad E-book simply by clicking
on icons or underlined text. You can also use the buttons on the toolbar at the top of
the E-book and Resources window to navigate within the E-book:

Figure 3-1: E-book window and toolbar.

Mathcad Resources / 25
Mathcad keeps a record of where you’ve been in the E-book. When you click ,
Mathcad backtracks through your navigation history in the book. Backtracking is
especially useful when you have left the main navigation sequence of a worksheet to
look at a hyperlinked cross-reference.

If you don’t want to go back one section at a time, click to open a History dialog
from which you can jump to any section you viewed since you first opened the E-book.

E-book search

In addition to using hypertext links to
find topics in an E-book, you can search
for topics or phrases. To do so:

1. Click to open the Search dialog
box.

2. Type a word or phrase in the “Search
for” text box. Select a word or phrase
and click “Search” to see a list of
topics containing that entry and the
number of times it occurs in each
topic.

 Button Function

Links to the home page or welcome page for the E-book.

Opens a toolbar for entering a Web address.

Backtracks to whatever document was last viewed.

Reverses the last backtrack.

Goes backward one section.

Goes forward one section.

Displays a list of documents most recently viewed.

Searches the E-book for a particular term.

Copies selected regions to the Clipboard.

Saves current section of the E-book.

Prints current section of the E-book.

26 / Chapter 3
3. Choose a topic and click “Go To.” Mathcad opens the section containing the entry
you want to search for. Click “Next” or “Previous” to see the next or previous
occurrence of the entry.

Annotating an E-book
A Mathcad E-book is made up of fully interactive Mathcad worksheets. You can freely
edit any math region in an E-book to see the effects of changing a parameter or
modifying an equation. You can also enter text, math, or graphics as annotations in any
section of your E-book, using the menu commands on the E-book window and the
Mathcad toolbars.

Tip By default any changes or annotations you make to the E-book are displayed in an annotation
highlight color. To change this color, choose Color⇒Annotation from the Format menu. To
suppress the highlighting of E-book annotations, remove the check from Highlight Changes on
the E-book’s Book menu.

Saving annotations

Changes you make to an E-book are temporary by default: your edits disappear when
you close the E-book, and the E-book is restored to its original state. You can choose
to save annotations in an E-book by checking Annotate Book on the Book menu or
by right clicking in the E-book window and selecting Annotate Book on the popup
menu. You can also choose:
• Save Section from the Book menu to save annotations you made in the current

section, or choose Save All Changes to save all changes.
• View Original Section to see the E-book section in its original form or choose

View Edited Section to see your annotations again.
• Restore Section to revert to the original section or Restore All to delete all

annotations you have made to the E-book.

Copying Information from an E-book
There are two ways to copy information from an E-book into your Mathcad worksheet:
• You can use the Clipboard. Select text or equations in the E-book using one of the

methods described in “Selecting Regions” on page 14, click on the E-book
toolbar or choose Copy from the Edit menu, click in your worksheet, and choose
Paste from the Edit menu.

• You can drag regions from the E-book window and drop them into your worksheet.
Select the regions, then click and hold down the mouse button over one of the
regions while you drag the group into your worksheet. Release the mouse button
to copy the regions into your worksheet.

Web Browsing
You can also use the Resources window to browse to any location on the Web and open
Web pages, in addition to Mathcad worksheets and E-books posted on the Web. The
Mathcad Web Library contains a number of useful worksheets and e-books.

Mathcad Resources / 27
Note When the Resources window is in Web-browsing mode, Mathcad is using a Web-browsing OLE
control provided by Microsoft Internet Explorer. Web browsing in Mathcad requires Microsoft
Internet Explorer version 5.5 or higher to be installed on your system, but it does not need to be
your default browser.
Microsoft Internet Explorer 6 is available for installation when you install Mathcad. Refer to
Microsoft Corporation’s Web site at http://www.microsoft.com/ for support
information and to download the latest version.

To browse to any Web page from within the Resources window:

1. Click on the Resources toolbar. As shown below, an additional toolbar with
an “Address” box appears below the Resources toolbar to indicate that you are now
in a Web-browsing mode:

2. In the “Address” box type a Uniform Resource Locator (URL) for a document on
the Web. To visit the Mathsoft home page, for example, type
http://www.mathsoft.com/ and press [Enter]. If you have Internet
access and the server is available, the requested page is loaded in your Resources
window. If you do not have a supported version of Microsoft Internet Explorer
installed, you must launch a Web browser.

The remaining buttons on the Web Toolbar have the following functions:

Note When you are in Web-browsing mode and right click on the Resources window, Mathcad
displays a popup menu with commands appropriate for viewing Web pages. Many of the buttons
on the Resources toolbar remain active when you are in Web-browsing mode, so that you can
copy, save, or print material you locate on the Web, or backtrack to pages you previously

viewed. When you click , you return to the Home page for the Resources window or E-book
and disconnect from the Web.

Tip You can use the Resources window in Web-browsing mode to open Mathcad worksheets
anywhere on the Web. Simply type the URL of a Mathcad worksheet in the “Address” box in
the Web toolbar.

Button Function

Bookmarks current page.

Reloads the current page.

Interrupts the current file transfer.

28 / Chapter 3
Help

Mathcad provides several ways to get support on product features through an extensive
online Help system. To see Mathcad’s online Help at any time, choose Mathcad Help

from the Help menu, click on the Standard toolbar, or press [F1]. Mathcad’s Help
system is delivered in Microsoft’s HTML Help environment, as shown in Figure 3-2.

You can browse the Explorer view on the Contents tab, look up terms or phrases on
the Index tab, or search the entire Help system for a keyword or phrase on the Search tab.

Note To run Help, you must have Internet Explorer 5.5 or higher installed. However, IE does not need
to be set as your default browser.

To know what Mathcad menu commands do, hover over the command and read the
status bar at the bottom of your window. For toolbar buttons, hold the pointer over the
button momentarily to see a tool tip.

Note The status bar in Mathcad is displayed by default. You can hide the status bar by removing the
check from Status Bar on the View menu.

You can also get more detailed help on menu commands, toolbars, built-in functions
and operators, and error messages. To do so:
1. Click an error message, a built-in function or variable, or an operator.
2. Press [F1] to bring up the relevant Help screen.
To get help on menu commands or on any of the toolbar buttons:
1. Press [Shift][F1]. Mathcad changes the pointer into a question mark.
2. Choose a command from the menu. Mathcad opens the relevant Help screen.
3. Click any toolbar button. Mathcad displays the operator’s name and a keyboard

shortcut in the status bar.

Figure 3-2: Mathcad online Help

Collaboratory User Forums / 29
To resume editing, press [Esc]. The pointer turns back into an arrow.

Tip Choose Mathcad Tips from the Help menu for a series of helpful hints on using Mathcad.

Additional Mathcad help

Mathcad includes two other online help references:
• The Author’s Reference contains all the information needed to create a Mathcad

E-book or to save your files in HTML for posting on the Web.
• The Developer’s Reference provides information for using Mathsoft custom

Scriptable Object components, Mathsoft Custom Controls, and the Data
Acquisition component. See Chapter 14, “Importing and Exporting Data,” for
details. It also guides advanced Mathcad users through Mathcad’s Object Model,
which explains the tools needed to access Mathcad’s feature set from within another
application. Also included are instructions for using C or C++ to create your own
functions in Mathcad in the form of DLLS.

Collaboratory User Forums

The Mathcad Collaboratory User Forums consist of a group of forums that allow you
to contribute Mathcad or other files, post messages, and download files and read
messages contributed by other Mathcad users. You can search the User Forums for
messages containing a key word or phrase, be notified of new messages in specific
forums, and view only the messages you haven’t yet read. You’ll find that the User
Forums combine some of the best features of an online news group with the convenience
of sharing Mathcad worksheets.

Logging in
To open the User Forums, choose User Forums from the Help menu, or you can open
an Internet browser and go directly to the Collaboratory User Forums:
http://collab.mathsoft.com/~mathcad2000/
You’ll see the Collaboratory User Forums login screen in a browser window:

30 / Chapter 3
The first time you come to the login screen of the Collaboratory User Forums, click
“New User.” This brings you to a form for entering required and optional information.

Note Mathsoft does not use this information for any purposes other than for your participation in the
User Forums.

Click “Create” when you are finished filling out the form. Check your email for a
message with your login name and password. Go back to the Collaboratory, enter your
login name and password given in the email message and click “Log In.” You see the
main page of the Collaboratory:

A list of forums and messages appears on the left side of the screen. The toolbar at the
top of the window gives you access to features such as search and online Help.

Tip After logging in, you may want to change your password to one you will remember. To do so,
click More on the toolbar at the top of the window, then go to Edit User Profile.

Note Mathsoft maintains the User Forums as a free service, open to all in the Mathcad community. Be
sure to read the Agreement posted in the top level of the Collaboratory User Forums for
important information and disclaimers.

Figure 3-3: Opening the Collaboratory from the Resources window.

Collaboratory User Forums / 31
Reading Messages
When you enter the User Forums Collaboratory, you will see how many messages are
new and how many are addressed to your attention. To read any message in any forum:
1. Click on the next to the forum name or click on the forum name.
2. Click on a message to read it. Click the to the left of a message to see replies

underneath it.
3. You can read the message and the replies in the right side of the window.
Messages that you have not yet read are shown in italics. You may also see a “new”
icon next to these messages.

Posting Messages
After you enter the User Forums, you can post a new message or reply to existing
messages. To do so:
1. Choose Post from the toolbar to

post a new message. To reply to
a message, click Reply at the top
of the message in the right side of
the window. You’ll see the post/
reply page in the right side of the
window. For example, if you post
a new topic message in the
Biology forum, you see:

2. Click on the boxes below the title
to preview a message, spell check a message, or attach a file.

3. Type your text in the message field.
4. Click “Post” after you finish typing. Depending on the options you selected, the

Collaboratory either posts your message immediately or allows you to preview it.
5. If you choose Attach File, a new page will appear. Specify the file type and browse

to the file then click “Upload Now.”

Note For more information on reading, posting messages, and using other features of the
Collaboratory, click Help on the Collaboratory toolbar.

To delete a message that you posted, click on it to open it and click Delete in the small
toolbar just above the message on the right side of the window.

Searching
You can search the Collaboratory User Forums for messages containing specific words
or phrases, messages within a certain date range, or delete messages posted to specific
forums.

32 / Chapter 3
Changing Your User Information
You may want to change your login name and password or hide your email address.
To update this information or change the Collaboratory defaults, you need to edit your
profile:
1. Click More on the toolbar at the top of the window.
2. Click “Edit Your Profile” and fill out the changed information.

Other Features
To create an address book, mark messages as read, view certain messages, or request
automatic email announcements when specific forums have new messages, choose
More from the toolbar.
The Collaboratory also supports participation via email or a news group. For more
information on these and other available features choose Help on the toolbar.

Other Resources

Web Library
Accessible at http://www.mathcad.com/library, the Mathcad Web Library
contains user-contributed documents, E-books, graphics, and animations created in
Mathcad. The library is divided into several sections: E-books, Mathcad Files, Gallery,
and Puzzles. Files are further categorized as application files (professional problems),
education files, graphics, and animations. You can choose a listing by discipline from
each section, or you can search for files by keyword or title.
If you wish to contribute files to the library, please email author@mathsoft.com.

Online Documentation
The Mathcad User’s Guide and Installation Guide for Enterprise users are available in
PDF form from the Windows Start menu under Programs⇒Mathcad.

Release Notes
Release notes are located in the DOC folder located in your Mathcad folder. They
contain the latest information on Mathcad, updates to the documentation, and
troubleshooting instructions.

Technical Support
The Technical Support Knowledge Base contains frequently asked questions, samples
files, and support resources. These are posted on the Web at www.mathsoft.com/
support /
This page has links to past issues of the Mathcad Advisor Newsletter, which is filled
with useful Mathcad tips.

Downloads on Mathcad.com
Registered users can download updates, Mathcad modules, and other useful tools from
the http://www.mathcad.com/download/ site depending on your version of Mathcad.

Chapter 4
Working with Math

! Inserting Math

! Building Expressions

! Editing Expressions

! Math Styles

Inserting Math

You can place math expressions anywhere you want in a Mathcad worksheet.
1. Click anywhere in the worksheet. Anything you type

appears at the crosshair.
2. Type numbers, letters, and math operators, or insert them

by clicking buttons on Mathcad’s math toolbars, to create
a math region.

You’ll notice that unlike a word processor, Mathcad by default understands anything
you type at the crosshair cursor as math. If you want to create a text region instead, see
Chapter 6, “Working with Text.”
You can also type math expressions in any math placeholder that appears. See Chapter
17, “Operators” for more on Mathcad’s operators.

Numbers and Complex Numbers
A single number in Mathcad is called a scalar. To enter groups of numbers in arrays,
see “Inserting an Operator” on page 38.

Types of numbers

In math regions, Mathcad interprets anything beginning with one of the digits 0–9 as
a number. A digit can be followed by:
• other digits
• a decimal point
• digits after the decimal point
• or appended as a suffix, one of the letters b, h, or o, for binary, hexadecimal, and

octal numbers, or i or j for imaginary numbers. These are discussed in more detail
below. See “Appendix G: Suffixes for Numbers” on page 443 for additional
suffixes.

Note Mathcad uses the period (.) to signify the decimal point. The comma (,) is used to separate
values in a range variable definition, as described in “Range Variables” on page 103. So when
you enter numbers greater than 999, do not use either a comma or a period to separate digits into
groups of three. Simply type the digits one after another. For example, to enter ten thousand, type
“10000”.
33

34 / Chapter 4
Imaginary and complex numbers

To enter an imaginary number, follow it with i or j, as in 1i or 2.5j.

Note You cannot use i or j alone to represent the imaginary unit. You must always type 1i or 1j. If
you don’t, Mathcad thinks you are referring to a variable named either i or j. When the cursor is
outside an equation that contains 1i or 1j, however, Mathcad hides the (superfluous) 1.

Although you can enter imaginary numbers followed by either i or j, Mathcad normally
displays them followed by i. To have Mathcad display imaginary numbers with j,
choose Result from the Format menu, click on the Display Options tab, and set
“Imaginary value” to “j(J).” See “Formatting Results” on page 112 for a full
description.

Mathcad accepts complex numbers of the form (or), where a and b are
ordinary numbers.

Binary numbers

To enter a number in binary, follow it with the lowercase letter b. For example,
11110000b represents 240 in decimal. Binary numbers must be less than .

Octal numbers

To enter a number in octal, follow it with the lowercase letter o. For example, 25636o
represents 11166 in decimal. Octal numbers must be less than .

Hexadecimal numbers

To enter a number in hexadecimal, follow it with the lowercase letter h. For example,
2b9eh represents 11166 in decimal. To represent digits above 9, use the upper or
lowercase letters A through F. To enter a hexadecimal number that begins with a letter,
you must begin it with a leading zero. If you don’t, Mathcad will think it’s a variable
name. For example, use 0a3h (delete the implied multiplication symbol between 0
and a) rather than a3h to represent the decimal number 163 in hexadecimal.
Hexadecimal numbers must be less than .

Exponential notation

To enter very large or very small numbers in exponential notation, just multiply a
number by a power of 10. For example, to represent the number , type 3*10^8.

Vectors and Matrices
In Mathcad a column of numbers is a vector and a rectangular array of numbers is called
a matrix. The general term for a vector or matrix is an array. The term “vector” refers
to a column vector. A column vector is simply a matrix with one column. You can also
create a row vector by creating a matrix with one row and many columns. There are a
number of ways to create an array in Mathcad. See Chapter 5, “Vectors, Matrices, and
Data Arrays” for more information.

Tip You may wish to distinguish between the names of matrices, vectors, and scalars by font. Names
of vectors could be set in bold while setting scalars in italic. See “Math Styles” on page 50.

a bi+ a bj+

231

231

231

3 108⋅

Inserting Math / 35
Strings
Although in most cases the math expressions or variables you work with in Mathcad
are numbers or arrays, you can also work with strings (also called string literals or
string variables). Strings can include any character you can type at the keyboard,
including letters, numbers, punctuation, and spacing, as well as a variety of special
symbols as listed in “Appendix K: ASCII codes” on page 447. Strings differ from
variable names or numbers because Mathcad always displays them between double
quotes. You can assign a string to a variable name, use a string as an element of a vector
or matrix, or use a string as the argument to a function.
To create a string:
1. Click on an empty math placeholder usually on the

right-hand side of a variable definition.
2. Type the double-quote (") key to get a pair of quotes

with an insertion line between them.
3. Type any combination of letters, numbers,

punctuation, or spaces. Click outside the expression
or press the right arrow key (→) twice when you are
finished.

To enter a special character corresponding to one of the ASCII codes:
1. Click to position the insertion point in the string.
2. Hold down the [Alt] key, and type the number “0” followed immediately by the

number of the ASCII code using the numeric keypad in number-entry mode.
3. Release the [Alt] key to see the symbol in the string.
For example, to enter the degree symbol (°) in a string, press [Alt] and type “0176”
using the numeric keypad.

Note The double-quote key (") has a variety of meanings in Mathcad, depending on the exact location
of the cursor in your worksheet. When you want to enter a string, you must always have a blank
placeholder selected.

Valid strings include expressions such as “Invalid input: try a number less than -5,”
and “Meets stress requirements.” A string in Mathcad, while not limited in size, always
appears as a single line of text. Note that a string such as “123” is understood by Mathcad
to be a string of characters rather than the number 123.

Tip Strings are especially useful for generating custom error messages in programs, as described in
Chapter 15, “Extending and Automating Mathcad.” Other string handling functions are listed in
“String Functions” on page 256. You can use strings to specify system paths for arguments to
some Mathcad built-in functions. (See “File Access Functions” on page 250.)

36 / Chapter 4
Names
A name in Mathcad is simply a sequence of characters you type referring to a variable
or function used in computations. Mathcad distinguishes between two kinds of names:
• Built-in names.
• User-defined names.

Built-in names

Mathcad’s built-in names include built-in variables and built-in functions.
• Some predefined or built-in variables either have a conventional value, like π

(3.14159...) or e (2.71828...), or are used as system variables to control how
Mathcad performs calculations. (See “Built-in Variables” on page 100.)

• In addition to these predefined variables, Mathcad treats the names of all built-in
units as predefined variables. For example, Mathcad recognizes the name “A” as
the ampere, “m” as the meter, “s” as the second, and so on. Choose Unit from the

Insert menu or click on the Standard toolbar to insert one of Mathcad’s
predefined units. (See “Units and Dimensions” on page 109.)

• Choose Function from the Insert menu or click on the Standard toolbar to
insert one of Mathcad’s built-in functions. (See “Built-in Functions” on page 249.)

User-defined variable and function names

Names in Mathcad can contain any of the following characters:
• Uppercase and lowercase letters.
• The digits 0 through 9.
• The underscore (_).
• The prime symbol ('). Note that this is not the same as an apostrophe. The prime

symbol is on the same key as the tilde (~) or press [Ctrl][F7] to insert it.
• The percent symbol (%).
• Greek letters. To insert a Greek letter, click a button on the Greek toolbar or type

the equivalent roman letter and press [Ctrl]G. (See “Greek letters” on page 37.)

• The infinity symbol ∞ is inserted by clicking on the Calculus toolbar or by
typing [Ctrl][Shift]Z.

• The following are examples of valid names:
alpha b
xyz700 A1_B2_C3_D4%%%
F1' a%%

The following restrictions apply to variable names:
• A name cannot start with one of the digits 0 through 9. Mathcad interprets anything

beginning with a digit as either an imaginary number (or), a binary, octal,
or hexadecimal number (e.g., 5o, 7h), or as a number times a variable ().

2i 3j
3 x⋅

Inserting Math / 37
• The infinity symbol ∞ can only appear as the first character in a name.
• Any characters you type after a period (.) appear as a subscript. (See “Literal

subscripts” on page 37.)
• All characters in a name must be in the same font, have the same point size, and be

in the same style (italic, bold, etc.). Greek letters can, however, appear in any
variable name. (See “Math Styles” on page 50.)

• Mathcad does not distinguish between variable names and function names. Thus,
if you define f(x), and later on you define the variable f, you will find that you cannot
use f(x) anywhere below the definition for f.

• Although you can redefine Mathcad’s names for built-in functions, constants, and
units, keep in mind that their built-in meanings will no longer exist after the
definition. For example, if you define a variable mean, Mathcad’s built-in function
mean(v) can no longer be used.

Note Mathcad distinguishes between uppercase and lowercase letters. For example, diam is a different
variable from DIAM. Mathcad also distinguishes between names in different fonts, as discussed
in “Math Styles” on page 50. Thus, Diam is also a different variable from Diam.

Tip To type symbols such as $ in a name, press [Ctrl][Shift]K, type the symbol(s), and type
[Ctrl][Shift]K again.

Greek letters

There are two ways to enter a Greek variable name:

• Click the letter on the Greek toolbar. To see this toolbar, click on the Math
toolbar or choose Toolbars⇒Greek from the View menu.

• Type the Roman equivalent of the Greek symbol and then press [Ctrl]G. For
example, to enter φ, press f[Ctrl]G. See “Appendix H: Greek Letters” on page
444 in the Appendices for a table of Greek letters and their Roman equivalents.

Note Although many uppercase Greek letters look like ordinary capital letters, they are not the same.
Mathcad distinguishes between Greek and Roman letters, even if they appear the same.

Tip The Greek letter π can also be typed by pressing [Ctrl][Shift]P.

Literal subscripts

If you include a period in a variable name, Mathcad displays whatever follows the
period as a subscript. You can use these literal subscripts to create variables with names
like and .

To create a literal subscript:
1. Type the text that appears before the subscript.

2. Type a period (.) followed by text that is to become the subscript.

velinit uair

38 / Chapter 4
Note Do not confuse literal subscripts with array subscripts, which are generated with the left bracket

key ([) or by clicking on the Calculator toolbar. Although they appear similar—a literal
subscript appears below the line, like an array subscript, but with a slight space before the
subscript—they behave quite differently in computations. A literal subscript is simply a
cosmetic part of a variable name. An array subscript represents a reference to an array element.
See Chapter 5, “Vectors, Matrices, and Data Arrays”.

Operators

Operators are symbols like “+” and “−” that link variables and numbers together to
form expressions. The variables and numbers linked together by operators are called
operands. For example, in an expression like:

the operands for the “+” are x and y. The operands for the exponent operator are a and
the expression .

Inserting an Operator
Insert arithmetic operators in Mathcad using standard keystrokes, like * and +, that you
use in other applications. Alternatively, all of Mathcad’s operators can be inserted from

the math toolbars. For example, insert a derivative operator by clicking on the
Calculus toolbar, or by typing ?. Choose Toolbars from the View menu to see the math
toolbars. See Chapter 17, “Operators” for a complete list of operators, their keystrokes,
and descriptions.

Note To use operators in text, first click in the text and choose Math Region from the Insert menu.

Tip You can find the keyboard shortcut for an operator by hovering the mouse pointer over a button
in a math toolbar and reading the tooltip.

When you insert a Mathcad operator into a blank space in your worksheet, a
mathematical symbol with empty placeholders appears. You must enter a valid math
expression in each placeholder of an operator in order to calculate a result.
Here is a very simple example involving Mathcad’s addition operator:

1. Click in a blank space in your worksheet and click on the
Calculator toolbar, or simply type +. The addition operator with
two placeholders appears.

2. Enter 2 in the first placeholder.

3. Click in the second placeholder, or press [Tab] to move the
cursor, and enter 6.

4. Press =, or click on the Evaluation toolbar, to see the
numerical result.

ax y+

x y+

Building Expressions / 39
Building Expressions

You can create many mathematical expressions by simply typing.
For example, you type these characters: 3/4+5^2=
to get the result at the right.
Mathcad’s equation editor is designed to work within the structure of a mathematical
expression so that expressions are not so much typed as they are built.
Mathcad assembles the parts that make up an expression using the rules of precedence
plus some additional rules to simplify entering denominators, exponents, and
expressions in radicals. For example, when you type / or click on the Calculator
toolbar to create a fraction, Mathcad stays in the denominator until you press [Space]
to select the entire expression.

Typing in Names and Numbers
When you type in names or numbers, Mathcad behaves very much like a standard word
processor. As you type, you see the characters you type appear behind a vertical editing
line. The left and right arrow keys move this vertical editing line to the left or to the
right a character at a time. There are, however, two important differences:
• As it moves to the right, the vertical editing line leaves behind a

trail. This trail is a “horizontal editing line.”
• Unless the equation you’ve clicked in already has an operator in

it, pressing [Space] turns the math region into a text region. It is not possible to
turn a text region back into a math region.

Typing in Operators
The key to working with operators is learning to specify what variable or expression is
to become an operand. There are two ways to do this:
• You can type the operator first, then fill in the placeholders with operands, or
• You can use the editing lines to specify what variable or expression you want to

select.
The first method is like building a skeleton and filling in the details later. This method
may be easier to use for very complicated expressions, or when you’re working with
operators like summation that require many operands but don’t have a natural typing
order.
The second method is more like straight typing so can be much faster when expressions
are simple. You may find yourself switching back and forth as the need arises.

Here’s how to create the expression using the first method:

1. Press ^ to create the exponent operator, or click on the
Calculator toolbar. You see two placeholders. The editing lines
“hold” the exponent placeholder.

2. Click in the lower placeholder and type a.

ax y+

40 / Chapter 4
3. Click in the upper placeholder.

4. Type +.

5. Click in the remaining placeholders and type x and y.

To use the editing lines to create the expression proceed as follows:

1. Type a. The editing lines hold the a indicating that a becomes the
first operand of whatever operator you type next.

2. Press ^ to create the exponent operator. a becomes the first operand
of the exponent. The editing lines now hold another placeholder.

3. Type x+y in this placeholder to complete the expression.

Note that you can type the expression the same way you’d say it out loud. However,
even this simple example already contains an ambiguity. When you say “a to the x plus
y” there’s no way to tell if you mean or . For more complicated
expressions, the number of ambiguities increases dramatically.
Although you can always resolve ambiguities by using parentheses, doing so can
quickly become cumbersome. A better way is to use the editing lines to specify the
operands of whatever operator you type. The following example illustrates this by
describing how to create the expression instead of .

1. Enter a^x as you did in the previous example. Note how the editing
lines hold the x between them. If you were to type + at this point, the
x would become the first operand of the plus.

2. Press [Space]. The editing lines now hold the entire expression .

3. Now type +. Whatever was held between the editing lines now
becomes the first operand of the plus.

4. In the remaining placeholder, type y.

Multiplication

When writing, expressions like ax or are easily understood to mean “a times
x” and “a times the quantity x plus y,” respectively.
This cannot be done with Mathcad variables for the simple reason that when you type
ax, Mathcad has no way of knowing whether you mean “a times x” or “the variable
named ax.” Similarly, when you type a(x+y), Mathcad cannot tell if you mean
“a times the quantity x plus y” or whether you mean “the function a applied to the
argument .”

ax y+

ax y+ ax y+

ax y+ ax y+

ax

a x y+()

x y+

Building Expressions / 41
To avoid ambiguity in math expressions, we recommend that you always press *
explicitly to indicate multiplication, as shown in the following example:
1. Type a followed by *. Mathcad inserts a small dot after the “a” to

indicate multiplication.
2. In the placeholder, type the second factor, x.

Note In the special case when you type a numerical constant followed immediately by a variable
name, such as 4x, Mathcad interprets the expression to mean the constant multiplied by the
variable: . Mathcad displays a space between the constant and the variable to indicate that
the multiplication is implied. This enables you to produce math notation that closely
approximates the notation in textbooks. However, Mathcad reserves certain letters, such as “i”
for the imaginary unit and “o” for octal, as suffixes for numbers, and in these cases does not
attempt to multiply the number by a variable name but rather treats the expression as a single
number with a suffix.

Tip You can change the display of the multiplication operator to an X, a thin space, or a large dot.
To do so, click on the multiplication operator with the right mouse button and choose View
Multiplication As... Or to change all the multiplication operators in a worksheet, choose
Worksheet Options from the Tools menu, click on the Display tab, and choose from the
selections next to “Multiplication.” See “Changing the Display of an Operator” on page 391.

An Annotated Example
An equation is really two-dimensional, with a structure more like a tree with branches
than like a line of text. As a result, Mathcad has to use a two-dimensional editing cursor.
That’s why there are two editing lines: a vertical line and a horizontal line.
Suppose, for example, that you want to type the slightly more complicated expression

Watch what happens to the editing lines in the following steps:
1. Type x-3*a^2. Since the editing lines contain just the “2,”

only the “2” becomes the numerator when you press the /. To
make the whole expression, , be the numerator, you
need the editing lines to hold the entire expression.

2. Press [Space]. Each time you press [Space], the editing lines
hold more of the expression. You need to press [Space] three
times to enclose the entire expression.

3. Now press / to create a division bar. Note that the numerator
is whatever was enclosed between the editing lines when you
pressed /.

4. Now type -4+ and click on the Calculator toolbar. Then
type y+1 under the radical to complete the denominator.

4 x⋅

x 3 a2⋅–
4– y 1+ π+ +

x 3 a2⋅–

42 / Chapter 4
5. To add something outside the radical sign, press [Space]
twice to make the editing lines hold the radical. For example,
to add the number π to the denominator, press [Space] twice.

6. Press +. Since the editing lines are holding the entire radical,
it is the entire radical that becomes the first operand when you
press +.

7. Click on the Calculator toolbar or press [Ctrl][Shift]P.

Editing Expressions

Changing a Name or Number
To edit a name or number:
1. Click on it with the mouse. The vertical editing line appears.
2. Move the vertical editing line by pressing the [→] and [←] keys.
3. If you type a character, it appears just to the left of the vertical editing line. Pressing

[Bksp] removes the character to the left. Pressing [Delete] removes the character
to the right.

Choose Replace from the Edit menu to change several occurrences of the same name
or number. To search for a sequence of characters, choose Find from the Edit menu.
See “Text Tools” on page 73.

Inserting an Operator
The easiest place to insert an operator is between two characters in a name or two
numbers in a constant. For example, here’s how to insert a plus sign between two
characters:
1. Place the editing lines where you want the plus sign to be.

2. Press the + key, or click on the Calculator toolbar.

Note Mathcad inserts spaces automatically around operators wherever doing so is appropriate. If you
do try to insert a space, Mathcad assumes you meant to type text rather than math and converts
your math region into a text region.

When you insert a division sign, Mathcad moves everything that comes after the
division sign into the denominator. Here’s how you insert a division sign:
1. Place the editing lines where you want the division sign.

2. Press the / key or click on the Calculator toolbar. Mathcad
reformats the expression.

Editing Expressions / 43
Some operators require only one operand. Examples are the square root, absolute value,
and complex conjugate operators. To insert one of these, place the editing lines on either
side of the operand and press the appropriate keystroke. Many of these operators are
available on the Calculator toolbar as well. For example, to turn x into do the
following:
1. Place the editing lines around the “x,” either preceding or following

the character.

2. Press \ to insert the square root operator, or click on the
Calculator toolbar.

Applying an Operator to an Expression
If you want to apply an operator to an entire expression:
• Surround the expression in parentheses, or
• Use the editing lines to specify the expression.
Although the first method may be more intuitive, it is slower since you need to type a
pair of parentheses. The more efficient, second method is described below. “Inserting
Parentheses” on page 46 describes working with parentheses.
The editing lines consist of a horizontal line and a vertical line that moves left to right
along the horizontal line. To make an operator apply to an expression, select the
expression by placing it between the two editing lines. The following examples show
how typing *c results in completely different expressions depending on what was
selected.
• The two editing lines hold only the numerator. Any operator

you type will apply only to the numerator.

• Typing *c applies the operation to the numerator only.

• The editing lines hold the entire fraction. Any operator you type
will apply to the entire fraction.

• Typing *c applies to the whole fraction.

• The editing lines hold the entire fraction. However, this time
the vertical editing line is on the left side instead of on the right
side.

• Typing *c results in this expression. The c is before the fraction.
because the vertical editing line was on the left side rather than
the right side.

x

44 / Chapter 4
Controlling the editing lines

Use the following techniques to control what’s between the editing lines:
• Click on an operator. To move the vertical editing line from one side to the other

of the expression, press [Insert].
• Use the left and right arrow keys to move the vertical editing line one character at

a time. The horizontal editing line selects an operand of the nearest operator. If your
expression contains built-up fractions, you can also use the up and down arrow keys
to move the editing lines.

• Press [Space] to select larger parts of the expression. Each time you press
[Space], the editing lines enclose more and more of the expression, until they
enclose the entire expression. Pressing [Space] one more time brings the editing
lines back to where they started.

Tip You can drag-select parts of an expression to hold it between the editing lines. The selected
expression is highlighted in reverse video. Whatever you type next overwrites the highlighted
expression.

The following example walks you through a short cycle of using [Space]:
1. This is the starting position. The two editing lines hold just the

single variable “d.”

2. Pressing [Space] makes the editing lines grow so that they now
hold the entire denominator.

3. Pressing [Space] again makes the editing lines grow again so
that they now hold the entire expression.

4. At this point, the editing lines can’t become any longer. Pressing
[Space] brings the editing lines back to the starting point of the
cycle.

You’ll notice there was never an intermediate step in which the editing lines held just
the numerator. Nor was there ever a step in which the editing lines held just the a or
just the b in the numerator. The sequence of steps the editing lines go through as you
press [Space] depends on the starting point of the cycle.
The arrow keys walk the editing lines through the expression in the indicated direction.
Keep in mind that the idea of “up” and “down” or “left” and “right” may not always
be obvious, particularly when the expression becomes very complicated or if it involves
summations, integrals, and other advanced operators.

Note Editing of strings differs from editing of other math expressions because you must use the arrow
keys or click outside the string to move out of a string. Pressing [Space], which can be used
in other expressions to change the position of the editing lines, is interpreted as just another
character in a string.

Editing Expressions / 45
Deleting an Operator
To delete an operator connecting two variable names or constants:
1. Place the vertical editing line after the operator.

2. Press [BkSp].
Now you can insert a new operator to replace the one you deleted just
by typing it in.

Tip You can place the editing lines before an operator and press [Delete].

In these examples, it is easy to see what “before” and “after” mean because the
expressions involved naturally flow from left to right, the same way we read. Fractions
behave the same way. Since we naturally say “a over b,” putting the editing lines “after”
the division bar means putting them just before the b. Similarly, putting the editing lines
“before” the division bar means putting them immediately after the a. The following
example illustrates this:
1. Place the vertical editing lines after the division bar.

2. Press [BkSp].
To delete an operator having only one operand
(for example, , or):
1. Position the editing lines just after the operator.

2. Press [BkSp].
For certain operators, it may not be clear where to put the editing lines.
For example, it is not clear when looking at or what “before” and “after” mean.
When this happens, Mathcad resolves the ambiguity by referring to the spoken form
of the expression. For example, since you read as “x conjugate,” the bar is treated as
being after the x.

Replacing an Operator
To replace an operator after deleting it, simply type the new operator after pressing
[BkSp].
To replace an operator between two expressions:

1. Position the editing lines just after the operator.

2. Press [BkSp]. An operator placeholder appears.

3. Type the new operator.

x x x!

x x

x

46 / Chapter 4
Inserting a Minus Sign
The minus sign that means “negation” uses the same keystroke as the one that means
“subtract.” To determine which one to insert, Mathcad looks at where the vertical
editing line is. If it’s on the left, Mathcad inserts the “negation” minus sign. If it’s on
the right, Mathcad inserts the “subtract” minus sign. To move the vertical editing line
from one side to the other, use [Insert].
The following example shows how to insert a minus sign in front of “sin(a).”
1. Click on the sin(a). If necessary, press [Space] to select the entire

expression.
2. If necessary, press [Insert] to move the vertical editing line all

the way to the left.

3. Type -, or click on the Calculator toolbar, to insert a minus sign.

Inserting Parentheses
Mathcad places parentheses automatically to maintain the precedence of operations.
You may want to place parentheses to clarify an expression or to change the overall
structure of the expression. You can either insert a matched pair of parentheses all at
once or insert the parentheses one at a time. We recommend you insert a matched pair
since this avoids the possibility of unmatched parentheses.
To enclose an expression with a matched pair of parentheses:
1. Select the expression by placing it between the editing lines. Do

this by clicking on the expression and pressing [Space] one or
more times.

2. Type the single-quote key (‘), or click on the Calculator
toolbar. The selected expression is now enclosed by
parentheses.

It is sometimes necessary to insert parentheses one at a time using the (and) keys.
For example, to change to do the following:
1. Move the editing lines just to the left of the b. Make sure the

vertical editing line is on the left as shown. Press [Insert] if
necessary to move it over.

2. Type (and click to the right of the c. Make sure the vertical
editing line is to the right as shown. Press [Insert] if
necessary to move it over.

3. Type).

a b– c+ a b c+()–

Editing Expressions / 47
Deleting Parentheses
Whenever you delete one parenthesis, Mathcad deletes the matched parenthesis. This
prevents you from inadvertently creating an expression having unmatched parentheses.
To delete a matched pair of parentheses:
1. Move the editing lines to the right of the “(”.

2. Press [BkSp]. Note that you could also begin with the editing
lines to the left of the “)”and press [Delete] instead.

Insert Function
To see an alphabetical or category listing of available built-in functions or to insert a
function together with placeholders for its arguments, choose Function from the Insert
menu. The dialog box lists all functions.
1. Click in a blank area of your worksheet or on a placeholder.
2. Choose Function from the

Insert menu or click on the
Standard toolbar. Mathcad opens
the Insert Function dialog box.

3. Choose a Function Category or
click “All” to see all functions
sorted alphabetically.

4. Double-click the name of the
function you want to insert from the right-hand list, or click “Insert.”
The function and placeholders for its arguments are inserted into the
worksheet.

5. Fill in the placeholders.
To apply a function to an expression you have already entered, select the
expression and follow the steps given above. See Chapter 4, “Working with Math.”
You can also type the name of a built-in function directly into a math placeholder or in
a math region.

Tip Although built-in function names are not font sensitive, they are case sensitive. If you do not use
the Insert Function dialog box to insert a function name, you must enter the name of a built-in
function in a math region exactly as it appears in the tables in Chapter 16, “Functions: :
uppercase, lowercase, or mixed, as indicated.

Note Brackets, [], around an argument indicate that the argument is optional.

48 / Chapter 4
Assistance for Using Built-in Functions
Mathcad includes several sources of assistance for using built-in functions:
• Chapter 16, “Functions” provides details on the syntax, arguments, algorithms, and

behavior of all of Mathcad’s built-in functions, operators, and keywords.
• The Insert Function dialog box gives you a convenient way to look up a function

by category, to see the arguments required, and to see a brief function synopsis.
When you click “Help” in the Insert Function dialog box, you immediately open
the Help topic associated with the currently selected function.

• Online Help or clicking on the Standard toolbar provides both overview and
detailed help on functions and function categories.

• QuickSheets under the Help menu include working examples of most functions.

Applying a Function to an Expression
To turn an expression into the argument of a function, follow these steps:
1. Click in the expression and press [Space] until the entire

expression, , is held between the editing lines.

2. Type the single-quote key (‘), or click on the Calculator
toolbar. The selected expression is enclosed by parentheses.

3. Press [Space]. The editing lines now hold the parentheses
as well.

4. If necessary, press the [Insert] key so that the vertical
editing line switches to the left side.

5. Now type the name of the function. If the function you wish
to use is a built-in function, you can also choose Function

from the Insert menu or click on the Standard toolbar
and double-click the name of the function.

Moving Parts of an Expression
The menu commands Cut, Copy, and Paste from the Edit menu are useful for editing
complicated expressions. They function as follows:
• Cut deletes whatever is between the editing lines and copies it to the Clipboard.
• Copy takes whatever is between the editing lines and copies it to the Clipboard.
• Paste takes whatever is on the Clipboard and places it into your worksheet, either

into a placeholder or into blank space.
The Copy and Paste commands use the Clipboard to move expressions from one place
to another. You can, however, bypass the Clipboard by using Mathcad’s equation drag
and drop feature.

w t⋅ k z⋅–

Editing Expressions / 49
Suppose you want to build the expression

1. Drag-select the argument to the cosine
function so that it is highlighted in reverse
video.

2. Press and hold down [Ctrl] and the mouse
button. The pointer changes to indicate that it
carries the selected expression with it.

3. With the mouse button still held down, drag
the pointer over the placeholder.

4. Release the mouse button. The pointer drops
the expression into the placeholder and
recovers its original form.

Tip You can drag and drop expressions, or even entire math regions, into placeholders in other
expressions or into any blank space. Don’t let go of the mouse button before you’ve dragged the
expression to wherever you want to drop it. If you’re trying to drop the expression into a
placeholder, be sure to position the pointer carefully over the placeholder.

Deleting Parts of an Expression
You can delete part of an expression by using either the [Delete] key or the [BkSp]
key. If you use this method, whatever you delete is not placed on the Clipboard. This
is useful when you intend to replace whatever you delete with whatever is currently on
the Clipboard.
To delete part of an expression without placing it on the Clipboard:
1. Drag-select the part of the expression (in this case, the

numerator) so that it is highlighted in reverse video.

2. Press [Delete] or [BkSp]. This removes the numerator and
leaves behind a placeholder.

Note If you select an expression with the editing lines instead of drag-selecting as shown above, you
must press [Bksp] or [Delete] twice to remove it. In this case, [Bksp] removes the expression
to the left of the editing lines, and [Delete] removes to the right.

wt x+()cos wt x+()sin+

50 / Chapter 4
Math Styles

By making changes to text styles rather than to individual text elements, you can make
uniform changes across your files. (See Chapter 6, “Working with Text”.) You can get
this same kind of leverage by using math styles to assign particular fonts, font sizes,
font styles and affects, and colors to your math expressions.
Mathcad has predefined math styles that govern the default appearance of all the math
in your worksheet, but you can define and apply additional styles.
Mathcad’s predefined math styles are:
• Variables: all variables, letters, and operators in math regions.
• Constants: all numbers in math regions.
Whenever you type a variable name, Mathcad:
• Assigns to it a math style named “Variables.”
• Displays the variable name using the characteristics associated with the style named

“Variables.”
Similarly, when you type a number or when a result is calculated, Mathcad:
• Assigns to it a math style named “Constants.”
• Displays the number using the characteristics associated with the style named

“Constants.”

Editing Math Styles
To change Mathcad’s default style for all variables and plots:
1. Click on a variable name in your worksheet.
2. Choose Equation from the Format menu.

The style name “Variables” is selected.
3. Click “Modify” to change the font associated

with the “Variables” style. You’ll see a dialog
box for changing fonts.

4. Make any changes using the dialog box.
Mathcad changes the font of all variables in
the worksheet.

If you change the Variables style, you may also
want to change the style used for numbers so that the two go together.
1. Click on a number.
2. Choose Equation from the Format menu to see the Equation Format dialog box.

The style name “Constants” is now selected.
3. Follow the procedure given above for modifying the Variables style.

Math Styles / 51
You can also use the Formatting toolbar to change the font, font size, or font style
associated with a math style. For example, click on a variable, then click on the
appropriate Formatting toolbar button to make variables bold, italic, or underlined or
to specify the font or point size in the drop-down lists.

Note Mathcad’s line-and-character grid does not respond automatically to changes in the font sizes
used in text and math. Changing font characteristics, particularly font sizes, may cause regions
to overlap. You can separate these regions by choosing Separate Regions from the Format
menu.

You may wish to have your equations display in a different color than your default text
regions to avoid confusing the two. To change the default color of all equations in your
worksheet:
1. Choose Equation from the Format menu.
2. Select a color in the “Default Equation Color” drop-down list.

Applying Math Styles
The “Variables” and “Constants” styles govern the default appearance of all math in
your worksheet. These two style names cannot be changed. You may, however, create
and apply additional math styles.
To see what math style is currently assigned to a name or number, simply click on the
name or number, and look at the style window on the Formatting toolbar.
Alternatively, click the name or number and
choose Equation from the Format menu. The
math style associated with whatever you clicked
on appears in the drop-down list in the Equation
Format dialog box.
If you click on the button to the right of
“Variables” in either the Formatting toolbar or the
Equation Format dialog box, you’ll see a drop-
down list of available math styles. If you now
choose “User 1” and click “OK,” a new math style is applied to the selected element
and its appearance changes accordingly.
You can apply a variety of math styles to:
• individual variable names in an expression, or
• individual numbers in a math expression (but not in computed results, which always

display in the “Constants” style).
For example, you may want to show vectors in a bold, underlined font:
1. Choose Equation from the Format menu.
2. Click the down arrow beside the name of the current math styles to see a drop-down

list of available math styles.

52 / Chapter 4
3. Click on an unused math style name like “User 1” to select it. The name “User 1”
should now appear in the “New Style Name” text box. Click in this text box and
change the name to “Vectors.”

4. Click “Modify” to change this style to a bold, underlined font.
This creates a math style called “Vectors” with the desired appearance.
Now rather than individually changing the font, font size, and font style for names of
vectors, you can simply change the math style for all vectors.

Note All names, whether function names or variable names, are font sensitive. This means that x and
x refer to different variables, and f(x) and f(x) refer to different functions. In deciding whether
two variable names are the same, Mathcad actually checks math styles rather than fonts. To
avoid having distinct variables that look identical, don’t create a math style with exactly the
same font, size, and other characteristics as another math style.

Saving Math Styles
You can reuse math style information by saving a worksheet as a template. Choose
Save As from the File menu and select Mathcad Template (*.mct) as the file type in
the Save As dialog box.
To apply math style information to another worksheet, open your template from the
File menu and copy the contents of the worksheet to the template. See “Worksheets
and Templates” on page 77.

Chapter 5
Vectors, Matrices, and Data Arrays

! Creating Arrays

! Accessing Array Elements

! Displaying Arrays

! Working with Arrays

! Nested Arrays

Creating Arrays

This section describes creating and working with arrays of numbers and math
expressions. The procedures listed below can be used only for creating arrays of
numbers, as opposed to arbitrary math expressions.
• Using range variables to fill in the elements. This technique is useful when you

have some explicit formula for the array elements in terms of their indices.
• Using the File Input and Output components to import data from external files in a

variety of formats.
• Entering numbers manually in a spreadsheet-like input table.

Note The effective array size limit depends on the memory available on your system—usually at least
1 million elements. In no system is it higher than 8 million elements.

Insert Matrix Command
To insert a vector or matrix in Mathcad, follow these steps:
1. Click in either a blank space or on a math

placeholder.

2. Choose Matrix from the Insert menu, or click
on the Matrix toolbar. A dialog box appears

3. Enter the appropriate number of elements in the text
boxes for “Rows” and “Columns.” For example, to create a three-element
vector, enter 3 and 1.

4. An array with blank placeholders appears in your worksheet.
Next, fill in the array elements. You can enter any math expression into the
placeholders of an array created in this way. Simply click in a placeholder and type a
number or expression. Use the [Tab] key to move from placeholder to placeholder.

Note Arrays created using the Matrix command on the Insert menu are limited to 100 elements.
53

54 / Chapter 5
Changing the size of a vector or matrix

You can change the size of a matrix by inserting and deleting rows and columns:
1. Click on one of the matrix elements to place it between the

editing lines. Mathcad begins inserting or deleting with this
element.

2. Choose Matrix from the Insert menu. Type the number of
rows and/or columns you want to insert or delete. Then press
either “Insert” or “Delete.” For example, to delete the
column that holds the selected element, type 1 in the box
next to “Columns,” 0 in the box next to “Rows,” and press “Delete.”

Note If you insert rows or columns, Mathcad inserts rows below the selected element and inserts
columns to the right of the selected element. If you delete rows or columns, Mathcad begins with
the row or column occupied by the selected element and deletes rows from that element
downward and columns from that element rightward. To insert a row above the top row or a
column to the left of the first column, first place the entire matrix between the editing lines.

Creating Arrays with Range Variables
As introduced in “Range Variables” on page 103, you can use one or more range
variables to fill up the elements of an array. If you use two range variables in an equation,
for example, Mathcad runs through each value of each range variable. This is useful
for defining matrices. For example, to define a matrix whose i,jth element is

, enter the equations shown in Figure 5-1.

Recall that you enter the range variable operator by pressing the semicolon key (;) or

clicking on the Calculator toolbar. You enter the subscript operator by clicking

 on the Matrix toolbar.

The equation is evaluated for each value of each range variable, for a total of 25
evaluations. The result is the matrix shown at the bottom of Figure 5-1, with 5 rows
and 5 columns. The element in the ith row and jth column of this matrix is .

Figure 5-1: Defining a matrix using range variables.

5 5×
i j+

xi j,

i j+

Creating Arrays / 55
Note To be used to define an array element, a range variable can take on only whole-number values.

Tip You can also define individual array elements using the subscript operator, as described in
“Accessing Array Elements” on page 56.

Entering a Matrix as a Data Table
To get the convenience of a spreadsheet-like interface for entering data, you can create
an array using a Data Table:
1. Click in a blank spot in your worksheet and choose Data⇒Table from the Insert

menu.
2. Enter the name of the Mathcad variable to which the data will be assigned in the

placeholder that appears.
3. Click in the component and enter data into the cells. Each row must have the same

number of data values. If you do not enter a number into a cell, Mathcad inserts 0
into the cell.

Figure 5-2 shows two data tables. Notice that when you create a data table, you’re
actually assigning elements to an array that has the name of the variable you entered
into the placeholder.

When you click the table, you can edit the values in it using the scroll bars. To resize
the table, move the cursor to one of these handles along the sides of the region so that
it changes to a double-headed arrow. Then press and hold down the mouse button and
drag the cursor to change the table’s dimensions.

Figure 5-2: Using data tables to create arrays of data.

56 / Chapter 5
Note A component is a specialized OLE object that you insert into a Mathcad worksheet to create a
link between the worksheet and either a data source or another application containing data. To
see how to create matrices with data from external files using Data Tables and other components,
see Chapter 14, “Importing and Exporting Data.”

Tip You can copy data from a data table as follows: first select some data, then click with the right
mouse button on the component and choose Copy from the popup menu. You can paste a single
number from the Clipboard into the table by selecting a cell and choosing Paste from the popup
menu. Choosing Paste Table from the popup menu overwrites the entire table with values in the
Clipboard.

Accessing Array Elements

You can access all the elements of an array simply by using its variable name, or you
can access the elements individually or in groups.

Subscripts
You access individual elements of a vector or matrix by using the subscript operator.

Insert the subscript operator by clicking on the Matrix toolbar or by typing [. To
access an element of a vector, enter one number in the subscript. To access a matrix
element, enter two numbers separated by a comma. To refer to the ith element of a
vector, type v[i. In general, to refer to the element in the ith row, jth column of matrix
M, type M[i,j.
Figure 5-3 shows examples of how to define individual matrix elements and how to
view them.

Figure 5-3: Defining and viewing matrix elements.

Accessing Array Elements / 57
Note When you define vector or matrix elements, you may leave gaps in the vector or matrix. For
example, if v is undefined and you define as 10, then , , and are all undefined.
Mathcad fills these gaps with zeros until you enter specific values for them, as shown in Figure
5-3. Be careful of inadvertently creating very large vectors and matrices by doing this. Also note
that vector and matrix elements by default are numbered starting with row zero and column zero
unless the built-in variable ORIGIN has a value other than zero (see page 57).

You can use this kind of subscript notation in Mathcad to perform parallel calculations
on the elements of an array. See “Performing Calculations in Parallel” on page 61.

Tip If you want to define or access a group of array elements at once, you can use a range variable
in a subscript.

Accessing Rows and Columns
Although you can use a range variable to access all the elements in a row or column of
an array, Mathcad provides a column operator for quickly accessing all the elements

in a column. Click on the Matrix toolbar for the column operator. Figure 5-4 shows
how to extract the third column of the matrix M.

To extract a single row from a matrix, transpose the matrix using the transpose operator

(click on the Matrix toolbar) and then extract a column using the column operator.
This is shown on the right-hand side of Figure 5-4.

Changing the Array Origin
When you use subscripts to refer to array elements, Mathcad assumes the array begins
at the current value of the built-in variable ORIGIN. By default, ORIGIN is 0, but you
can change its value. See “Built-in Variables” on page 100 for details.
Figure 5-5 shows a worksheet with the ORIGIN set to 1. If you try to refer to the zeroth
element of an array in this case, Mathcad displays an error message.

Figure 5-4: Extracting a column from a matrix.

v3 v0 v1 v2

58 / Chapter 5
Displaying Arrays

Mathcad automatically displays matrices and vectors having more than nine rows or
columns as output tables rather than as matrices or vectors. Smaller arrays are displayed
by default in traditional matrix notation. Figure 5-6 shows an example.

Note An output table displays a portion of an array. To the left of each row and at the top of each
column, there is a number indicating the index of the row or column. Click with the right mouse
button on the output table and select Properties from the popup menu to control whether row
and column numbers appear and the font used for values in the table. If your results extend
beyond the table, you can scroll through the table using scroll bars.

To resize an output table:
1. Click the output table. You’ll see handles along the sides of the table.
2. Move the cursor to one of these handles so that it changes to a double-headed arrow.

Figure 5-5: Arrays beginning at element one instead of at element zero.

Figure 5-6: Display results as a matrix or in an output table.

Displaying Arrays / 59
3. Press and hold down the mouse button and drag the cursor in the direction you want
the table’s dimensions to change.

Tip You can change the alignment of the table with respect to the expression on the left-hand side of
the equal sign. Click with the right mouse button on the table, then choose one of the Alignment
options from the popup menu.

Changing the Display of Arrays—Table versus Matrix
Although matrices and vectors having more than nine rows or columns are automati-
cally displayed as output tables, you can have Mathcad display them as matrices. You
can also change matrices to output tables. To do so:
1. Click on the output table.
2. Choose Result from the Format menu.
3. Click on the Display Options tab.
4. Choose Matrix or Table in the “Matrix display style” drop-down box.
To display all the results in your worksheet as matrices or as tables regardless of their
size, click “Set as Default” in the Result Format dialog box rather than “OK.”

Note Mathcad cannot display extremely large arrays in matrix form. You should display a large array
as an output table.

Changing the Format of Displayed Elements
You format the numbers in the array the same way you format other numerical results,
as described in “Formatting Results” on page 112. Just click on the displayed array and
choose Result from the Format menu, and modify the settings there. When you click
“OK,” Mathcad applies the selected format to all the numbers in the table, vector, or
matrix. It is not possible to format the numbers individually.

Copying and Pasting Arrays
You can copy an array of numbers directly from a tabular application, such as Excel,
or an ASCII file that contains rows and columns, into a Mathcad. All data
characteristics, including text, numerics, complex numbers, or empty cells are
preserved. Once you’ve performed computations or manipulations on the data, you can
paste or export the resulting array of numbers back to its source or into another
application.
To copy just one number from a result array, click the number and choose Copy from

the Edit menu, or click on the Standard toolbar. Copying multiple numbers from
a vector or matrix result differs depending on whether the array is displayed as a matrix
or as an output table. See “Displaying Arrays” on page 58 for more information on how
vector and matrix results are displayed.
To copy a result array displayed as a matrix:
1. Drag-select the array to the right of the equal sign to place the entire array between

the editing lines.
2. Choose Copy from the Edit menu. This places the entire array on the Clipboard.

60 / Chapter 5
3. Click wherever you want to paste the result. If you’re pasting into another
application, choose Paste from that application’s Edit menu. If you’re pasting into
a Mathcad worksheet, choose Paste from Mathcad’s Edit menu.

You may only paste an array into a math placeholder or into a blank space in a Mathcad
worksheet.
When you display array results as a table, you can copy some or all of the numbers
from the table and use them elsewhere:
1. Click on the first number you want to copy.
2. Drag the mouse in the direction of the other values you want to copy while holding

the mouse button down.
3. Right click on the selected values then choose Copy Selection from the popup

menu.
To copy all the values in a row or column, click on the column or row number shown
to the left of the row or at the top of the column. All the values in the row or column
are selected. Then choose Copy from the Edit menu.
After you have copied one or more numbers from an output table, you can paste them
into another part of your worksheet or into another application. Figure 5-7 shows an
example of a new matrix created by copying and pasting numbers from an output table.

Tip When you display an array as an output table, you can export data directly from the table. Right
click on the output table, choose Export from the popup menu, and enter the name of the file,
the format, and the columns and rows to export.

Figure 5-7: Copying and pasting results from an output table.

Working with Arrays / 61
Working with Arrays

There are many operators and functions designed for use with vectors and matrices.
See “Vector and Matrix Operators” on page 398 and “Vector and Matrix Functions”
on page 256 for an overview. This section highlights the vectorize operator, which
permits efficient parallel calculations on the elements of arrays. You can also display
the values of an array graphically or export them to a data file or another application.

Performing Calculations in Parallel
Any calculation Mathcad can perform with single values, it can also perform with
vectors or matrices of values. There are two ways to do this:
• Iterate over each element using range variables. For example, see “Creating Arrays

with Range Variables” on page 54.
• Use the vectorize operator, which allows Mathcad to perform the same operation

efficiently on each element of a vector or matrix.
Mathematical notation often shows repeated operations with subscripts. For example,
to define a matrix P by multiplying corresponding elements of the matrices M and N,
you would write:

Note that this is not matrix multiplication, but multiplication element by element. It is
possible to perform this operation in Mathcad using subscripts, but it is much faster to
perform exactly the same operation with a vectorized equation.

Here’s how to apply the vectorize operator to an expression like :

1. Select the whole expression by clicking inside it and pressing
[Space] until the right-hand side is surrounded by the editing
lines.

2. Click on the Matrix toolbar to apply the vectorize operator.
Mathcad puts an arrow over the top of the selected expression.

Properties of the vectorize operator

• The vectorize operator changes the meaning of the other operators and functions
to which it applies. The vectorize operator tells Mathcad to apply the operators and
functions with their scalar meanings, element by element. It does not change the
meaning of the actual names and numbers. If you apply the vectorize operator to a
single name, it simply draws an arrow over the name. You can use this arrow for
only cosmetic purposes if you like.

• Since operations between two arrays are performed element by element, all arrays
under a vectorize operator must be the same size. Operations between an array and
a scalar are performed by applying the scalar to each element of the array.

• You can use any of the following matrix operations under a vectorize operator: dot
product, matrix multiplication, matrix powers, matrix inverse, determinant, or
magnitude of a vector. The vectorize operator transforms these operations into

Pi j, Mi j, Ni j,⋅=

M N⋅

62 / Chapter 5
element-by-element scalar multiplication, exponentiation, or absolute value, as
appropriate.

Tip A number of Mathcad’s built-in functions and operators ordinarily take scalar arguments but
implicitly vectorize arguments that are vectors (one-column arrays): they automatically compute
a result element by element, whether you apply the vectorize operator or not. Functions that
implicitly vectorize vector arguments include the trigonometric, logarithmic, Bessel, and
probability distribution functions. Operators that implicitly vectorize vector arguments include
the factorial, square and nth root, and relational operators. You must continue to use the
vectorize operator on arrays of other sizes with these functions and operators.

For example, suppose you want to apply the quadratic formula to three vectors
containing coefficients a, b, and c. Figure 5-8 shows how to do this with the vectorize
operator.

The vectorize operator, appearing as an arrow above the quadratic formula in Figure
5-8, is essential in this calculation. Without it, Mathcad would interpret as a vector
dot product and also flag the square root of a vector as illegal. But with the vectorize
operator, both and the square root are performed element by element.

Graphical Display of Arrays
In addition to looking at the actual numbers making up an array, you can also see a
graphical representation of those same numbers. There are several ways to do this:
• For an arbitrary array, you can use the various three-dimensional plot types

discussed in Chapter 12, “3D Plots.”
• For an array of integers between 0 and 255, you can look at a grayscale image by

choosing Picture from the Insert menu and entering the array’s name in the
placeholder.

Figure 5-8: Quadratic formula with vectors and the vectorize operator.

a c⋅

a c⋅

Nested Arrays / 63
• For three arrays of integers between 0 and 255 representing the red, green, and blue
components of an image, choose Picture from the Insert menu and enter the arrays’
names, separated by commas, in the placeholder.

See Chapter 10, “Inserting Graphics and Other Objects,” for more on viewing a matrix
(or three matrices, in the case of a color image) in the picture operator.

Nested Arrays

An array element need not be a scalar. It’s possible to make an array element itself be
another array. This allows you to create arrays within arrays.
These arrays behave very much like arrays whose elements are all scalars. However,
there are some distinctions, as described below.

Note Most of Mathcad’s operators and functions do not work with nested arrays, since there is no
universally accepted definition of what constitutes correct behavior in this context. Certain
operators and functions are nevertheless useful and appropriate for nested arrays. Functions that
enumerate rows or columns, or that partition, augment, and stack matrices, can be applied to
nested arrays. The transpose, subscript, and column array operators and the Boolean equal sign
likewise support nested arrays.

Defining a Nested Array
You define a nested array in much the same way you would define any array. The only
difference is that you cannot use the Matrix command from the Insert menu when
you’ve selected a placeholder within an existing array. You can, however, click on a
placeholder in an array and type the name of another array. Figure 5-9 shows several
ways to define a nested array. Additional methods include using a file access function
such as READPRN in the array of placeholders created using the Insert Matrix
command, and using the programming operators in Mathcad to build up an array whose
elements are themselves arrays.

Note The display of a nested array is controlled by Display Styles settings in the Result Format dialog
(see page 112). You can expand a nested array when the array is displayed in matrix form;
otherwise, whenever an array element is itself an array, you see bracket notation showing the
number of rows and columns rather than the array itself. If the nested array is displayed as an
output table, you can see the underlying array temporarily. Click on the array element, then right
click and choose Down One Level from the popup menu. Choose Up One Level from the popup
menu to restore the array element to non-expanded form.

64 / Chapter 5
Figure 5-9: Defining nested arrays.

Chapter 6
Working with Text

! Inserting Text

! Text and Paragraph Properties

! Text Styles

! Equations in Text

! Text Tools

Inserting Text

This section describes how to add text to your worksheets. Mathcad ignores text when
it performs calculations, but you can insert working math equations into text regions
as described in “Equations in Text” on page 72.

Creating a Text Region
To create a text region, follow these steps. First, click in a blank space in your worksheet
to position the crosshair where you want the text region to begin. Then:
1. Choose Text Region from the Insert menu, or press the

double-quote (") key. You can also just start typing and once
you type a space Mathcad begins a text region. The crosshair
changes into an insertion point and a text box appears.

2. Now begin typing some text. Mathcad displays the text and
surrounds it with a text box. As you type, the insertion point
moves and the text box grows.

3. When you finish typing the text, click outside the text region.
The text box disappears.

Note You cannot leave a text region simply by pressing [↵]. You must leave the text region by
clicking outside the region, by pressing [Ctrl][Shift][↵], or by repeatedly pressing one of
the arrow keys until the cursor leaves the region.

To insert text into an existing text region:
• Click anywhere in a text region. A text box now surrounds your text. Anything you

type gets inserted at the insertion point.
To delete text from an existing text region, click in the text region and:
1. Press [BkSp] to delete the character to the left of the insertion point, or
2. Press [Delete] to delete the character to the right of the insertion point.
65

66 / Chapter 6
To overtype text:
1. Place the insertion point to the left of the first character you want to overtype.
2. Press [Insert] to begin typing in overtype mode. To return to the default insert

mode, press [Insert] again.
You can also overtype text by first selecting it (see “Selecting Text” on page 66).
Whatever you type next replaces your selection.

Tip To break a line or start a new line in a text region, press [↵]. Mathcad inserts a hard return and
moves the insertion point down to the next line. Press [Shift][↵] to start a new line in the same
paragraph. When you rewrap the text by changing the width of the text region, Mathcad
maintains line breaks at these spots in the text. We recommend adjusting the width of the text
box rather than using returns to shorten a text region.

Moving the Insertion Point
Click with the mouse wherever you want to put the insertion point. The arrow keys can
be used to move the insertion point character by character or line by line. Ways of
moving the insertion point are summarized below.

Selecting Text
One way to select text within a text region is:
1. Click in the text region so that the text box appears.
2. Drag across the text holding the mouse button down.
Mathcad highlights the selected text, including any full lines
between the first and last characters you selected.

Key Action

[→] Move right one character.
[←] Move left one character.
[↑] Move up to the previous line.
[↓] Move down to the next line.
[Ctrl][→] Move to the end of the current word. If the insertion point is already

there, move to the end of the next word.
[Ctrl][←] Move to the beginning of the current word. If the insertion point is

already there, move to the beginning of the previous word.
[Ctrl][↑] Move to the beginning of the current line. If the insertion point is

already there, move to the beginning of the previous line.
[Ctrl][↓] Move to the end of the current line. If the insertion point is already

there, move to the end of the next line.
[Home] Move to the beginning of the current line.
[End] Move to the end of the current line.

Inserting Text / 67
Online Help You can also select text using arrow keys and multiple clicks of the mouse button, just as you
can in most word processing applications. For more information, refer to the topic “Selecting
text” in online Help.

Once text is selected, you can delete it, copy it, cut it, check the spelling, or change its
font, size, style, or color.
To select and move an entire text region or group of regions, follow the same steps that
you would use with math regions, described on “Moving and Copying Regions” on
page 15.

Greek Letters in Text
To type a Greek letter in a text region, use one of these two methods:

• Click on the appropriate letter on the Greek toolbar. To see this toolbar, click
on the Math toolbar, or choose Toolbars⇒Greek from the View menu, or

• Type the Roman equivalent of the Greek symbol and then press [Ctrl]G. For
example, to enter φ, press f[Ctrl]G. See “Appendix H: Greek Letters” on page
444 in the Appendices for a table of Greek letters and their Roman equivalents.

Tip Typing [Ctrl]G after a letter in a math region also converts it to its Greek equivalent. In
addition, [Ctrl]G converts a non alphabetic character to its Greek symbol equivalent. For
example, typing [Shift]2[Ctrl]G in a text region produces the “≅” character.

To change a text selection into its Greek equivalent, select the text and then:
1. Choose Text from the Format menu.
2. From the Font list select the Symbol font.
You can also change the font of a text selection by using the Formatting toolbar.

Changing the Width of a Text Region
When you start typing in a text region, the region grows as you type, wrapping only
when you reach the right margin or page boundary. (The location of the right margin
is determined by the settings in the Page Setup dialog box, which you can modify by
choosing Page Setup from the File menu.) To set a width for your whole text region
and have lines wrap to stay within that width as you type:
1. Type normally until the first line reaches the width you want.
2. Type a space and press [Ctrl][↵].
All other lines break to stay within this width. When you add to or edit the text, Mathcad
rewraps the text according to the width set by the line at the end of which you pressed
[Ctrl][↵].

68 / Chapter 6
To change the width of an existing text region, do the following:
1. Click anywhere in the text region. A selection box encloses the text region.
2. Move the pointer to the middle of the right edge of the text region until it hovers

over the “handle” on the selection rectangle. The pointer changes to a double-
headed arrow. You can now change the size of the text region the same way you
change the size of any window—by dragging the mouse.

Tip You can specify that a text region or regions occupy the full page width by selecting them and
choosing Properties from the Format menu. Click the Text tab and check “Occupy Page
Width.” As you enter more lines of text into a full-width text region, any regions that are below
are automatically pushed down in the worksheet.

Text and Paragraph Properties

This section describes changing various font properties and changing the alignment
and indenting of paragraphs within a text region.

Changing Text Properties
To change the font, size, style,
position, or color of a portion of
the text within a text region, first
select the text. Then choose Text
from the Format menu to access
the Text Format dialog box or
right click and choose Font from
the popup menu.
Many of the options of the Text
Format dialog box are also
available via the buttons and drop-
down lists on the Formatting
toolbar:

When you first insert text, its properties are determined by the defaults for the style
called “Normal.” See “Text Styles” on page 71 to find out about creating and modifying
text styles. Any properties that you change for selected text override the properties
associated with the style for that text region.

Tip If you place the insertion point in text and then change the text properties, any new text you type
at that insertion point will have the new properties.

Text and Paragraph Properties / 69
You can change the following properties of selected text:
• Font
• Font style
• Font size
• Effects such as subscripts and superscripts
• Color
Font sizes are in points. Remember that if you choose a bigger font, the text region
you’re in may grow and overlap nearby regions. Choose Separate Regions from the
Format menu if necessary.

Tip You can specify that a text region or regions automatically push down following regions as they
grow by selecting them and choosing Properties from the Format menu. Click the “Text” tab
and select “Push Regions Down As You Type.”

Tip As a shortcut for creating subscripts and superscripts in text, use the Subscript and Superscript
button on the Formatting toolbar. pop upThese work in both math and text regions.

Changing Paragraph Properties
A paragraph in a text region is any stream of characters followed by a hard return, which
is created when you type [↵]. You can assign distinct properties to each paragraph in
a text region, including alignment, indenting for either the first or all lines in the
paragraph, tab stops, and bullets or sequential numbering to begin the paragraph.
Text paragraph properties are determined by the defaults for the style called “Normal.”
See “Text Styles” on page 71. Any paragraph properties that you change as described
below override the Normal style for that text region.

Note When you type [Shift][↵] Mathcad inserts a new line within the current paragraph; it does not
create a new paragraph.

To change the properties for a paragraph
within a text region:
1. Select the paragraph by clicking in it

to place the insertion point, by drag-
selecting it, or by triple-clicking it.

2. Choose Paragraph from the Format
menu, or right click on it and choose
Paragraph from the popup menu.
Mathcad displays the Paragraph
Format dialog box.

70 / Chapter 6
You can change the following paragraph properties:

Indent

To indent every line in the paragraph the same amount, enter numbers in the “Left” and
“Right” text boxes. To indent the first line of the paragraph a different amount than the
rest of the lines, as for a conventional or hanging indent, select “First Line” or
“Hanging” from the “Special” drop-down list and enter a value below.
You can also set indents using the text ruler. Click in a paragraph and choose Ruler
from the View menu. Move the top or bottom arrow in the ruler to set a different indent
for the first line, or move both arrows to indent all the lines in the paragraph.

Bullets and numbered lists

To begin the paragraph with a bullet, select “Bullets” from the “Bullets” drop-down
list. Select “Numbers” from the drop-down list to have Mathcad number successive

paragraphs in the region automatically. Alternatively, click or on the
Formatting toolbar.

Alignment

To align the paragraph at either the left or right edge of the text region, or to center the
text within the text region, use the three alignment buttons in the Paragraph Format
dialog box. Alternatively, click one of the three alignment buttons on the Formatting

toolbar: , , or .

Tab stops

To specify tabs, click the “Tabs” button in the Paragraph Format dialog box to open
the Tabs dialog box. Enter numbers into the “Tab stop position” text box. Click “Set”
for each tab stop then click “OK.”
Or you can set tab stops using the text ruler. Click in a paragraph and choose Ruler
from the View menu. Click in the ruler where you want a tab stop to be. A tab stop
symbol appears. To remove a tab stop, click on the tab stop symbol, hold the mouse
button down, and drag the cursor away from the ruler.

Tip To change the measurement system used in the Paragraph Format dialog box or in the text ruler,
choose Ruler from the View menu to show the text ruler. Then right click on the ruler and
choose Inches, Centimeters, Points, or Picas from the popup menu.

Text Styles / 71
Text Styles

Text styles give you an easy way to create a consistent appearance in your worksheets.
Rather than choosing particular text and paragraph properties for each individual
region, you can apply an available text style.
Every worksheet has a default “Normal” text style with a particular choice of text and
paragraph properties. You can also modify existing text styles, create new ones of your
own, and delete ones you no longer need.

Applying a Text Style to a Paragraph in a Text Region
When you create a text region in your worksheet, the region is tagged by default with
the “Normal” style. You can, however, apply a different style to each paragraph—each
stream of characters followed by a hard return—within the text region:
1. Click in the text region of the paragraph where

you want to change the style.
2. Choose Style from the Format menu, or right

click on the paragraph and choose Style from the
popup menu, to see a list of the available text
styles. Available text styles depend on the
worksheet template used.

3. Select a text style and click “Apply.” The default
text in your paragraph acquires the text and
paragraph properties associated with that style.

Tip You can apply a text style to a text paragraph simply by clicking in the paragraph and choosing
a style from the left-most drop-down list in the Formatting toolbar. To apply a text style to an
entire text region, first select all the text in the region. For information on selecting text, refer to
“Selecting Text” on page 66.

Modifying an Existing Text Style
You can change the definition of a text style by modifying it:
1. Choose Style from the Format menu. Mathcad brings up the Text Styles dialog

box showing the currently available text styles.
2. Select the name of the text style you want to modify and click “Modify.”
3. The Define Style dialog

box displays the
definitions of that text
style.

4. Click “Font” to modify
text formats such as the
font, font size, font
styling, special effects,
and color. Click
“Paragraph” to modify the indenting, alignment and other paragraph properties.

Any text regions previously created with the text style will be modified accordingly.

72 / Chapter 6
Creating and Deleting Text Styles
You can create new text styles or delete ones you no longer use; any text style changes
are saved with your worksheet. A new text style can be based on an existing text style,
such that it inherits text or paragraph properties. For example, you may want to base a
new “Subheading” style on an existing “Heading” style, but choose a smaller font size,
keeping other text and paragraph properties the same.

Creating a text style

To create a new text style:
1. Choose Style from the Format menu. Mathcad brings up the Text Styles dialog box.
2. Click “New” to bring up the Define Style dialog box.
3. Enter a name for the new style in the “Name” text box. If you want to base the new

style on one of the existing styles, select a style from the “Based on” drop-down list.
4. Click the “Font” button to make your choices for text formats for the new style.

Click the “Paragraph” button to choose paragraph formats for the new style.
Your new style now appears in the Text Styles dialog box and can be applied to any
text region. When you save the worksheet, the new text style is saved with it. To use
the new text style in future worksheets, save your worksheet as a template as described
in Chapter 7, “Worksheet Management.” You may also copy the text style into another
worksheet simply by copying and pasting a styled region into the new worksheet.

Note If you base a new text style on an existing text style, any changes you later make to the original
text style will be reflected in the new text style as well.

Deleting a text style

To delete a text style:
1. Choose Style from the Format menu. Mathcad brings up the Text Styles dialog

box showing the currently available text styles.
2. Select one of the available text styles from the list and click “Delete.”
Any text regions in your worksheet whose text and paragraph properties were defined
in terms of that text style will continue to display the properties of that style.

Equations in Text

This section describes how to insert equations into your text regions. Equations inserted
into text have the same properties as those in the rest of your worksheet.

Inserting an Equation into Text
Place an equation into text either by creating a new equation inside a text region or by
pasting an existing equation into a text region.
To add a new equation into text:
1. Click to place the insertion point

where you want the equation to start.

Text Tools / 73
2. Choose Math Region from the
Insert menu or press
[Ctrl][Shift]A. A math
placeholder appears.

3. Type in the equation just as you would in a math region.
4. When you’ve finished typing in the

equation, click on any text to return
to the text region. Mathcad adjusts the
line spacing in the text region to
accommodate the embedded math
region.

To paste an existing equation into a text region, follow these steps:
1. Select the equation you want to paste into the text.

2. Choose Copy from the Edit menu, or click on the Standard toolbar.

3. Click in the text region to place the insertion point where you want the equation to
start.

4. Choose Paste from the Edit menu, or click on the Standard toolbar.

Text Tools

Mathcad’s text tools are similar to those in word processors.

Find and Replace
Mathcad’s Find and Replace commands on the Edit menu are capable of working in
both text and math regions. By default, however, Mathcad finds and replaces text in
text regions only.

Searching for text

To find a sequence of characters:
1. Choose Find from the Edit menu.

Mathcad brings up the Find dialog.
2. Enter the sequence of characters you

want to find.
3. Click “Find Next” to find the next

occurrence of the characters after the current insertion point. You can search upward
or downward in the worksheet, match whole words only, match the case exactly of
the characters you entered, and specify whether Mathcad should search in text or
math regions or both.

Online Help The Help topic “Characters You Can Find and Replace” details the characters you can find in
math and text regions, including Greek symbols. Many special characters, including punctuation
and spaces, can be located only in text or math strings.

74 / Chapter 6
Replacing characters

To search and replace text:
1. Choose Replace from the Edit menu

to bring up the Replace dialog box.
2. Enter the character string you want to

find in the “Find what” box.
3. Enter the string you want to replace it

with in the “Replace with” box. You
can match whole words only, match the case exactly of the characters you entered,
or specify whether Mathcad should search in text or math regions or both.

You now have the following options:
• Click “Find Next” to find and select the next instance of your character string.
• Click “Replace” to replace the currently selected instance of the string.
• Click “Replace All” to replace all instances of the string.

Spell-Checking
Mathcad can search the text for misspelled words and suggest replacements. You can
also add commonly used words to your personal dictionary.

Note Mathcad spell-checks text regions only, not math or graphics regions.

To begin spell-checking:
• Click at the beginning of wherever you want to spell-check. Mathcad spell-checks

starting from this point and continues to the end of the worksheet. You can then
either continue the spell-check from the beginning of the worksheet or quit.

• Alternatively, select the text you want to spell-check.
Once you’ve defined a range over which to check spelling:
1. Choose Spelling from the Tools

menu, or click on the Standard
toolbar.

2. When Mathcad finds a misspelled
word, it opens the Check Spelling
dialog box. The misspelled word is
shown along with a suggested
replacement(s). If Mathcad does not
have a suggestion, it shows only the
misspelled word.

Tip To determine whether a word is misspelled, Mathcad compares it with the words in two
dictionaries: a general dictionary of common English words supplemented by mathematical
terms and a personal dictionary. If Mathcad detects correctly spelled words throughout your
worksheet you can add them to your personal dictionary.

Text Tools / 75
After the Check Spelling dialog box appears:
• Click “Change” to change the word to the suggested replacement or to another word

you select from the list of possible replacements.
• Click “Suggest” to see additional but less likely replacements. If Mathcad can offer

no additional suggestions, “Suggest” is grayed.
• Click “Change” and type the replacement into the “Change to” box to change the

word to one not listed
• Click “Ignore” or “Add” to leave the word as is. If you click “Ignore,” Mathcad

leaves the word alone, continues spell-checking, and ignores all future occurrences
of the word. If you click “Add,” the word is added to your personal dictionary.

Note To choose a dialect associated with the English dictionary, choose Preferences from the Tools
menu, click on the Language tab, and choose an option below “Spell Check Dialect.”

Chapter 7
Worksheet Management

! Worksheets and Templates

! Rearranging Your Worksheet

! Layout

! Safeguarding an Area of the Worksheet

! Safeguarding an Entire Worksheet

! Worksheet References

! Hyperlinks

! Distributing Your Worksheets

Worksheets and Templates

As you use Mathcad you create a worksheet file. Mathcad uses MCD as the file extension
for worksheets.
When you create a new worksheet in Mathcad, you can start with Mathcad’s default
choices, or you can use a template that contains customized formats. Mathcad comes
with a variety of predefined templates. You can extend this set by saving any of your
Mathcad worksheets as a new template. Mathcad uses MCT as the file extension for
templates.
You can save a worksheet in Hypertext Markup Language (HTML), so that the file can
be viewed through a Web browser, or in rich-text format (RTF), so that it can be opened
by most word processors. You can also save a worksheet in a previous version of
Mathcad.

Creating a New Worksheet

When you first open Mathcad or click on the Standard toolbar, you see an empty
worksheet based on a worksheet template (NORMAL.MCT). You can enter and format
equations, graphs, text, and graphics in this space, as well as modify worksheet
attributes such as numerical format, headers and footers, and text and math styles. The
normal template is only one of the built-in templates Mathcad provides.
77

78 / Chapter 7
To create a new worksheet based on a template:
1. Choose New from the File menu. Mathcad

displays a list of available worksheet
templates. The exact templates available
differ depending on the templates you have
developed.

2. Choose a template other than “Blank
Worksheet.” By default Mathcad displays
worksheet templates saved in the
TEMPLATE folder of the directory you used
to install Mathcad. Click “Browse” to find a
template in another directory or on another drive.

Opening a Worksheet
Open an existing worksheet by choosing Open... [Ctrl]O from the File menu. You
will be able to browse for files anywhere on your desktop or network. You can type a
path directly into the File Name box, including URLs, e.g.

http://www.mathcad.com/librarycontent/convol.mcd

Note If you open files online, you will create a temporary file locally on your machine, but the original
URL will still be displayed in the Title bar. You may get a warning that the file is Read-only,
depending on the permissions of the directory from which you read it.

If you are running Windows 2000 or XP, you can set up a Web directory as one of your
Network Places (if you have permission to write to that directory), and you’ll be able
to browse directories online within Mathcad.

Saving Your Worksheet
To save a worksheet, choose either Save or Save As... from the File menu and enter a
file name with the extension MCD. After the first time you save the worksheet, simply

choose Save from the File menu or click on the Standard toolbar.

Saving your worksheet in an earlier format

Worksheets created in an earlier version of Mathcad will open in the current version,
but files in the current version of Mathcad will not open in earlier versions. Mathcad
does allow you to save a worksheet as a previous version. Regions or features that won’t
work in an earlier version appear as bitmap images.
To save a worksheet that can be read by an earlier version of Mathcad:
1. Choose Save As from the File menu.
2. In the “Save as type” drop-down list, select the earlier version and provide a file

name.

Worksheets and Templates / 79
Creating a New Template
When you create a worksheet based on a template, all of the formatting information
and any text, math, and graphic regions from the template are copied to the new
worksheet. Templates allow you to maintain consistency across multiple worksheets.
The template specifies:
• Definitions of all math styles (Chapter 4).
• Definitions of all text styles (Chapter 6).
• Margins for printing (see “Layout” on page 83).
• Numerical result formats and values for Mathcad’s built-in variables (Chapter 8).
• Names of Mathcad’s basic units and the default unit system (Chapter 8).
• The default calculation mode (Chapter 8).
• Ruler visibility and measurement system (see “Aligning Regions” on page 80).
To create a new template, first create a new worksheet setting the options listed above
the way you want. The worksheet can also contain any equations, text, and graphics
that you want repeated in new files. Then save this worksheet as a template. To do so:
1. Choose Save As from the File menu.
2. Browse to the TEMPLATE folder within the directory where you installed Mathcad.
3. In the “Save as type” drop-down list, select “Mathcad Templates (*.mct).”
4. Type a name in the “File name” box.”
Your template will be added to the list of templates that appears when you choose New
from the File menu. To make a new worksheet based on a template, choose New from
the File menu and select a template from the list. If you did not save your template to
the TEMPLATE folder, you will need to browse to find the template.

Modifying a Template
To modify an existing worksheet template:

1. Choose Open from the File menu or click on the Standard toolbar.

2. In the “Files of type” drop-down list, select “All Files.”
3. Type the name of the template in the “File name” box or browse to locate it in the

dialog box. Worksheet templates are saved by default in the TEMPLATE folder.
4. Click “Open.” The template opens in the Mathcad window.
You may now edit the template as you would modify any Mathcad worksheet. If you
want to give a new name to the modified template, choose Save As from the File menu
and enter a new name for the template.

Tip To modify the default template for a blank worksheet, modify the template file NORMAL.MCT.
You may want to save the original NORMAL.MCT elsewhere in case you need to retrieve it.

80 / Chapter 7
Note When you modify a template, your changes affect only new files created from the modified
template. The changes do not affect any worksheets created with the template before the
template was modified.

Rearranging Your Worksheet

This section describes how to rearrange math, graphics, and text in your worksheets.
See the section “Regions” on page 13 for the basics on selecting, copying, moving, and
deleting regions.

Note You can get an overall view of how your worksheet looks by choosing Zoom from the View

menu or clicking on the Standard toolbar and choosing a magnification. Or you can
use the Print Preview command.

Aligning Regions
Once you’ve inserted regions into your worksheet, you can align them vertically or
horizontally using menu commands, nudging with the arrow keys, or by using the
worksheet ruler.

Using commands

To align regions horizontally or vertically using commands:
1. Select regions as described on page 14.
2. Choose Align Regions⇒Across (to align horizontally) or Align Regions⇒Down

(to align vertically) from the Format menu. Or choose these commands by clicking

 and on the Standard toolbar.
When you align the regions down, Mathcad moves selected regions so that their left
edges are aligned vertically. Aligning regions across moves all selected regions so that
their top edges are aligned horizontally.

Note Aligning regions may inadvertently cause regions to overlap. Mathcad warns you when this will
occur. See “Separating Regions” on page 82.

Nudging Regions with Arrow Keys

To “nudge,” or move, a region or regions with the arrow keys, the regions must be
dotted-line selected. Dotted-line selection can be achieved in two ways:
• Multiple regions: Click and drag over multiple regions to select all dragged regions

with a dotted line.
• Single regions: Press [Ctrl] or [Shift] and then click on the region to get a

dotted line selection box.
Once selected, the region(s) can be moved an arbitrary number of grid spaces up, down,
right, or left using the arrow keys. Pressing an arrow once will move the regions one
grid space in that direction. Clicking and holding a key will move repeatedly until the
key is released.

Rearranging Your Worksheet / 81
Hovering the mouse over the edge of the selected region(s) results in the grabbing hand
icon. Clicking and holding allows the region(s) to be dragged freely.

Using the worksheet ruler

Choosing Ruler from the View menu while the cursor is in a blank spot or in a math
region, opens the worksheet ruler at the top of the window. You can use alignment
guidelines on the ruler to align regions at particular measurements along the worksheet.
To set alignment guidelines on the ruler:
1. Click on the ruler wherever you want the alignment guideline to appear. A tab stop

symbol appears on the ruler.
2. Click on the tab stop symbol with the right mouse button and choose Show

Guideline from the popup menu. A check appears next to the command. You can
add as many guidelines as you need.

You can also set Tabs and Guidelines by selecting Tabs from the Format menu. Type
the location for any tabs or guides you’d like to place, then check the “Show Guidelines”
checkbox. You must be viewing the Ruler for guidelines to show up.
The alignment guideline appears as a green vertical line. Select and move regions to
the guideline. Figure 7-1 shows how you can use an alignment guideline to align math
regions.

Note The tab stops you insert on the ruler specify where the cursor should move when you press the
[TAB] key. To remove a tab stop, click on its symbol, hold the mouse button down, and drag the
the stop off the ruler.

To move a guideline, click on the tab stop on the ruler and drag it. To remove an
alignment guideline, click on the ruler with the right mouse button where the guideline
is located and uncheck Show Guideline in the dialog.
To automatically place the next region you create on a guide, press the [TAB] key in a
blank region of the worksheet. The red crosshair will move to the next tab/guideline.

Figure 7-1: Using an alignment guideline to align regions vertically.

82 / Chapter 7
Tip You can change the measurement system used in the ruler by clicking on the ruler with the right
mouse button, and choosing Inches, Centimeters, Points, or Picas from the popup menu. To
change the ruler measurement for all documents, make this change to NORMAL.MCT.

Inserting or Deleting Blank Lines
You can easily insert one or more blank lines into your worksheet:
1. Click in blank space below which you want to insert one or more blank lines. Make

sure the cursor looks like a crosshair.
2. Press [Enter] to insert a blank line and move the cursor to the left margin.
To delete one or more blank lines from your worksheet:
1. Click above the blank space you want to delete. Make sure the cursor looks like a

crosshair and that there are no regions to the right or left of the cursor.
2. Press [Delete]. Mathcad deletes blank lines below your cursor. Alternatively,

press [BkSp] to remove blank lines above your cursor.
If you press either [Delete] or [BkSp] and nothing seems to be happening, check to
make sure that the cursor is on a line all by itself. If any region in your worksheet extends
into the line you are trying to delete, Mathcad won’t be able to delete that line.

Tip To quickly insert or delete a specific number of lines from your worksheet, right click in a blank
part of the worksheet, choose Insert Lines or Delete Lines from the popup menu, and enter the
number of lines in the dialog box.

Separating Regions
As you move and edit the regions in a Mathcad worksheet, they may end up overlapping
one another. Overlapping regions don’t interfere with each other’s calculations, but
they may make your worksheet hard to read.
A good way to determine whether regions
overlap is to choose Regions from the
View menu. As shown at right, Mathcad
displays blank space in gray and leaves
the regions in your default background
color. To return to the default background
color, choose Regions from the View
menu again.
To separate all overlapping regions,
choose Separate Regions from the
Format menu. Wherever regions overlap,
this command moves the regions in such
a way as to avoid overlaps.

Layout / 83
Note Be careful with the Separate Regions command since moving regions can change the order of
calculation. You can also drag regions individually, add lines by pressing [Enter], or cut and
paste the regions so they don’t overlap.

Highlighting Regions
Mathcad allows you to highlight regions so that they stand out from the rest of the
equations and text in your worksheet:
To apply a highlight color to a region:
1. Click in the region or select multiple regions.
2. Choose Properties from the Format menu.
3. Click the Display tab.
4. Check “Highlight Region.” Click “Choose Color” to choose a highlight color other

than the default choice.
Mathcad colors the region with the color you chose. This is a purely cosmetic change
with no effect on any math regions.

Note The appearance of a highlighted region when printed depends on the capabilities of your printer
and the choice of highlight color. Some black and white printers render a color as black,
obscuring the equation or text. Others render just the right gray to highlight the equation without
obscuring it. Still other printers will disregard the background highlight color.

Changing the worksheet background color
To change the color of the background of your worksheet:
1. Choose Color from the Format menu.
2. Pull right and choose Background to see a palette of colors. Click the appropriate

color, then click “OK.”

Layout

Before printing a worksheet, you may need to adjust the margins, paper options, page
breaks, and headers and footers so that pages of the worksheet are printed appropriately.

Setting Margins, Paper Size, Source, and Orientation
Mathcad worksheets have user-specifiable margins at the left, right, top, and bottom of
the worksheet. To set these margins, choose Page Setup from the File menu.
Use the four text boxes in the lower right of the Page Setup dialog to specify the
distances from the margin to the corresponding edge of the actual sheet of paper on
which you are printing.
You can also use Page Setup settings to change the size, source, or orientation of the
paper on which you print your worksheet. See “Printing” on page 91 for more about
printing your Mathcad worksheets.

84 / Chapter 7
Tip To use the margin and other page setup settings in the current worksheet in new worksheets, save
the worksheet as a template as described in “Creating a New Template” on page 79.

Page Breaks
Mathcad provides two kinds of page breaks:
• Soft page breaks. Mathcad uses your default printer settings and your top and

bottom margins to insert these page breaks automatically. These show up as dotted
horizontal lines, which you see as you scroll down in your worksheet. You cannot
add or remove soft page breaks.

• Hard page breaks. You can insert a hard page break by placing the cursor at a
place in your worksheet and choosing Page Break from the Insert menu. Hard
page breaks display as solid horizontal lines in your worksheets.

To delete a hard page break:
1. Drag-select the hard page break as you would select any other region in your

Mathcad worksheet. A dashed selection box appears around the page break.
2. Choose Delete from the Edit menu or press the [Delete] key.

Tip Because Mathcad is a WYSIWYG environment, any region that overlaps a soft or hard page
break prints by default in pieces on successive pages. To separate a region from a hard page
break, choose Separate Regions from the Format menu. However, this command does not
separate regions from any overlapping soft page breaks. Choose Repaginate Now from the
Format menu to force Mathcad to insert a soft page break above any region that otherwise
would print in pieces on successive pages.

Headers and Footers
To add a header or a footer to every printed page, to create a different header or footer
for the first page of a worksheet, or to modify an existing header or footer, choose
Header and Footer from the View menu.:

Safeguarding an Area of the Worksheet / 85
To add or edit a header or footer:
1. Click the Header or Footer tab to modify the header or footer for the worksheet. To

create a different header or footer for the first page of your worksheet, check the
“Different header and footer on first page” option and click the Header–Page 1 or
Footer–Page 1 tab.

2. Type the header or footer information into the text boxes. Whatever you type into
the Left, Center, and Right text boxes will appear in these positions on the page.
Click “Format” in the Tools group to change the header or footer font, font style,
size, or alignment. Click “Use full width for each section” if you want text in any
of the boxes to extend beyond the width of that third of the worksheet.

3. Click the buttons in the Tools group to insert items such as the file name, page
number, current date, or time automatically wherever the insertion point is. To insert
an image, click “Image” in the Tools group and browse to locate a bitmap (.BMP
format) file.

Tip Mathcad by default begins numbering at page 1. You can set a different starting page number in
the Options group in the Header and Footer dialog box.

Safeguarding an Area of the Worksheet

Sometimes you want to protect areas of your worksheet. For example, if you’ve
developed a set of equations, you may want to prevent readers of your worksheet from
tampering with them. To avoid unintended edits to your worksheet, you can safeguard
an area of your worksheet by locking it such that you can still edit it even though nobody
else can.
Once a region is safely inside a locked area, nobody can edit it. Any math regions inside
a locked area continue, however, to affect other equations in the document. For
example, if you define a function inside a locked area, you can still use that function
anywhere below and to the right of its definition. You cannot, however, change the
function’s definition unless you unlock the area first.

Inserting an Area
To insert a lockable area into your worksheet:

1. Choose Area from the Insert menu.
Mathcad inserts a pair of lines into the
worksheet. These mark the boundaries of
the lockable area.

2. Select either of these boundary lines just as you’d select any region: by dragging
the mouse across the line or by clicking the line itself.

3. Now you can drag the boundary line to increase or decrease the area or select both
to move the entire area.

You should position the boundaries so that there’s enough space between them for
whatever regions you want to lock. You can have any number of lockable areas in your
worksheet. The only restriction is that you cannot have one lockable area inside another.

86 / Chapter 7
Tip To name an area in your worksheet, click on an area boundary, choose Properties from the
Format menu, and enter a name on the Area tab. The Area tab also lets you modify other display
attributes of an area, such as whether a border or icon appears.

Locking and Collapsing an Area
You can lock the area to preserve what’s inside of it. You can choose to use a password
to prevent unauthorized editing of the regions in a locked area. You can also collapse
the area, either with or without locking it, so that the regions are hidden from view.
To lock an area:
1. Click in the area.

2. Choose Area⇒Lock from the Format
menu.

3. In the Lock Area dialog box, enter a
password if you want to lock the area with
a password. Type any combination of
letters, numbers, and other characters.
You must re-enter the password to
confirm it.

4. Check “Collapse when locked” to hide the locked regions from view. Check “Show
lock timestamp” to display the date and time the area was last locked above and
below the boundary lines.

5. To hide the collapsed area, right click on it and choose Properties, then the Area
tab. You can uncheck all the boxes to totally hide the area. If you drag over a hidden
area, you will see two dashed lines above and below it.

The area is now locked and by default shows padlocks on the boundaries and a
timestamp.

Note If you choose to password protect an area, make sure you remember your password. If you forget
it, you will find yourself permanently locked out of that area. Keep in mind also that the
password is case sensitive.

To collapse an area without locking it first:
1. Click in the area.
2. Choose Area⇒Collapse from the Format menu.
A collapsed area appears by default as a single line in your worksheet.

Unlocking and Expanding an Area
If you want to make changes to a region inside a locked area, you have to unlock it. If
the area is collapsed, you must also expand it.
To unlock a locked area:
1. Click in the area you want to unlock.
2. Choose Area⇒Unlock from the Format menu.
3. If a password is required, you are prompted for the password.

Safeguarding an Entire Worksheet / 87
To expand a collapsed area:
1. Click on the boundary line.
2. Choose Area⇒Expand from the Format menu.
Once an area is unlocked and expanded, you can make whatever changes you want to
just as freely as you would elsewhere in your worksheet.

Tip When you lock an area without a password, anyone can unlock it by simply choosing
Area⇒Unlock from the Format menu.

Deleting an Area
You can delete an area just as you would any other region. To do so:
1. Make sure the area is unlocked. You cannot delete a locked area.
2. Select either of the two lines indicating the extent of the locked area by dragging

the mouse across it.

3. Choose Cut from the Edit menu or click on the Standard toolbar.

Safeguarding an Entire Worksheet

Worksheet Protection
When distributing a worksheet, you may wish to restrict user access to most regions.
Rather than locking an area, you may opt instead to protect your worksheet.
Mathcad provides three levels of worksheet protection:
• File. The worksheet can only be saved as either a Mathcad file or an HTML file.

No restrictions are placed on any regions.
• Content. The worksheet can only be saved as either a Mathcad file or an HTML

file. Existing regions cannot be changed. New regions can be created and protected
regions can be copied.

• Editing. The worksheet can only be saved as either a Mathcad file or an HTML
file. Existing regions cannot be changed. Protected regions cannot be edited or
copied. No new regions can be created in the worksheet.

To protect your worksheet, choose Protect Worksheet from the Tools menu; to turn
off Worksheet Protection, choose Unprotect Worksheet from the Tools menu. To
disable protection for a specific region when the rest of the worksheet is protected, right
click on the region, choose Properties from the dialog, and deselect “Protect region
from editing” on the Protect tab before protecting the worksheet.
When enabled and set at the content or editing level, worksheet protection prohibits
access to any region not explicitly left unprotected; by default, a region is flagged for
protection.

Note Regions added while worksheet protection is enabled (content level) cannot be flagged for
protection until the worksheet is unprotected.

88 / Chapter 7
Tip Disabling protection for an area, when the rest of the worksheet is protected, can be set either
before or after the area is collapsed. Right click either of the area boundaries when expanded or
right click the collapsed area; then choose Properties from the dialog, and uncheck region
protection on the Protect tab. Your setting will be preserved when the area is either collapsed or
expanded. Once you’ve enabled Worksheet Protection, areas cannot be expanded or collapsed.

Worksheet References

There may be times when you want to use formulas and calculations from one Mathcad
worksheet inside another. You may have calculations and definitions that you re-use
frequently. You can, of course, simply use Copy and Paste from the Edit menu to move
whatever you need to move, or drag regions from one worksheet and drop them in
another. However, when entire worksheets are involved, this method can be cumber-
some.
Mathcad allows you to reference one worksheet from another—that is, to access the
computations in a worksheet without opening it. When you insert a reference to a
worksheet, you won’t see the formulas of the referenced worksheet, but the current
worksheet behaves as if you could.

Tip An alternative described in “Safeguarding an Area of the Worksheet” on page 85 is to create a
collapsible area to hide calculations in your worksheet. This method, while it does not let you
re-use calculations in the same way as a worksheet reference, does give you the option of
password protecting or locking an area of calculations.

To insert a reference to a worksheet:
1. Click the mouse wherever you want to insert the reference. Make sure you click in

empty space and not in an existing region. The cursor should look like a crosshair.
2. Choose Reference

from the Insert
menu.

3. Click “Browse” to
locate and select a
worksheet. You can
also enter an Internet
address (URL) to
insert a reference to
a Mathcad file that is located on the Web.

To indicate that a reference has been
inserted, Mathcad pastes a small icon
wherever you had the crosshair. The path to the referenced worksheet is to the right of
the icon. All definitions in the referenced worksheet are available below or to the right
of the icon. If you double-click the icon, Mathcad opens the referenced worksheet in
its own window for editing. You can move or delete the icon just as you would any
other Mathcad region.

Hyperlinks / 89
Note By default, the location of the referenced file is stored in the worksheet as an absolute system
path or URL. This means that if you move the main worksheet or the referenced worksheet to a
different location, Mathcad cannot locate the referenced file. If you want the location of the
referenced file to be stored relative to the Mathcad worksheet containing the reference, click
“Use relative path for reference” in the Insert Reference dialog box. The reference is then valid
even if you move the referenced file and the main worksheet to a different drive but keep the
relative directory structure intact. To use a relative path, you must first save the file containing
the reference.

To update a worksheet containing a reference, make the change on the referenced
worksheet, save the sheet, return to the referencing worksheet, click on the reference
and press the [F9] key (“Calculate”). The calculation will then incorporate the change.

Hyperlinks

Mathcad allows you to create hyperlinks in your Mathcad worksheets that, when
double-clicked, open Mathcad worksheets, jump to other regions of a Mathcad
worksheet, or link to other files.

Creating Hyperlinks Between Worksheets
You can create a hyperlink from any Mathcad region, such as a text region or image,
to any other Mathcad region, either within the same worksheet or in another worksheet.
Hyperlinks allow you to connect groups of worksheets or simply cross-reference related
areas of a worksheet or worksheets.

Creating hyperlinks from worksheet to worksheet

When you create a hyperlink from one worksheet to another you have two options:
• The target worksheet can open in a full-sized Mathcad worksheet window that

allows you to edit its contents.
• The target worksheet can open in a small popup window that displays the contents

of the worksheet, but does not allow you to edit its contents.
Mathcad can follow a hyperlink to any worksheet, whether it is stored on a local drive,
a network file system, or the internet.
To create a hyperlink from one worksheet to another, first specify the hyperlink by:
1. Selecting a piece of text, or
2. Clicking anywhere in image, or
3. Placing the insertion point anywhere within an entire text region.

Tip When you select text, Mathcad underlines the text to show a hyperlink. The arrow cursor
changes to a hand cursor when you hover over any hyperlink.

90 / Chapter 7
The next step is to specify the target worksheet:
1. Choose Hyperlink from the Insert menu. Mathcad opens the Insert Hyperlink

dialog box.
2. Click “Browse” to

locate and select the
target worksheet.
You can enter an
Internet address
(URL) to create a
hyperlink to a file on
the Internet.

3. Check “Use relative
path for hyperlink” to
store the location of the target worksheet relative to the Mathcad worksheet
containing the hyperlink. This allows the hyperlink to be valid even if you move
the target file and the worksheet containing the hyperlink, but keep the relative
directory structure between the two the same.

Note In order for “Use relative path for hyperlink” to be available, you must first save the worksheet
in which you are inserting the hyperlink.

4. Check “Display as popup document” if you want the target worksheet to open in a
small popup window.

5. Enter a message to appear on the status line at the bottom of the window when the
mouse hovers over the hyperlink.

To revise a hyperlink—for example, if you move the target worksheet and still want
the hyperlink to work—click the hyperlinked item and choose Hyperlink from the
Insert menu. Make any changes you wish in the Edit Hyperlink dialog box.
To remove a hyperlink, click the hyperlink and choose Hyperlink from the Insert
menu. Click “Remove Link” in the dialog box. Mathcad removes the link.

Creating hyperlinks from region to region

Before you can link to a specific region in a worksheet, you must mark it with a tag. A
tag can be any collection of words, numbers, or spaces, but not symbols.
To create a region tag:
1. Right click on the region and select Properties.
2. In the Properties dialog box, under the Display tab, type a tag in the text box

provided.

Note You can not include a period in the tag name such as Section1.3, you must write Section1-3.

Distributing Your Worksheets / 91
To create a hyperlink to a region that has been tagged:
1. Click a region or select words in your worksheet and choose Hyperlink from the

Insert menu.
2. Click “Browse” to locate and select the target worksheet or enter an Internet address

(URL). You must enter the name of the target worksheet even if you are creating a
hyperlink to a region within the same worksheet.

At the end of the worksheet path type “#” followed by the region tag. The complete
path for your target region will look something like this: C:\filename#region tag.

Note When you link from region to region within or between Mathcad worksheets, you cannot use the
popup window option.

Creating Hyperlinks to Other Files
You can create a hyperlink not only from one Mathcad worksheet to another, but also
from a Mathcad worksheet to any other file type, either on a local or network file system
or on the Internet. Use this feature to create E-books, as described in “Distributing Your
Worksheets,” or compound documents that contain not only Mathcad worksheets but
word processing files, animation files, web pages—any file type that you want.

Note When you double-click a hyperlink to a file other than a Mathcad worksheet, you launch either
the application that created the file or an application associated with a file of that type in the
Windows Registry. You cannot display such hyperlinked files within a popup window.

Distributing Your Worksheets

Mathcad worksheets can be distributed in a variety of media including the Internet,
through email, in Microsoft Word, in print format, and, of course, as individual Mathcad
documents or as a Mathcad E-book. You can print Mathcad worksheets to PDF files if
you have the appropriate applications on your computer.

Printing
To print a Mathcad worksheet, choose Print from the File menu. The Print dialog box
lets you control whether to print the entire worksheet, selected pages, or selected
regions. The particular dialog box you see depends on the printer you’ve selected.

Printing Wide Worksheets
Mathcad worksheets can be wider than a sheet of paper, since you can scroll as far to
the right as you like in a Mathcad worksheet and place equations, text, and graphics
wherever you like. As you scroll horizontally, however, you see dashed vertical lines
appearing to indicate the right margins of successive “pages” corresponding to the
settings for your printer. The sections of the worksheet separated by the dashed vertical
lines print on separate sheets of paper, yet the page number at the bottom of the Mathcad
window does not change as you scroll to the right.

92 / Chapter 7
You can think of the worksheet as being divided into vertical strips. Mathcad begins
printing at the top of each strip and continues until it reaches the last region in this strip.
It prints successive strips left to right. Note that certain layouts will produce one or
more blank pages.

Tip You can control whether a wide worksheet is printed in its entirety or in a single page width. To
do so, choose Page Setup from the File menu to open the Page Setup dialog box. Then, to
suppress printing of anything to the right of the right margin, check “Print single page width.”

Tip Mathcad allows you to change the display of some operators including the:=, the bold equals,
the derivative operator, and the multiplication operator. Before you print, you can choose
Worksheet Options from the Tools menu and click on the Display tab to change the appearance
of these operators. This can make your printout clearer to someone unfamiliar with Mathcad
notation.

Print Preview
To check your worksheet’s layout before printing, choose Print Preview from the File

menu or click on the Standard toolbar. The Mathcad window shows the current
section of your worksheet in miniature, as it will appear when printed, with a strip of
buttons across the top of the window:

Click “Close” to go back to the main worksheet screen. The remaining buttons give
you more control over the preview.

Tip You can use the “Zoom In” and “Zoom Out” buttons to magnify the worksheet or you can
magnify the worksheet by moving the cursor onto the previewed page so that the cursor changes
to a magnifying glass. T hen click the mouse. Click again to magnify your worksheet even more.
Once you’re at the maximum magnification, clicking on the page de-magnifies it.

Note You cannot edit the current page or change its format in the Print Preview screen. To edit the
page or change its format, return to the normal worksheet view by clicking “Close.”

Distributing Your Worksheets / 93
Creating PDF Files
If you wish to distribute your documents electronically in a format which mimics the
original exactly, but without requiring Mathcad to open it, you can save documents in
Adobe’s Portable Document Format (PDF). You can purchase Acrobat Pro from Adobe
or use one of the various PDF tools on the market. Once a PDF printer driver is installed,
you can choose Print and select the PDF driver from your list of printers. Then choose
Print to File in the print dialog box to create a PDF file that can be distributed as is, or
further manipulated in Acrobat Distiller.

Creating E-books
As described in Chapter 3, “Online Resources,” an E-book is a hyperlinked collection
of Mathcad worksheets. When you open an E-book in Mathcad, it opens in its own
window. An E-book has a table of contents, an index, and search features accessible
through buttons on the toolbar in the book window. The worksheets in an E-book are
live, so a reader can experiment directly within the book.
If you have several Mathcad worksheets that you want to collect together, you can
create your own E-book. There are several steps to creating an E-book:
1. Creating individual Mathcad files
2. Preparing a Table of Contents
3. Adding hyperlinks between appropriate files
4. Creating an HBK file to specify the order of the files in the book
5. Developing an index (optional)
6. Checking the index, HBK file, and worksheets for errors.
For more details about each step of this process, see the online Author’s Reference
under the Help menu in Mathcad. There you will find tips and techniques for creating
E-books, as well as other details associated with turning a collection of worksheets into
a navigable book.
After you have created an E-book, others can open it in Mathcad and navigate through
it using the toolbar buttons of the E-book window. For more information on E-books
and the navigation tools, refer to Chapter 3, “Online Resources.”

Creating Web Pages and Sites
Mathcad worksheets can be output as HTML files for viewing in a Web browser. Any
HTML file created by Mathcad 11 can be read back into Mathcad 11, then can be
calculated like a native Mathcad worksheet. The only exception to this is protected
documents, which will only be saved as flat HTML files that will not calculate.
There are a variety of options for specifying how worksheet regions are represented in
HTML files. All Mathcad text regions are output as standard HTML, but you must
choose the format in which you would like equations, graphs, and other types of regions
to be stored on a web page.
Choose Save as Web Page... from the File menu to save a file in HTML format. Once
you have chosen a file name and location to store your file, click Save, and you will be
presented with a set of options for saving your file:

94 / Chapter 7
Preferences for Web page output

You can save equations as
images or in Mathematical
Markup Language (MathML). If
you select images, then all
equation regions will be inserted
in the HTML document using
 tags. If you select
MathML, equation regions will
be encoded as presentation
MathML, and you’ll be able to
select from a variety of supported
renderers from the dropdown
menu.

Note You can save equations as images or presentation MathML. This choice does not affect
Mathcad’s ability to read the document for live calculation, only how the Web browser will
display equations. Presentation MathML display typically requires a plug-in. For pages that
require only a Web browser for display, save your equations as images. Mathcad region
information is simultaneously stored as content MathML for subsequent rendering and
calculation back into Mathcad.

Choose a format for image export, either JPEG or PNG. PNG is a lossless format so
may result in clearer images for graphs and drawings, while JPEG images may be
smaller or compatible with older browser versions. All graphs, embedded images, and
tables will be displayed as images in the output HTML document, as well as equations,
if you have chosen this method of export.

Fixed or relative positioning and templates

Choose whether a document will use relative or fixed layout when exported to HTML.
When the Save Layout As radio button is set to Relative, regions will be stored in an
HTML table that attempts to retain the relative horizontal and vertical placement of
your regions. This arrangement makes it possible to edit the Web page outside of
Mathcad to include additional HTML — navigation links, images, etc. This attribute
must selected to use HTML templates.
When the Relative button is selected, you can browse for an HTML template file.
Templates are used to wrap HTML content exported from a Mathcad file. You can use
them to add headers, footers, navigation links, and images, creating a uniform layout
for many files. This facilitates large Web site production. Template files must be saved
with MLT extensions and use the same structure as the HTML template.MLT sample
in your Templates folder within the Mathcad directory. Note that these MLT templates
are output templates, not input templates like those used to format Mathcad document
styles for display in Mathcad.

Distributing Your Worksheets / 95
If you check the Fixed radio button, each Mathcad region image or block of text will
be precisely positioned on a web page, mimicking the original Mathcad document as
closely as possible, but making it difficult to add new items to the page outside of
Mathcad. For further instructions and tips on publishing Web sites with Mathcad, see
the online Author’s Reference under the Help menu in Mathcad.

Tip Relative positioning creates a much more flexible MathML document, but it does require some
thought about region layout to be effective. Keeping your Mathcad regions aligned horizontally
and vertically will result in a much better-displaying file. See “Aligning Regions” on page 80
for ways to make this easier.

Finally, you can choose a new title for your page, and choose, if you wish, to open the
page immediately in your default Web browser.
You can also save Mathcad documents in HTML by choosing Save As... from the File
menu, and selecting “HTML/MathML File” from the “Save as type” drop-down list.
This will not display the special properties dialog shown above. Options for HTML
can be set by choosing Preferences from the Tools menu, and modifying choices on
the “HTML Options” tab.

Round-Trip HTML/MathML

Using Microsoft’s Internet Explorer, you can activate Mathcad to edit worksheets that
have been saved in HTML/MathML format. To edit HTML files generated by Mathcad
through the Internet Explorer browser:
1. Load a Mathcad worksheet that has been saved in HTML/MathML format into

Internet Explorer.
2. Select Edit with Mathcad Application under the File menu.
Edit your file as usual and then save it. The file will be saved in HTML/MathML format.

Note When you save a Mathcad worksheet in HTML/MathML format, an HTM file is created and a
subdirectory with the name “(filename)_images” is also created to contain all the associated
image files. When copying files to your server, don’t forget to include the associated image
directory.

Saving Your Worksheet to Microsoft Word
To save a worksheet so you can distribute it in Microsoft Word:
1. Scroll to the bottom of your worksheet to update all calculated results.
2. Choose Save As from the File menu.
3. In the Save As dialog box, choose “Rich Text Format File” (.rtf) from the “Save as

type” drop-down list.
4. Enter a file name and then click “Save.”
Regions that are past the right margin will not be visible in Word. When you open an
RTF file with Microsoft Word, you will be able to edit the text. However, you’ll no
longer be able to edit math regions and graphs, which have become pictures. The regions
will not appear in their correct position across the page unless you choose Print Layout
from Word’s View menu.

96 / Chapter 7
Tip Any regions that are to the right of the right margin in Mathcad will not be visible in Microsoft
Word. For optimal conversion to Word, you should set your margins in Mathcad to the same
defaults as Word (1.25” on left and right, and 1” top and bottom) or start with the Mathcad
template, “Microsoft Word.mct,” from File⇒New.

Drag and dropping a region(s) from Mathcad to Microsoft Word inserts a Mathcad
object into Word. See “Inserting Objects” on page 155.
You can also just simply select text in a Mathcad text region, copy the text by choosing

Copy from the Edit menu or clicking on the Standard toolbar, and choose Paste
from the Edit menu in Microsoft Word to move your text to Word.

Storing Worksheets in a SharePoint Repository
SharePoint is a document storage and management system from Microsoft, which
grants you control over the dissemination and modification of files stored within a
repository. Mathcad Enterprise customers who have access to a SharePoint server can
access worksheets directly from a SharePoint repository.
You can open worksheets from the repository just as you would any other location, by
navigating to the file in the Open dialog and clicking “OK,”or typing its URL, if you
know it. When you open a worksheet from a SharePoint Repository, you will have the
option to either open the file on a Read Only or Check Out basis.
• Read Only. You will notice an extra item in the File menu, called Check Out.

Until you check out your worksheet, it will behave just like any worksheet opened
from your hard drive, and you will not be able to save it to the repository.

• Check Out. If you have checked your worksheet out, Mathcad adds an additional
entry to the File menu, Check In, which allows you to update the version in your
repository.

When you Check In a worksheet, you will have the option to publish your worksheet.
Publishing your worksheet makes it visible to users with Reader access. Only users
with Author or higher access can see unpublished worksheets.
Closing a checked out worksheet will prompt you to:
• Check the file back into the repository, thereby saving your edits, or
• Discard your changes and undo the check out, thus allowing another user to check

out the worksheet, or
• Close the worksheet and keep it checked out. In this last case, the file will reopen

with all your edits intact, but SharePoint still considers it to be one checkout so that
discarding changes the next time you edit the worksheet will discard any changes
made in any session since you checked the file out.

Tip File functions such as READBIN can read from data files stored in a SharePoint Repository, as
long as you use either the full URL to the file or a relative path in the function call. Functions
that write data files, such as WRITEBIN, will only work if you have checked out the data file.

Distributing Your Worksheets / 97
Mailing
If you’re connected to a mail system that’s compatible with Microsoft’s Mail API
(MAPI), you can use Mathcad to direct that system to send an electronic mail message
and your current Mathcad worksheet.

Tip The settings in your mail system determine how Mathcad worksheets are attached to or encoded
in the mail message. We recommend that you use a compression method such as ZIP to attach
Mathcad worksheets to mail messages.

To send a Mathcad worksheet by electronic mail, :
1. Open the worksheet you want to send.
2. Choose Send from the File menu.
Your mail system will launch and creates a new message with your worksheet as an
attachment.

Chapter 8
Calculating in Mathcad

! Defining and Evaluating Variables

! Defining and Evaluating Functions

! Units and Dimensions

! Working with Results

! Controlling Calculation

! Animation

! Error Messages

Defining and Evaluating Variables

When you type an expression into a worksheet, you are usually doing one of two things:
• Typing a variable or function name and assigning some value to it.
• Typing an equation and asking Mathcad to solve it.
These topics are discussed in the next two sections.

Defining a Variable
A variable definition defines the value of a variable everywhere below and to the right
of the definition. To define a variable:
1. Type the variable name. Chapter 4, “Working with Math”

contains a description of valid variable names.

2. Press the colon (:) key, or click on the Calculator toolbar.
The definition symbol (:=) appears with a blank placeholder to
the right.

3. Type an expression to complete the definition. This expression
can include numbers and any previously defined variables and
functions.

The left-hand side of a “:=” can contain any of the following:
• A simple variable name like x.
• A subscripted variable name like .

• A matrix whose elements are either of the above. For example, . This technique

allows you to define several variables at once: each element on the right-hand side
is assigned simultaneously to the corresponding element on the left-hand side.

vi

x
y1
99

100 / Chapter 8
• A function name with an argument list of simple variable names. For example,
. This is described further in the next section.

• A superscripted variable name like .

Built-in Variables
Built-in variables can have a conventional value, like π and e, or be used as system
variables to control how Mathcad works. See “Appendix F: Predefined Variables” on
page 442 for a list of built-in variables in Mathcad.

Note Mathcad treats the names of all built-in units as predefined variables. See “Units and
Dimensions” on page 109.

Although Mathcad’s predefined variables already have values when you start Mathcad,
you can still redefine them. For example, if you want to use a variable called e with a
value other than the one Mathcad provides, enter a new definition, like . The
variable e takes on the new value everywhere in the worksheet below and to the right
of the new definition. Or create a global definition for the variable as described in
“Global Definitions” on page 102.

Note Mathcad’s predefined variables are defined for all fonts, sizes, and styles. This means that if you
redefine e as described above, you can still use e, for example, as the base for natural logarithms.
Note, however, that Greek letters are not included.

You can modify many of Mathcad’s
built-in variables without having to
explicitly define them in your
worksheet. To do so, choose
Worksheet Options from the Tools
menu, and click the Built-In Variables
tab.
You can enter new values for any of
these variables. Then choose
Calculate⇒Worksheet from the
Tools menu to ensure that all existing
equations use the new values.
The numbers in brackets to the right of
the variable names represent the default
values for those variables. To restore these default values for the built-in variables listed
in the dialog box, click “Restore Defaults.”

Evaluating Expressions Numerically
To evaluate an expression numerically:
1. Type an expression containing any valid combination of

numbers, variables, and functions. Any variables or
functions should be defined earlier in the worksheet.

f x y z, ,()

M 1〈 〉

e 2:=

Defining and Evaluating Variables / 101
2. Press the “=” key, or click on the Calculator toolbar.
Mathcad computes the value of the expression and shows
it after the equal sign.

Tip Whenever you evaluate an expression, Mathcad shows a final placeholder at the end of the
equation. You can use this placeholder for unit conversions, as explained in “Working with
Results” on page 112. As soon as you click outside the region, Mathcad hides the placeholder.

Figure 8-1 shows some results calculated from preceding variable definitions.

How Mathcad Scans a Worksheet
Mathcad scans a worksheet the same way you read it: left to right and top to bottom.
This means that a variable or function definition involving a “:=” affects everything
below and to the right of it.
To see the placement of regions more clearly in your worksheet, choose Regions from
the View menu. Mathcad displays blank space in gray and leaves regions in your
background color.
Figure 8-2 shows examples of how placement of equations in a worksheet affects the
evaluation of results. In the first evaluation, both x and y are highlighted (Mathcad
shows them in red on screen) to indicate that they are undefined. This is because the
definitions for x and y lie below where they are used. Because Mathcad scans from top
to bottom, when it gets to the first equation, it doesn’t know the values of x and y.
The second evaluation, on the other hand, is below the definitions of x and y. By the
time Mathcad gets to this equation, it has already assigned values to both x and y.

Note You can define a variable more than once in the same worksheet. Mathcad simply uses the first
definition for all expressions until the variable is redefined, then uses the new definition.

Figure 8-1: Calculations based on simple variable definitions.

102 / Chapter 8
Global Definitions
Global definitions work exactly like local definitions except that they are evaluated
before any local definitions. If you define a variable or function with a global definition,
that variable or function is available to all local definitions in your worksheet, regardless
of whether the local definition appears above or below the global definition.
To type a global definition, follow these steps:
1. Type a variable name or function.

2. Press the tilde (~) key, or click on the Evaluation toolbar. The
global definition symbol appears.

3. Type an expression. The expression can involve numbers or other
globally defined variables and functions.

You can use global definitions for functions, subscripted variables, and anything else
that normally uses the definition symbol “:=”.
This is the algorithm that Mathcad uses to evaluate all definitions:
1. First, Mathcad takes one pass through the entire worksheet from top to bottom.

During this first pass, Mathcad evaluates global definitions only.
2. Mathcad then makes a second pass through the worksheet from top to bottom. This

time, Mathcad evaluates all definitions made with “:=” as well as all equations
containing “=” and “≡”. Note that during this pass, global definitions do not use
any local definitions.

Note A global definition of a variable can be overridden by a local definition of the same variable
name with the definition symbol “:=”.

Figure 8-3 shows the results of a global definition for the variable R which appears at
the bottom of the figure.
Although global definitions are evaluated before any local definitions, Mathcad
evaluates global definitions the same way it evaluates local definitions: top to bottom
and left to right. This means that whenever you use a variable to the right of a “≡”:

Figure 8-2: Mathcad evaluates equations from top to bottom in a worksheet.
Undefined variables are highlighted.

Defining and Evaluating Variables / 103
• that variable must also have been defined with a “≡,” and
• the variable must have been defined above the place where you are trying to use it.
Otherwise, the variable is marked in red to indicate that it is undefined.

Tip It is good practice to allow only one definition for each global variable. Although you can do
things like define a variable with two different global definitions or with one global and one local
definition, this may make your worksheet difficult to revise or understand in the future.

Range Variables
Iterative processes in Mathcad worksheets depend on range variables. A range variable
looks just like a conventional variable. The difference is that a conventional variable
takes on only one value while a range variable takes on a range of values.
Range variables are crucial to exploiting Mathcad’s capabilities to their fullest. This
section shows how to define and use range variables to perform iteration. For a
description of more advanced iterative operations made possible by the programming
operators in Mathcad, turn to Chapter 15, “Extending and Automating Mathcad.”

Defining and using range variables

To define a range variable, type the variable name followed by a colon and a range of
values. For example, here’s how to define the variable j ranging from 0 to 15 in steps
of 1:

1. Type j and then press the colon key (:), or click on the
Calculator toolbar. The empty placeholder indicates that Mathcad
expects a definition for j. At this point, Mathcad does not know whether j is to be
a conventional variable or a range variable.

Figure 8-3: Using the global definition symbol.

104 / Chapter 8
2. Type 0. Then press the semicolon key (;), or click on the Matrix
toolbar. This tells Mathcad that you are defining a range variable.
Mathcad displays the semicolon as two periods “..” to indicate a range. Complete
the range variable definition by typing 15 in the remaining placeholder.

This definition indicates that j now takes on the values . To define a range
variable that changes in steps other than 1, see the section “Types of ranges” on page
105.
Once you define a range variable, it takes on its complete range of values every time
you use it. If you use a range variable in an equation, for example, Mathcad evaluates
that equation once for each value of the range variable.
You must define a range variable exactly as shown above.

Note You cannot define a variable in terms of a range variable. For example, if after having defined j
as shown you now define , Mathcad assumes you are trying to set a scalar variable
equal to a range variable and marks the equation with an appropriate error message.

One application of range variables is to fill up the elements of a vector or matrix. You
can define vector elements by using a range variable as a subscript. For example, to
define for each value of j:

• Type x[j:j^2[Space]+1.

Figure 8-4 shows the vector of values computed by this equation. Since j is a range
variable, the entire equation is evaluated once for each value of j. This defines for
each value of j from 0 to 15.

Figure 8-4: Using a range variable to define the values of a vector.

0 1 2…15, ,

i j 1+:=

xj

xj

Defining and Evaluating Variables / 105
To understand how Mathcad computes with range variables, keep in mind this
fundamental principle:
If you use a range variable in an expression, Mathcad evaluates the expression once
for each value of the range variable.
If you use two or more range variables in an equation, Mathcad evaluates the equation
once for each value of each range variable.

Tip Mathcad takes longer to compute equations with ranged expressions since there may be many
computations for each equation. While Mathcad is computing, the mouse pointer changes its
appearance. See “Interrupting Calculations” on page 120.

Types of ranges

The definition of j in the previous section, ranging from 0 to 15, is an example of the
simplest type of range definition. But Mathcad permits range variables with values
ranging from any value to any other value, using any constant increment or decrement.
To define a range variable with a step size other than 1, type an equation of this form:

k:1,1.1;2

This appears in your worksheet window as:

In this range definition:
• The variable k is the name of the range variable itself.
• The number 1 is the first value taken by the range variable k.
• The number 1.1 is the second value in the range. Note that this is not the step size.

The step size in this example is 0.1, the difference between 1.1 and 1. If you omit
the comma and the 1.1, Mathcad assumes a step size of one in whatever direction
(up or down) is appropriate.

• The number 2 is the last value in the range. In this example, the range values are
constantly increasing. If instead you had defined , then k would count
down from 10 to 1. If the third number in the range definition is not an even number
of increments from the starting value, the range will not go beyond it. For example,
if you define then k takes values 10, 20, 30, . . ., 60.

Note You can use arbitrary scalar expressions in range definitions. However, these values must
always be real numbers. Also note that if you use a fractional increment for a range variable, you
will not be able to use that range variable as a subscript because subscripts must be integers.

k 1 1.1 2..,:=

k 10 1..:=

k 10 20 65..,:=

106 / Chapter 8
Defining and Evaluating Functions

Although Mathcad has an extensive set of built-in functions (see Chapter 16,
“Functions”) you may want to define your own functions.
Define a function in much the same way as you define a variable. The name goes on
the left, followed by a definition symbol, then an expression on the right. The main
difference is that the name includes an argument list. The example below shows how
to define a function called dist(x, y) that returns the distance between the point (x, y)
and the origin.
To make a function definition:
1. Type the function name.

2. Type a left parenthesis followed by one or more names separated by
commas. Complete this argument list by typing a right parenthesis.

Note It makes no difference whether or not the names in the argument list have been defined or used
elsewhere in the worksheet. What is important is that these arguments must be names. They
cannot be more complicated expressions.

• Press the colon (:) key, or click on the Calculator
toolbar to enter the definition symbol (:=).

• Type an expression to define the function. The
expression can contain a name or any previously
defined functions and variablesl.

Once you have defined a function, you can use it anywhere below and to the right of
the definition, just as you would use a variable.
When you evaluate an expression containing a function, as shown in Figure 8-5,
Mathcad:
3. evaluates the arguments you place between the parentheses,
4. replaces the dummy arguments in the function definition with the actual arguments

you place between the parentheses,
5. performs whatever arithmetic is specified by the function definition,
6. returns the result as the value of the function.

Note As shown in Figure 8-5, if you type only the name of a function without its arguments, Mathcad
returns the word “function.”

The arguments of a user-defined function can represent scalars, vectors, or matrices.

For example, you could define the distance function as . This is
an example of a function that accepts a vector as an argument and returns a scalar result.
See Chapter 5, “Vectors, Matrices, and Data Arrays” for more information.

dist v() v0
2 v1

2+:=

Defining and Evaluating Functions / 107
Note User-defined function names are font and case sensitive. The function f(x) is different from the
function f(x) and SIN(x) is different from sin(x). Mathcad’s built-in functions, however, are
defined for all fonts (except the Symbol font), sizes, and styles. This means that sin(x), sin(x),
and sin(x) all refer to the same function.

Variables in User-Defined Functions
When you define a function, you don’t have to define any of the names in the argument
list since you are telling Mathcad what to do with the arguments, not what they are.
When you define a function, Mathcad doesn’t even have to know the types of the
arguments—whether the arguments are scalars, vectors, matrices, and so on. It is only
when Mathcad evaluates a function that it needs to know the argument types.
However, if in defining a function you use a variable name that is not in the argument
list, you must define that variable name above the function definition. The value of that
variable at the time you make the function definition then becomes a permanent part
of the function. This is illustrated in Figure 8-6.

Figure 8-5: A user-defined function to compute the distance to the origin.

Figure 8-6: The value of a user function depends on its arguments.

108 / Chapter 8
If you want a function to depend on the value of a variable, you must include that
variable as an argument. If not, Mathcad just uses that variable’s fixed value at the point
in the worksheet where the function is defined.

Recursive Function Definitions
Mathcad supports recursive function definitions—you may define the value of a
function in terms of a previous value of the function. As shown in Figure 8-7, recursive
functions are useful for defining arbitrary periodic functions, as well as elegantly
implementing numerical functions like the factorial function
Note that a recursive function definition should always have at least two parts:
• An initial condition that prevents the recursion from going forever.
• A definition of the function in terms of some previous value(s) of the function.

Note If you do not specify an initial condition that stops the recursion, Mathcad generates a “stack
overflow” error message when you try to evaluate the function.

The programming operators in Mathcad also support recursion. See the section
“Programming within Mathcad” in Chapter 15.

Figure 8-7: Mathcad allows recursive function definitions.

Units and Dimensions / 109
Units and Dimensions

Mathcad includes a complete set of units for your calculations. You can treat these units
just like built-in variables. To assign units to a number or expression, just multiply it
by the name of the unit.
Mathcad recognizes most units by their common abbreviations. Lists of all of
Mathcad’s built-in units in several systems of units are in the Appendices. By default
Mathcad uses units from the SI unit system (also known as the International System of
Units) in the results of any calculations, but you may use any supported units you wish
in creating your expressions. See “Displaying Units of Results” on page 115 for how
to set a unit system for results.
For example, type expressions like the following:

mass:75*kg
acc:100*m/s^2
acc_g:9.8*m/s^2
F:mass*(acc + acc_g)

Figure 8-8 shows how these equations appear in a worksheet.

Tip If you define a variable which consists of a number followed immediately by a unit name, you
can omit the multiplication symbol; Mathcad inserts a very small space and treats the
multiplication as implied. See the definition of mass at the bottom of Figure 8-8.

Figure 8-8: Equations using units.

110 / Chapter 8
You can also use the Insert Unit dialog box to insert one of Mathcad’s built-in units
into any placeholder.
To use the Insert Unit dialog box:
1. Click in the empty placeholder and choose Unit from the Insert menu, or click

on the Standard toolbar. Mathcad opens the Insert Unit dialog box.
2. The list at the bottom shows built-in

units, along with their Mathcad names,
corresponding to the physical quantity
selected in the top list. When
“Dimensionless” is selected, a list of
all available built-in units shows on the
bottom.

3. You can use the top list to display only
those units corresponding to a
particular physical quantity to see what
choices are appropriate.

4. In the bottom list, double-click the unit you want to insert, or click the unit you
want and then click “Insert.” Mathcad inserts that unit into the empty placeholder.

Note Mathcad performs some dimensional analysis by trying to match the dimensions of your selected
result with one of the common physical quantities in the top list. If it finds a match, you’ll see
all the built-in units corresponding to the highlighted physical quantity in the bottom list. If
nothing matches, Mathcad simply lists all available built-in units on the bottom.

Dimensional Checking
Whenever you enter an expression involving units, Mathcad checks it for dimensional
consistency. If you add or subtract values with incompatible units, or violate other
principles of dimensional analysis, Mathcad displays an appropriate error message.

For example, suppose you had defined acc
as instead of as
shown at right. Since acc is in units of
velocity and acc_g is in units of
acceleration, it is inappropriate to add
them together. When you attempt to do so,
Mathcad displays an error message.
Other unit errors are usually caused by one
of the following:
• An incorrect unit conversion.
• A variable with the wrong units.

• Units in exponents or subscripts (for example or).

• Units as arguments to inappropriate functions (for example,).

100 m s⁄⋅ 100 m s2⁄⋅

v3 acre⋅ 23 ft⋅

0 henry⋅()sin

Units and Dimensions / 111
Tip If you want to temporarily remove units from an argument, x, divide x by UnitsOf(x). For

example, if p is defined as 2 ft then gives an error but .

Defining Your Own Units
Although Mathcad recognizes many common units, you may need to define your own
unit if that unit isn’t one of Mathcad’s built-in units or if you prefer to use your own
abbreviation instead of Mathcad’s abbreviation.

Note Although absolute temperature units are built into Mathcad, the Fahrenheit and Celsius
temperature units are not. See the QuickSheet “Temperature Conversions” under the Help menu
for samples of defining these temperature scales and converting between them.

You define your own units in terms of existing units in exactly the same way you would
define a variable in terms of an existing variable. Figure 8-9 shows how to define new
units as well as how to redefine existing units.

Note Since units behave just like variables, you may run into unexpected conflicts. For example, if
you define the variable m in your worksheet, you won’t be able to use the built-in unit m for
meters anywhere below that definition. However, Mathcad automatically displays the unit m in
any results involving meters, as described in “Displaying Units of Results” on page 115.

Figure 8-9: Defining your own units.

p()sin p
UnitsOf p()

 sin 0.573=

112 / Chapter 8
Working with Results

Formatting Results
The way that Mathcad displays numbers (the number of decimal places, whether to use
i or j for imaginary numbers, and so on) is called the result format. You can set the
result format for a single calculated result or for an entire worksheet.

Setting the format of a single result

When you evaluate expressions numerically in Mathcad, results are formatted in the
worksheet according to the worksheet default result format. To modify the format for
a single result
1. Click anywhere in the equation.

2. Choose Result from the Format
menu or double-click the result. The
Result Format dialog box appears.

3. Change the desired settings. See below for the
various settings in the dialog box. To display a result
with six decimal places, you would increase
“Number of decimal places” from 3 to 6.

To redisplay a result using the worksheet default result format settings, click on the
result to enclose the result between the editing lines, delete the equal sign, and press =
to replace the equal sign. The result is now restored to the default worksheet settings.

Note When the format of a result is changed, only the appearance of the result changes in the
worksheet. Mathcad continues to maintain full precision internally for that result. To see a
number as it is stored internally, click on the result, press [Ctrl][Shift]N, and look at the
message line at the bottom of the Mathcad window. If you copy a result, however, Mathcad
copies the number only to the precision displayed.

Setting worksheet default format

To change the default display of numerical results:
1. Click in a blank part of your worksheet.
2. Choose Result from the Format menu.
3. Change the desired settings in the Result Format dialog box.
Mathcad changes the display of all results whose formats have not been explicitly
specified.

Working with Results / 113
Alternatively, you can change the worksheet default by clicking on a particular result,
choosing Result from the Format menu, changing the settings in the Result Format
dialog box, and clicking “Set as Default.”

Tip Changing the worksheet default result format affects only the worksheet you are working in
when you make the change. Any other worksheets open at the time retain their own default result
formats. If you want to re-use your default result formats in other Mathcad worksheets, save your
worksheet as a template as described in Chapter 7, “Worksheet Management.”

The Result Format dialog box

The Number Format page lets you control the number of decimal places, trailing zeros,
and other options. Depending on the format scheme you choose under the Format
section, you see different options.
• General lets you control the number of digits to the right of the decimal point,

trailing zeros, and exponential threshold. A result is displayed in exponential
notation or engineering format when the exponential threshold is exceeded. You
can display trailing zeros to the right of the decimal until you exceed 15 digits total.

• Decimal lets you control the number of digits to the right of the decimal point and
never display the results in exponential notation. You can display trailing zeros to
the right of the decimal point beyond 15 digits total, but only the first 15 digits are
accurate.

• Scientific or Engineering lets you control the number of digits to the right of the
decimal point and always display results in exponential notation. For Engineering,
the exponents are displayed in multiples of three. You can use E-notation for the
exponents by choosing “Show exponents as ± E 000.” You can display trailing zeros
to the right of the decimal point beyond 15 digits total, but only the first 15 digits
are accurate.

• Fractional lets you display results as fractions or mixed numbers. Use the level of
accuracy setting to control the number of decimal places of accuracy of the fraction
displayed. You can display a fraction that is accurate to up to 15 decimal places.

Note Settings that are grayed can only be changed for the entire worksheet, as described in “Setting
worksheet default format” on page 112.

The Display Options page lets you control whether arrays are displayed as tables or
matrices, whether nested arrays are expanded, and whether i or j is used to indicated
imaginary. You can also specify another radix such as Binary or Octal.
The Unit Display page gives you options to format units (as fractions) or simplify the
units to derived units.
The Tolerance page allows you to specify when to hide a real or imaginary part of a
result and how small a number has to be for it to display as zero.

Online Help Click the Help button at the bottom of the dialog box to see more details of options in the Result.

114 / Chapter 8
Figure 8-10 shows some examples of formatting options.

Complex Results
Results can have complex numbers if you enter an expression that contains a complex
number. Even a Mathcad expression that involves only real numbers can have a
complex value. For example, if you evaluate , Mathcad returns i. See Figure 8-11
for examples.

Note When complex numbers are available, many functions and operators we think of as returning
unique results become multivalued. In general, when a function or operator is multivalued,
Mathcad returns the principal value: the value making the smallest positive angle relative to the
positive real axis in the complex plane. For example, when it evaluates , Mathcad returns

 despite the fact that we commonly think of the cube root of –1 as being –1. This is
because the number makes an angle of only 60 degrees from the positive real axis.
The number –1, on the other hand, is 180 degrees from the positive real axis. Mathcad’s nth root
operator returns –1 in this case, however.

Figure 8-10: Several ways to format the same number.

Figure 8-11: Examples of complex results.

1–

1–()1 3⁄

.5 .866i+
.5 .866i+

Working with Results / 115
Displaying Units of Results
Mathcad by default displays results in the fundamental units of the unit system you’re
working with.

Tip Check “Simplify units when possible” in the Result Format dialog box (see page 112) to see
units in a result expressed in terms of derived units rather than in base units. Check “Format
units” to see units in a result displayed as a built-up fraction containing terms with positive
exponents only rather than as a product of units with positive and negative exponents.

You can have Mathcad redisplay a particular result in terms of any of Mathcad’s built-
in units. To do so:
1. Click in the result. You’ll see an empty placeholder to its right. This is the units

placeholder.
2. Click the units placeholder and choose Unit from the Insert menu, or click

on the Standard toolbar. Mathcad opens the Insert Unit dialog box. This is described
in “Units and Dimensions” on page 109.

3. Double-click the unit in which you want to display the result. Mathcad inserts this
unit in the units placeholder.

Note For some engineering units—such as hp, cal, BTU, and Hz—Mathcad adopts one common
definition for the unit name but allows you to insert one of several alternative unit names,
corresponding to alternative definitions of that unit, in your results. In the case of horsepower,
for example, Mathcad uses the U.K. definition of the unit hp but gives you several variants, such
as water horsepower, metric horsepower, boiler horsepower, and electric horsepower.

Another way to insert a unit is to type its name directly into the units placeholder. This
method works for built-in units, for units you’ve defined yourself, and for combinations
of units.

Unit systems

Mathcad’s uses SI as the default unit system. When you use the equal sign to display
a result having units, Mathcad automatically displays the units in the result in terms of
base or derived SI units.
You can have Mathcad display results in terms of the units of any of the other built-in
unit systems in Mathcad: CGS, US customary, MKS, or no unit system at all. To do so,
choose Worksheet Options from the Tools menu and click the Unit System tab.
Select the default unit system in which you want to display results. The SI unit system
provides two additional base units over the other systems, one for luminosity (candela)
and one for substance (mole), and the base SI electrical unit (ampere) differs from the
base electrical unit in the other systems (coulomb).

116 / Chapter 8
The following table summarizes the base units available in Mathcad:

Unit System Base Units

SI m, kg, s, A, K, cd, and mole

MKS m, kg, sec, coul, and K

CGS cm, gm, sec, coul, and K

U.S. ft, lb, sec, coul, and K

None Displays results in terms of fundamental dimensions of length, mass,
time, charge, and absolute temperature. All built-in units are disabled.

The standard SI unit names—such as A for ampere, L for liter, s for second, and S for
siemens—are generally available only in the SI unit system. Many other unit names are
available in all the available systems of units. For a listing of which units are available
in each system, see the Appendices. Mathcad includes most units common to scientific
and engineering practice. Where conventional unit prefixes such as m- for milli-, n- for
nano-, etc. are not understood by Mathcad, you can easily define custom units such as

 as described in “Defining Your Own Units” on page 111.

Tip For examples of units with prefixes not already built into Mathcad, see the Unit QuickSheets
under the Help menu.

If you click “None” in the Unit System tab of the Worksheet Options dialog box,
Mathcad doesn’t understand any built-in units and displays answers in terms of the
fundamental dimensions of length, mass, time, charge, and temperature. However,
even if you are working in one of Mathcad’s built-in unit systems, you can always
choose to see results in your worksheet displayed in terms of fundamental dimension
names rather than the base units of the unit system. To do so:
1. Choose Worksheet Options from the Tools menu.
2. Click the Dimensions tab.
3. Check “Display dimensions” and click “OK.”

Unit conversions

There are two ways to convert from one set of units to another:
• By using the Insert Unit dialog box, or
• By typing the new units in the units placeholder itself.
To convert units using the Insert Unit dialog box:
1. Click the unit you want to replace.
2. Choose Unit from the Insert menu, or click on the Standard toolbar.
3. Double-click the unit in which you want to display the result.
As a quick shortcut, or if you want to display the result in terms of a unit not available
through the Insert Unit dialog box—for example, a unit you defined yourself or an
algebraic combination of units—you can edit the units placeholder directly.
Figure 8-12 shows F displayed both in terms of fundamental SI units and in terms of
several combinations of units.

µm

Working with Results / 117
When you enter an inappropriate unit in the units placeholder, Mathcad inserts a
combination of base units that generate the correct units for the displayed result. For
example, in the last equation in Figure 8-12, is not a unit of force. Mathcad

therefore inserts to cancel the extra length dimension.

Whenever you enter units in the units placeholder, Mathcad divides the value to be
displayed by whatever you enter in the units placeholder. This ensures that the complete
displayed result—the number times the expression you entered for the placeholder—
is a correct value for the equation.

Note Conversions involving an offset in addition to a multiplication, for example gauge pressure to
absolute pressure, or degrees Fahrenheit to Celsius, cannot be performed directly with
Mathcad’s unit conversion mechanism. You can, however, perform conversions of this type by
defining suitable functions. See the QuickSheet “Temperature Conversions” under the Help
menu.

You can enter any variable, constant, or expression in a units placeholder. Mathcad
then redisplays the result in terms of the value contained in the units placeholder. For
example, you can use the units placeholder to display a result as a multiple of π or in
engineering notation (as a multiple of , , etc.).

Tip You can also use the units placeholder for dimensionless units like degrees and radians. Mathcad
treats the unit rad as a constant equal to 1, so if you have a number or an expression in radians,
you can type deg into the units placeholder to convert the result from radians to degrees.

Figure 8-12: A calculated result displayed with different units

kW s⋅

m 1–

103 106

118 / Chapter 8
Copying and Pasting Numerical Results
You can copy a numerical result and paste it either elsewhere in your worksheet or into
a new application.
To copy a single number appearing to the right of an equal sign:
1. Click on the result to the right of the equal sign putting the result between the editing

lines.
2. Choose Copy from the Edit menu.
3. Click wherever you want to paste the result. If you’re pasting into another

application, choose Paste from that application’s Edit menu. If you’re pasting into
a Mathcad worksheet, choose Paste from Mathcad’s Edit menu.

When you paste a numerical result into a Mathcad worksheet, it appears as:
• A math region consisting of a number if you paste it into empty space.
• A number if you paste it into a placeholder in a math region.
• A number if you paste it directly into text or into a placeholder in text created using

the Math Region command on the Insert menu.
To copy more than one number, follow the steps for copying from an array. See
“Displaying Arrays” on page 58.

Note The Copy command copies the numerical result only to the precision displayed. To copy the
result in greater precision, double-click it and increase “Displayed Precision” on the Result
Format dialog box. Copy does not copy units and dimensions from a numerical result.

Controlling Calculation

Mathcad starts in automatic mode meaning results are updated automatically. You can
tell you’re in automatic mode because the word “Auto” appears in the message line at
the bottom of the window.
You can disable automatic mode by choosing Calculate⇒Automatic Calculation
from the Tools menu. The word “Auto” disappears from the message line and the check
beside Automatic Calculation disappears. You are now in manual mode.

Tip The calculation mode—either manual or automatic—is a property saved in your Mathcad
worksheet. As described in Chapter 7, “Worksheet Management” the calculation mode is also a
property saved in Mathcad template (MCT) files.

Calculating in Automatic Mode
Here is how Mathcad works in automatic mode:
• As soon as you press the equal sign, Mathcad displays a result.
• As soon as you click outside of an equation having a “:=” or a “≡,” Mathcad

performs all calculations necessary to make the assignment statement.

Controlling Calculation / 119
When you process a definition in automatic mode by clicking outside the equation
region, this is what happens:
• Mathcad evaluates the expression on the right side of the definition and assigns it

to the name on the left.
• Mathcad then takes note of all other equations in the worksheet that are in any way

affected by the definition.
• Finally, Mathcad updates any of the affected equations that are currently visible in

the worksheet window.

Note Although the equation you altered may affect equations throughout your worksheet, Mathcad
performs only those calculations necessary to guarantee that whatever you can see in the window
is up-to-date. This optimization ensures you don’t have to wait for Mathcad to evaluate
expressions that are not visible. If you print or move to the end of the worksheet, however,
Mathcad automatically updates the whole worksheet.

Whenever Mathcad needs time to complete computations, the mouse pointer changes
its appearance and the word “WAIT” appears on the message line. This can occur when
you enter or calculate an equation, when you scroll, during printing, or when you
enlarge a window to reveal additional equations. In all these cases, Mathcad evaluates
pending calculations from earlier changes.
As Mathcad evaluates an expression, it surrounds it with a green rectangle. This makes
it easy to follow the progress of a calculation.

Calculating in Manual Mode
In manual mode, Mathcad does not compute equations or display results until you
specifically request it to recalculate. This means that you don’t have to wait for Mathcad
to calculate as you enter equations or scroll around a worksheet.
Mathcad keeps track of pending computations while you’re in manual mode. As soon
as you make a change that requires computation, the word “Calc” appears on the
message line. This is to remind you that the results you see in the window are not up-
to-date and that you must recalculate them before you can be sure they are updated.
You can update the screen by choosing Calculate Now from the Tools menu, clicking

 on the Standard toolbar, or pressing [F9]. Mathcad performs whatever
computations are necessary to update all results visible in the worksheet window. When
you move down to see more of the worksheet, the word “Calc” reappears on the message
line to indicate that you must recalculate to see up-to-date results.
To force Mathcad to recalculate all equations throughout the whole worksheet, choose
Calculate Worksheet from the Tools menu or press [Ctrl] [F9].

Note When you print a worksheet in manual calculation mode, the results on the printout are not
necessarily up-to-date. In this case, make sure to choose Calculate Worksheet from the Tools
menu before you print.

120 / Chapter 8
Interrupting Calculations
To interrupt a computation in progress:
1. Press [Esc]. The dialog box shown at right appears.
2. Click “OK” to stop the calculations or “Cancel” to resume

calculations.
If you click “OK,” the equation that was being processed when
you pressed [Esc] is marked with an error message (see “Error
Messages” on page 123) indicating that calculation has been interrupted. To resume an
interrupted calculation, first click in the equation having the error message, then press
[F9] or click on the Standard toolbar.

Tip If you find yourself frequently interrupting calculations to avoid having to wait for Mathcad to
recalculate as you edit your worksheet, you should switch to manual mode.

Disabling Equations
You can disable a single equation so that it no longer calculates along with other regions
in your worksheet. Disabling an equation does not affect Mathcad’s equation editing,
formatting, and display capabilities.
To disable calculation for a single equation in your worksheet, follow these steps:
1. Click on the equation you want to disable.
2. Choose Properties from the Format menu, and click the Calculation tab.
3. Under “Calculation Options” check “Disable Evaluation.”
4. Mathcad shows a small rectangle after the equation to

indicate that it is disabled. An example is shown at right.

Tip An easy shortcut for disabling evaluation is to right click on an equation and select Disable
Evaluation from the popup menu.

To re-enable calculation for a disabled equation:
1. Click on the equation to select it.
2. Choose Properties from the Format menu, and click the Calculation tab.
3. Remove the check from “Disable Evaluation.”

Animation / 121
Animation

You can use Mathcad to create and play short animation clips by using the built-in
variable FRAME. Anything that can be made to depend on this variable can be animated.
This includes not only plots but numerical results as well. You can play back the
animation clips at different speeds or save them for use by other applications.

Creating an Animation Clip
Mathcad comes with a predefined constant called FRAME whose sole purpose is to
drive animations. The steps in creating any animation are as follows:
1. Create an expression or plot, or a

group of expressions, whose
appearance ultimately depends on the
value of FRAME. This expression
need not be a graph. It can be anything
at all.

2. Choose Animation⇒ Record from
the Tools menu to bring up the Record
Animation dialog box.

3. Drag-select the portion of your
worksheet you want to animate as shown in Figure 8-13. Draw a rectangle around
as many regions as you want to appear in the animation

4. Set the upper and lower limits for FRAME in the dialog box. When you record the
animation, the FRAME variable increments by one as it proceeds from the lower
limit to the upper limit.

5. Enter the playback speed in the Frames/Sec. box.
6. Click “Animate.” You’ll see a miniature rendition of your selection inside the dialog

box. Mathcad redraws this once for each value of FRAME. This won’t necessarily
match the playback speed since at this point you’re just creating the animation.

7. To save your animation clip as a Windows AVI file, suitable for viewing in other
Windows applications, click “Save As” in the dialog box. .

Tip Since animation clips can take considerable disk space, Mathcad saves them in compressed
format. Before creating the animation, you can choose what compression method to use or
whether to compress at all. To do so, click “Options” in the Animate dialog box.

122 / Chapter 8
Playing an Animation Clip
As soon as you’ve created an animation clip as described
in the previous section, Mathcad opens a Playback
window:
The first frame of the animation clip you just created is
already in the window. To play back the animation clip,
click the arrow at the lower left corner of the window.
You can also play back the animation clip on a frame by
frame basis, either forward or backward. To do so, drag
the slider below the animated picture to the left or right.

Tip You can control the playback speed by clicking the button to
the right of the play button, which then opens a popup menu. Choose “Speed” from the menu
and adjust the slider control.

Playing a Previously Saved Animation
If you have an existing Windows AVI file, you can play it within Mathcad. To do so:
1. Choose Animation⇒Playback from the

Tools menu to bring up the Playback dialog
box. The window is collapsed since no
animation clip has been opened.

2. Click on the button to the right of the play button and choose “Open” from the
menu. Use the Open File dialog box to locate and open the AVI file you want to play.

Tip To launch an animation directly from your worksheet, you can insert a hyperlink to an AVI file
by choosing Hyperlink from the Insert menu. You can also embed a shortcut to the AVI file in
your worksheet by dragging the icon for the AVI file from the Windows Explorer and dropping
it into your worksheet. Finally, you can embed or link an OLE animation object in your
worksheet (see “Inserting Objects” on page 155.)

Figure 8-13: Selecting an area for animation and seeing the animation inside
the dialog box.

Error Messages / 123
Error Messages

If Mathcad encounters an error when evaluating an expression, it marks the expression
with an error message and highlights the offending name or operator in red.
An error message is visible only when you click on the
associated expression, as shown to the right.
Mathcad cannot process an expression containing an error.
If the expression is a definition, the variable or function it
is supposed to define remains undefined. Any expressions
that reference that variable will be undefined as well.

Tip You can get online help about many error messages by clicking on them and pressing [F1].

Finding the Source of an Error
When working with an expression dependent upon one or more existing definitions, an
error you receive in your expression may actually originate in one of those definitions.
For example, in the figure above, the error appears on the third region, f(0). However,
f(x) is based on the definition of g(x). When x is zero, g(x) is the first region that exhibits
the error.
You can try to find the source of an error yourself simply by examining your worksheet
to see where the error began, or you can use Mathcad to trace the error back through
your worksheet. To find the source of an error using Mathcad:
1. Right click on the region showing the

error and choose Trace Error from the
popup menu or you can click on the
region and choose Trace Error from
the Tools menu. The Trace Error
dialog box appears.

2. Use the buttons in the dialog box to
navigate through the regions associated
with the region showing the error. For
example, click “Previous” to step back to
the previous dependent region.
Or click “First” to jump to the region
causing the error.

124 / Chapter 8
Fixing Errors
Once you have determined which expression caused the error, edit that expression to
fix the error or change the variable definitions that led to the error. When you click in
the expression and begin editing, Mathcad removes the error message. When you click
outside the equation Mathcad recomputes the expression. Then Mathcad recomputes
any expressions affected by the fixed expression.

Note When you define a function, Mathcad does not try to evaluate it until you subsequently use it in
the worksheet. If there is an error, the use of the function is marked in error, even though the real
problem may lie in the definition of the function itself, possibly much earlier in the worksheet.

Chapter 9
Solving and Data Analysis

! Solving and Optimization Functions

! Differential Equation Solvers

! Data Fitting

This chapter shows methods for solving equations and mapping data to equations.
Mathcad supports many functions for solving a single equation in one unknown through
large systems of linear, nonlinear, and differential equations, with multiple unknowns.
There are also a host of fitting and interpolation routines to generate functions and
approximations to data. The techniques described here generate numeric solutions.
Chapter 13, “Symbolic Calculation,” describes a variety of techniques for solving
equations symbolically.

Solving and Optimization Functions

Finding Roots

Finding a Single Root

The root function solves a single equation in a single unknown, given a guess value for
the unknown. Alternatively, root can take a range [a,b] in which the solution lies, and
no guess is required. The function returns the value of the unknown variable that makes
the equation equal zero, and lies in the specified range, by making successive estimates
of the variable and calculating the value of the equation.
The guess value you supply for x becomes the starting point for successive
approximations to the root value. If you wish to find a complex-valued root, start with
a complex guess. When the magnitude of f(x) evaluated at the proposed root is less than
the value of the tolerance parameter, TOL, a result is returned. If you increase TOL, the
function will converge more quickly, but the answer will be less accurate, and vice
versa. Plotting the function is a good way to determine how many roots there are, where
they are, and what initial guesses are likely to find them.

Tip As described in “Built-in Variables” on page 100, you can change the value of the tolerance, and
hence the accuracy of the solution found by root, by including definitions for TOL in your
worksheet. You can also change the tolerance by using the Built-in Variables tab when you
choose Worksheet Options from the Tools menu.

Note When you specify the optional arguments a and b for the root function, Mathcad will only find
a root for the function f if f(a) is positive and f(b) is negative or vice versa. (See Figure 9-1.)

If, after many approximations, Mathcad still cannot find an acceptable answer, it marks
the root function with an error message indicating its inability to converge to a result.
This error can be caused by any of the following:
125

126 / Chapter 9
• The expression has no roots.
• The roots of the expression are far from the initial guess.
• The expression has local maxima or minima between the initial guess and the roots.
• The expression has discontinuities between the initial guess and the roots.
• The expression has a complex root but the initial guess was real (or vice versa).
• To find the cause of the error, try plotting the expression. This will help determine

whether or not the expression crosses the x-axis and if so, approximately where. In
general, the closer your initial guess is to where the expression crosses the x-axis,
the more quickly the root function will converge on an acceptable result.

Here are some more tips on root-finding:
• Solving an equation of the form is equivalent to using root as follows:

• If two roots are close together, you may have to reduce TOL to distinguish between
them.

• If f(x) has a small slope near its root, then may converge to a value
r that is relatively far from the actual root. In such cases, even though ,
r may be far from the point where . To find a more accurate root, decrease

the value of TOL. Or, try finding , where .

• For an expression f(x) with a known root r, solving for additional roots of f(x) is
equivalent to solving for roots of . Dividing out known roots
like this is useful for resolving two roots that may be close together. It's often easier
to solve for roots of h(x) as defined here than it is to try to find other roots for f(x)
with different guesses.

The root function can solve only one equation in one unknown. To solve several
equations simultaneously, use Find or Minerr, described below.

Figure 9-1: Finding roots with root and polyroots.

f x() g x()=
root f x() g x() x,–()

root f x() x,()
f r() TOL<

f r() 0=

root g x() x,() g x() f x()
d

dx
------f x()
----------------=

h x() f x()() x r–()⁄=

Solving and Optimization Functions / 127
Finding all Roots

To find the roots of a polynomial or an expression having the form:

you can use polyroots rather than root. polyroots does not require a guess value, and
polyroots returns all roots at once, whether real or complex. It does require that you
type the coefficients of the polynomial into a separate vector. Figure 9-1 shows an
example.
By default, polyroots uses a LaGuerre method of finding roots. If you want to use the
companion matrix method instead, click on the polyroots function with the right mouse
button and choose Companion Matrix from the popup menu.

Note root and polyroots can solve only one equation in one unknown, and they always return
numerical answers. To solve several equations simultaneously, use the techniques described in
the next section. To solve an equation symbolically, or to find an exact numerical answer in
terms of elementary functions, choose Variable⇒Solve from the Symbolics menu or use the
solve keyword. See Chapter 13, “Symbolic Calculation.”

Linear/Nonlinear System Solving and Optimization
Mathcad includes numerical solving functions that solve problems such as:
• Linear systems of equations with constraints (equalities or inequalities).
• Nonlinear systems of equations with constraints.
• Optimization (maximization or minimization) of an objective function.
• Optimization (maximization or minimization) of an objective function with

constraints.
• Linear programming, in which all constraints are either equalities or inequalities

that compare linear functions to constants and the objective function is of the form:

• If you have the Solving and Optimization Extention Pack installed, you can also
use Quadratic programming, in which all constraints are linear but the objective
function contains linear terms and quadratic terms, and Mixed Integer
Programming, in which variables are further constrained to be integers, floating
point numbers, or boolean values.

Solving a Linear System of Equations

Use the lsolve function to solve a linear system of equations whose coefficients are
arranged in a matrix M. The argument M for lsolve must be a matrix that is neither
singular nor nearly singular. An alternative to lsolve is to solve a linear system by using
matrix inversion.

Solve Blocks

The general form for using system solving functions in Mathcad is within the body of
a solve block. There are four general steps to creating a solve block. These are:

vnxn … v2x2 v1x v0+ + + +

c0x0 c1x1 … cnxn+ + +

128 / Chapter 9
1. Provide an initial guess (definition) for each of the unknowns. Mathcad solves
equations by making iterative calculations that ultimately converge on a valid
solution. The initial guesses you provide give Mathcad a place to start searching
for solutions. If you expect your solutions to be complex, provide complex guess
values. Guess values are required for most systems.

2. Type the word Given in a separate math region below the guess definitions. This
tells Mathcad that what follows is a system of constraint equations. Be sure you
don’t type “Given” in a text region.

3. Now enter the constraints (equalities and inequalities) in any order below the word

Given. Make sure you use the bold equal symbol (click on the Boolean toolbar
or press [Ctrl]=) for any equality. You can separate the left and right sides of an
inequality with any of the symbols <, >, ≤, and ≥.

4. Enter any equation that involves one of the functions Find, Maximize, Minimize, or
Minerr below the constraints.

Tip Solve blocks cannot be nested inside each other—each solve block can have only one Given and
one Find (or Maximize, Minimize, or Minerr). You can, however, define a function like

 at the end of one solve block and refer to this function in another solve block.

Solve Blocks Functions

Figure 9-2 shows a solve block with several kinds of constraints and ending with a call
to the Find function. There are two unknowns. As a result, the Find function here takes
two arguments, x and y, and returns a vector with two elements.

Note Unlike most Mathcad functions, the solving functions Find, Maximize, Minerr, and Minimize
can be entered in math regions with either an initial lowercase or an initial capital letter.

Figure 9-2: A solve block with both equalities and inequalities.

f x() Find x():=

Solving and Optimization Functions / 129
Solve blocks can be used to solve parametric systems. In Figure 9-3, the solution is cast
in terms of several parameters in the solve block besides the unknown variable.

Solve blocks can also take matrices as unknowns, and solve matrix equations. (See
Figure 9-4 and Figure 9-5.)

Figure 9-3: Solving an equation parametrically.

Figure 9-4: A solve block for computing the square root of a matrix.

130 / Chapter 9
Note Mathcad Solve Blocks can solve linear and nonlinear systems of up to 400 variables. Adding the
Solving and Optimization Extension Pack increases this number to linear systems of up to1000
variables, nonlinear systems of up to 250 variables, and quadratic systems of up to 1000
variables.

The table below lists the kinds of constraints that can appear in a solve block between
the keyword Given and one of the functions Find, Maximize, Minerr, and Minimize. In
the table, x and y represent real-valued expressions, and z and w represent arbitrary
expressions. The Boolean constraints are inserted using buttons on the Boolean toolbar.
Constraints are often scalar expressions but can also be vector or array expressions.

Condition Button Description

Mathcad does not allow the following between the Given and Find in a solve block:
• Constraints with “≠.”
• Range variables or expressions involving range variables of any kind.
• Assignment statements (statements like x:=1).

Figure 9-5: A solve block for computing the solution of a matrix equation.

Constrained to be equal.

Greater than.

Less than.

Greater than or equal to.

Less than or equal to.

And

Or

Xor (Exclusive Or)

Not

w z=

x y>

x y<

x y≥

x y≤

x y∧

x y∨

x y⊗

x¬

Solving and Optimization Functions / 131
You can, however, include compound statements such as .

Note Mathcad returns only one solution for a solve block. There may, however, be multiple solutions
to a set of equations. To find a different solution, try different guess values or enter an additional
inequality constraint that the current solution does not satisfy.

Tolerances for solving

Mathcad’s numerical solvers make use of two tolerance parameters in calculating
solutions in solve blocks:
• Convergence tolerance. The solvers calculate successive estimates of the values

of the solutions and return values when the two most recent estimates differ by less
than the value of the built-in variable TOL. A smaller value of TOL often results in
a more accurate solution, but the solution may take longer to calculate.

• Constraint tolerance. This parameter, determined by the value of the built-in
variable CTOL, controls how closely a constraint must be met for a solution to be
acceptable. For example, if the constraint tolerance were 0.0001, a constraint such
as would be considered satisfied if, in fact, the value of x satisfied .

Procedures for modifying the values of these tolerances are described in “Built-in
Variables” on page 100.

Tip If you use Minerr in a solve block, you should always include additional checks on the
reasonableness of the results. The built-in variable ERR returns the size of the error vector for
the approximate solution returned by Minerr. There is no built-in variable for determining the
size of the error for individual solutions to the unknowns.

Getting past errors

If the solver cannot make any further improvements to the solution but the constraints
are not all satisfied, then the solver stops and marks Find with an error message. This
happens whenever the difference between successive approximations to the solution is
greater than TOL and:
• The solver reaches a point where it cannot reduce the error any further.
• The solver reaches a point from which there is no preferred direction. Because of

this, the solver has no basis on which to make further iterations.
• The solver reaches the limit of its accuracy. Round-off errors make it unlikely that

further computation would increase accuracy of the solution. This often happens if
you set TOL to a value below .

The following problems may cause this sort of failure:
• There may actually be no solution.
• You may have given real guesses for an equation with no real solution. If the

solution for a variable is complex, the solver will not find it unless the starting value
for that variable is also complex.

• The solver may have become trapped in a local minimum for the error values. To
find the actual solution, try using different starting values or add an inequality to
keep Mathcad from being trapped in the local minimum.

1 x 3≤ ≤

x 2< x 2.0001<

10 15–

132 / Chapter 9
• The solver may have become trapped on a point that is not a local minimum, but
from which it cannot determine where to go next. Again, try changing the initial
guesses or adding an inequality to avoid the undesirable stopping point.

If you can not solve the constraints to within the desired tolerance, try defining TOL
with a larger value somewhere above the solve block. Increasing the tolerance changes
what Mathcad considers close enough to call a solution.

Solving algorithms and AutoSelect

When you solve an equation, by default Mathcad uses an AutoSelect procedure to
choose an appropriate solving algorithm. You can override Mathcad’s choice of
algorithm and select another available algorithm yourself.
Here are the available solving methods:

Linear

Applies a linear programming algorithm to the problem. Guess values for the unknowns
are not required.

Nonlinear

Applies either a conjugate gradient, Levenberg-Marquardt, or quasi-Newton solving
routine to the problem. Guess values for all unknowns must precede the solve block.
Choose Nonlinear⇒Advanced Options from the popup menu to control settings for
the conjugate gradient and quasi-Newton solvers.

Note The Levenberg-Marquardt method is not available for the Maximize and Minimize functions.

You can override Mathcad’s default choice of solving algorithm as follows:
1. Create and evaluate a solve block, allowing

Mathcad to AutoSelect an algorithm.
2. Click with the right mouse button on the

name of the function that terminates the
solve block, and remove the check from
AutoSelect on the popup menu.

3. Check one of the available solving methods
on the popup menu. Mathcad recalculates
the solution using the method you selected.

Solving and Optimization Extension Pack

If you have the SOEP installed, the following options are also available:
• Quadratic: Applies a quadratic programming algorithm to the problem. Guess

values for the unknowns are not required.
• Reports: Generates sensitivity analysis reports for linear optimization problems.
• Mixed integer programming : Forces the solution for an unknown variable to be

a binary number (1 or 0) or an integer. For more information refer to online Help.

Differential Equation Solvers / 133
Differential Equation Solvers

In solving differential equations, you solve for an unknown function rather than a
variable. In ordinary differential equations (ODEs), the unknown function is a function
of one variable. In partial differential equations (PDEs) the unknown function is a
function of two or more variables. All Mathcad differential equations solvers can be
used to solve first-order or higher-order derivative functions or systems of functions.
The easiest way to solve differential equations is to use a Solve Block and the functions
Odesolve or Pdesolve. If you need to solve ODEs or PDEs in programs, or have
specialized boundary value problems, you can use the command-line differential
equation solvers detailed on subsequent pages.

Solving an ODE Using a Solve Block

There are three steps to creating a differential equation solve block:
1. Type the keyword Given. You can type either Given or given, and it must be

a math region, not a text region.
2. Type the ODE and constraints in any order below the word Given. Use the bold

equal sign (click on the Boolean or Evaluation toolbars or press [Ctrl]=) for
an equality. The independent variable x must be explicitly indicated throughout,
that is, use y(x) or y‘(x) when specifying the unknown function and its derivatives,
not just y or y‘. A typical initial value or boundary value constraint might be y(0)=c
or y‘(a)=d. Mathcad also allows algebraic constraints, such as y(x) + z(x) = w(x);
Mathcad does not allow more complicated constraints like y(a)+y‘(a)=d. ODEs
can be written using either the derivative operators d/dx, d2/dx2, d3/dx3 , ... (press
? or [Ctrl]? to insert the derivative or nth derivative operators), or using prime
notation y‘(x), y‘‘(x), y‘‘‘(x), (Press [Ctrl][F7] for the prime symbol.) Initial
and boundary conditions must be specified using prime notation.

3. Finally, type the Odesolve function. The terminal point b must be larger than the
starting point for the ODE variable x, as implied by the initial conditions, or you
can set the range of integration explicitly by using a two-element column vector.
The entire process is demonstrated in Figure 9-6.

Tip Prime notation is only allowed inside a solve block. If you use it outside of a solve block, you
see an error.

Odesolve([vf], x,
vb/b, [step])

Returns a function (or vector of functions vf) of the variable x
which solve an ODE or system of ODEs, subject to either initial
value or boundary value constraints. vf is only required when a
system of ODEs is being solved, to specify order of solutions. vb
is a two-element column vector that specifies the initial and
terminal points of the integration interval; alternatively, b is the
terminal point of the integration interval, assumed to start at 0.
step (optional) is the number of steps.

134 / Chapter 9
The output of Odesolve is a function, or vector of
functions, of x, interpolated from a table of values. The
algorithm is the fixed-step method employed by rkfixed,
described on page 137. If you prefer to use an adaptive
step or stiff method, click on Odesolve with the right
mouse button and make your choice from the menu that
appears. More information on the available algorithms
and the types of systems for which they are best used is
available in the section on “Specialized Initial-Value
Differential Equation Solvers” on page 140:
Mathcad is very specific about the types of expressions
that can appear between Given and Odesolve. The lower derivative terms can appear
nonlinearly in the differential equation (e.g., they can be multiplied together or raised
to powers), but the highest derivative term must appear linearly. Inequality constraints
are not allowed.

Note Boundary value problems can be solved for a single equation, but for systems of equations, only
initial value constraints are accepted.

The rules of mathematics for solving these systems must be followed, or Odesolve will
produce errors:
• There must be n independent equality constraints for an nth order differential

equation.
• For an initial value problem, the values for y(x) and its first n−1 derivatives at a

single initial point a are required.
• For a boundary value problem, the n equality constraints should prescribe values

for y(x) and certain derivatives at exactly two points a and b.

Figure 9-6: Solving a single differential equation.

Differential Equation Solvers / 135
Solving a PDE using a Solve Block

As with Odesolve, are three steps to creating a PDE solve block:
1. Type the keyword Given. You can type either Given or given, and it must be

a math region, not a text region.
2. Type the PDE and constraints in any order below the word Given. Use the bold

equal sign (click on the Boolean or Evaluation toolbars or press [Ctrl]=) for
an equality. Use subscript notation to indicate the partial derivative in either x or t,
and explicitly specify the independent variables throughout, that is, use y(x,t) or
yxx(x,t), not just y or yxx. Either Dirichlet (y(0,t) = a) or Neumann (yx(0,t) = a)
boundary conditions are accepted. Mathcad also allows algebraic constraints, such
as y(x,t) + z(x,t) = 2.

3. Finally, type the Pdesolve function. The two-element column vectors vb and vc,
ranges over x and t, respectively, must agree with values assigned in the boundary
conditions. (See Figure 9-8.)

Figure 9-7: Solving a system of differential equations with an algebraic
constraint.

Pdesolve([vf], x, vb, t,
vc, [xstep], [tstep])

Returns a function (or vector of functions vf) of the variables
x and t which solve a PDE or system of PDEs, subject to either
initial value or boundary value constraints. vb is a two-
element column vector that specifies the initial and terminal
points of the spatial integration interval; vc is a two-element
column vector that specifies the initial and terminal points of
the temporal integration interval; xstep (optional) is the
number of spatial steps. tstep (optional) is the number of
temporal steps.

136 / Chapter 9
Note Mathcad uses the numerical method of lines to compute PDEs. This method allows the solution
of parabolic (heat), hyperbolic (wave), and parabolic-hyperbolic (advection) equations. It does
not accommodate elliptic equations, such as Poisson’s equation. To solve other types of systems,
try the relax function (described on page 145) and the multigrid function (described on
page 145).

The output of Pdesolve is a function, or vector of functions, of x and t, interpolated
from a table of values. The algorithm is the numerical method of lines employed by the
function numol, described on page 139.

Tip To view each solution in x over time, create a graph of the function u(x,FRAME) vs. x, and use
Mathcad’s animation tools to capture images of the graph for FRAME = 0 to the maximum
calculated value of t.

Command-line Differential Equation Solvers
If you wish to include a differential equation solver within another construct, such as
a program loop, you can use the command-line differential equation solvers: rkfixed,
rkadapt, numol, etc. A complete list can be found in Chapter 16, “Functions,” in the
reference section of this book. The general use of the differential functions is the same.
Each one uses a different algorithm, so some may be better suited to your application
or system of equations than others.

Runge-Kutta initial-value solver for ODEs

rkfixed uses the fourth order Runge-Kutta method to solve a first order differential
equation and return a two-column matrix in which:
• The left-hand column contains the points at which the solution to the differential

equation is evaluated.
• The right-hand column contains the corresponding values of the solution.

Figure 9-8: Solving the wave equation.

Differential Equation Solvers / 137
rkfixed(y0, x1, x2, npoints, D)

The complicated step in this process is creating the vector of derivatives for each
unknown function. This is the step which is transparent in ODE solve blocks. The
derivative vector is the way in which each differential equation is specified to rkfixed.
Examine the example in Figure 9-9 comparing a system of linear second-order
equations solved by a Solve Block vs. rkfixed. The part of the setup process which is
not explicit is the creation of a vector y of all unknown functions and their derivatives
in the system. For the case shown, y has four elements: u, u‘, v, v‘. So, when referring
to the first derivative of u, which is the first element of D, the value y1 is used. The
ODEs in the original problem appear as the 2nd and 4th elements in the vector D,
specifying the second derivatives of u(x) and v(x) in terms of elements of y. At no point
in this process do we specifically create a vector y.

Note The subscripts on elements of y in the definition of D are vector subscripts, that is, they are
created with the [key.The derivative vector must be defined as a function of x and y, since we
don’t have specific values for these until the solution is created.

y0 = real vector of initial values, whose length depends on the order of the
DE or the size of the system of DEs. For a first order DE, the vector
degenerates to one point, . For higher order DEs, the
vector has n elements for specifying initial conditions of y,

. For a first order system, the vector contains initial
values for each unknown function. For higher order systems, the vector
contains initial values for the derivatives of each unknown
function in addition to initial values for the functions themselves.

x1, x2 = The endpoints of the integration region.

npoints = Number of solution points between the endpoints (the grid).

D(x, y) = real vector-valued function containing derivatives of the unknown functions.
This vector will be of the same length as y, and follow similar rules.

y 0() y x1()=

y′ y″ … y n 1–(), , ,

n 1–

138 / Chapter 9

The first row of the solution matrix, SOLN, is identical to the initial conditions. The
results given by Odesolve are identical to those in the matrix, since they use the same
algorithm, but the Odesolve results are functions, while rkfixed provides a grid of
solution points. The functions returned by Odesolve are really just interpolations of the
same matrix of solutions. One by-product of using rkfixed is that the values of the
derivatives are also returned.

Method of Lines Solver for PDEs

Just as initial-value ODE problems can be solved at the command line using rkfixed,
(or other specialized functions described below) one-dimensional PDEs can be solved
using numol. numol uses the numerical method of lines to solve hyperbolic or parabolic
partial differential equations or systems of equations, and returns a matrix of solutions
where each column represents a solution over 1-D space at a single solution time.

Figure 9-9: Solving a second-order system of differential equations with both
Odesolve and rkfixed.

Differential Equation Solvers / 139
numol(x_endpts, xpoints, t_endpts, tpoints, num_pde, num_pae, pfunc, pinit,
bc_func))

numol returns an xpoints by tpoints matrix for a single PDE, or, in the case of a system
of equations, an xpoints by tpoints*(num_pde+num_pae) matrix. That is, each column
of the matrix represents a snapshot of the solution over all x at a particular point in time.
If you want to graph multiple solution functions from a system of equations, add tpoints
to the index of the column for each successive solution function. (See Figure 9-10.)

Note At most, two boundary functions per PDE must be declared, based on the order of spatial
derivatives in the PDE, so the correct number of conditions to guarantee unique solutions is
always met.

The numol function requires that the time derivative on the left-hand side of the PDEs
is always of first order. If you have equations of second order in time (such as the wave

x_endpts = the column vector (x1, x2) giving the start and end of the
spatial integration region.

xpoints = number of spatial discretization points.

t_endpts = the column vector (t1,t2) giving the start and end of the
spatial integration region.

tpoints = number of temporal discretization points.

num_pde = number of PDEs in the system (at least 1)

num_pae = number of Partial Algebraic Equations (algebraic
constraints, e.g.,
0 =u(x)+v(x)-w(x) for all x. Can be 0.

pfunc = vector function of x, t, u, ux, uxx of length num_pde +
num_pae for evaluating right-hand sides (rhs) of the
PDEs/PAEs. The unknown solution matrix u is assumed
to contain solutions for all unknown functions, so
systems of equations should be cast in terms of vector-
index subscripts, u0, ux0, uxx0, u1, ux1, and so on.

 pinit = vector function of x of length num_pde + num_pae for
evaluating initial conditions

bc_func = The boundary condition (BC) matrix bc_func is a
num_pde x 3 matrix function. If the PDE for a row
contains 2nd-order spatial derivatives, specify

 (left_cond(t) right_cond(t) "D") (for Dirichlet), or
(left_cond(t) right_cond(t) "N") (for Neumann).

If the PDE contains only first order spatial derivatives,
use “NA” for either the right or left BC. If no spatial
derivatives are present, use “NA” for both BCs (the row
will be ignored).

140 / Chapter 9
equation), you’ll need to recast them as a system of equations, introducing dummy variables to
stand in for first-order time derivatives.

Specialized Initial-Value Differential Equation Solvers
Mathcad includes several specialized functions for solving differential equations,
which you may want to use rather than the general-purpose rkfixed. If your system is
stiff, smooth, or has both high and low rates of change over the solution interval, one
of these specialized solvers may yeild faster or more accurate results than rkfixed. Each
of these functions returns a matrix containing the values of the function evaluated over
a set of points.

Tip When solving a differential equation it is a good idea to try more than one differential equation
solver because one method might suit your differential equation better than another method.

Smooth systems

When you know the solution is smooth, use Bulstoer, which uses the Bulirsch-Stoer
method rather than the Runge-Kutta method used by rkfixed.
Bulstoer(y, x1, x2, npoints, D)
The argument list and the matrix returned by Bulstoer are identical to that for rkfixed.

Figure 9-10: Solving the wave equation with numol.

Differential Equation Solvers / 141
Systems with varying rates of change

Given a fixed number of points, you can approximate a function more accurately if you
evaluate it frequently wherever it’s changing fast and infrequently wherever it’s
changing more slowly.
Rkadapt(y, x1, x2, npoints, D)
The argument list and the matrix returned by Rkadapt are identical in form to that for
rkfixed.
If you know that the solution has this property, you may be better off using Rkadapt.
Unlike rkfixed, Rkadapt examines how quickly the solution is changing and adapts its
step size accordingly.

Note Although Rkadapt uses nonuniform step sizes internally when it solves the differential equation,
it nevertheless returns the solution at equally spaced points.

Stiff systems

A system of differential equations expressed in the form is a stiff system if
the matrix A is nearly singular. Under these conditions, the solution returned by rkfixed
may oscillate or be unstable. When solving a stiff system, you should use one of the
three differential equation solvers specifically designed for stiff systems, Radau, Stiffb
and Stiffr, which use the implicit Runge-Kutta RADAU5 method, the Bulirsch-Stoer
method and the Rosenbrock method, respectively. They take the same arguments as
rkfixed. Stiffb and Stiffr each have one additional argument.
Radau(y, x1, x2, npoints, D)
Stiffb(y, x1, x2, npoints, D, J)
Stiffr(y, x1, x2, npoints, D, J)

Evaluating only the final value

If you only care about the value of the solution at the endpoint, y(x2), rather than over
a number of uniformly spaced x values in the integration interval, use the functions
listed below. Each function corresponds to the capitalized versions already discussed.
The properties of each of these functions are identical to those of the corresponding
function in the previous sections, except for the arguments below:

J(x, y) = A function you define that returns the matrix whose
first column contains the derivatives and whose remaining
rows and columns form the Jacobian matrix () for the
system of differential equations. For example, if:

See rkfixed for a description of other parameters.

y A x⋅=

n n 1+()×
D∂ x∂⁄

D∂ yk∂⁄

D x y,()
x y1⋅

2– y1 y0⋅ ⋅
 then = J x y,()

y1 0 x

0 2– y1⋅ 2– y0⋅
=

142 / Chapter 9
bulstoer(y, x1, x2, acc, D, kmax, save)
rkadapt(y, x1, x2, acc, D, kmax, save)
radau(y, x1, x2, acc, D, kmax, save)
stiffb(y, x1, x2, acc, D, J, kmax, save)
stiffr(y, x1, x2, acc, D, J, kmax, save)

Boundary Value Problems
The specialized differential equation solvers discussed above are useful for solving
initial value problems. In some cases, however, you may know the value taken by the
solution at the endpoints of the interval of integration, which is a boundary value
problem.
To solve boundary value problems in Mathcad, use Odesolve, described in “Solving
an ODE Using a Solve Block ,” or sbval or bvalfit as described here.

Two-point ODE boundary value problems

Two-point boundary value problems are one-dimensional systems of differential
equations in which the solution is a function of a single variable and the value of the
solution is known at two points. You can use sbval in the following case:
• You have an nth order differential equation.

• You know some, but not all, of the values of the solution and its first
derivatives at the beginning of the interval of integration, x1, and at the end of the
interval of integration, x2.

• Between what you know about the solution at x1 and at x2, you have n known values.
sbval returns a vector containing those initial values left unspecified at the first endpoint
of the interval. Once you know the missing initial values at x1, you have an initial value
problem that can be solved using any of the functions discussed earlier in this section.

acc = Controls the accuracy of the solution. A small value of acc forces
the algorithm to take smaller steps along the trajectory, thereby
increasing the accuracy of the solution. Values of acc around 0.001
generally yield accurate solutions.

kmax = The maximum number of intermediate points at which the solution
will be approximated. The value of kmax places an upper bound on
the number of rows of the matrix returned by these functions.

save = The smallest allowable spacing between the values at which the
solutions are to be approximated. This places a lower bound on the
difference between any two numbers in the first column of the
matrix returned by the function.

n 1–

Differential Equation Solvers / 143
sbval(v, x1, x2, D, load, score)

Note As shown in Figure 9-11, sbval does not actually return a solution to a differential equation. It
merely computes the initial values the solution must have in order for the solution to match the
final values you specify. You must then take the initial values returned by sbval and solve the
resulting initial value problem using a function such as rkfixed.

v= Vector of guesses for initial values left unspecified at x1.

x1, x2 = The endpoints of the interval on which the solution to the
differential equations will be evaluated.

D(x, y) = An n-element vector-valued function containing the first derivatives
of the unknown functions.

load(x1, v) = A vector-valued function whose n elements correspond to the values
of the n unknown functions at x1. Some of these values will be
constants specified by your initial conditions. Others will be
unknown at the outset but will be found by sbval. If a value is
unknown, you should use the corresponding guess value from v.

score(x2, y) = A vector-valued function having the same number of elements as v.
Each element is the difference between an initial condition at x2, as
originally specified, and the corresponding estimate from the
solution. The score vector measures how closely the proposed
solution matches the initial conditions at x2. A value of 0 for any
element indicates a perfect match between the corresponding initial
condition and that returned by sbval.

Figure 9-11: Using sbval to obtain initial values corresponding to given final
values of a solution to a differential equation.

144 / Chapter 9
It’s also possible that you don’t have all the information you need to use sbval but you
do know something about the solution and its first derivatives at some
intermediate value, xf. In this case, the function bvalfit solves a two-point boundary
value problem by shooting from the endpoints and matching the trajectories of the
solution and its derivatives at an intermediate point. This method becomes especially
useful when the derivative has a discontinuity somewhere in the integration interval.
bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score)

Elliptic PDEs with boundary values

A second type of boundary value problem arises when you are solving Poisson’s PDE.
Rather than being fixed at two points, the solution is fixed at a whole continuum of
points representing some boundary.
Poisson’s Equation is given by:

These solvers also address the homogeneous form, Laplace’s equation, where
.

Tip To type a partial differential equation symbol such as , insert the derivative operator by

typing ?, click on the derivative operator with the right mouse button, and choose View
Derivative As ⇒ Partial Derivative from the popup menu.

v1, v2 = Vector v1 contains guesses for initial values left unspecified at x1.
Vector v2 contains guesses for initial values left unspecified at x2.

x1, x2 = The endpoints of the interval on which the solution to the
differential equations will be evaluated.

xf = A point between x1 and x2 at which the trajectories of the solutions
beginning at x1 and those beginning at x2 are constrained to be
equal.

D(x, y) = An n-element vector-valued function containing the first
derivatives of the unknown functions.

load1(x1, v1) = A vector-valued function whose n elements correspond to the
values of the n unknown functions at x1. Some of these values will
be constants specified by your initial conditions. If a value is
unknown, you should use the corresponding guess value from v1.

load2(x2, v2) = Analogous to load1 but for values taken by the n unknown
functions at x2.

score(xf, y) = An n element vector valued function that specifies how the
solutions match at xf. You’ll usually want to define score(xf, y) :=
y to make the solutions to all unknown functions match up at xf.

n 1–

x2

2

∂
∂ u

y2

2

∂
∂ u+ ρ x y,()=

ρ x y,() 0=

x∂
∂

xd
d

Data Fitting / 145
Mathcad has two functions for solving these equations over a square boundary. You
should use relax if you know the value taken by the unknown function on all
four sides of a square region.
If u(x, y) is zero on all four sides of the square, you can use multigrid, which often
solves the problem faster than relax. Note that if the boundary condition is the same on
all four sides, you can simply transform the equation to an equivalent one in which the
value is zero on all four sides.
relax returns a square matrix in which:
• An element’s location in the matrix corresponds to its location within the square

region, and
• Its value approximates the value of the solution at that point.
This function uses the relaxation method to converge to the solution. Poisson’s equation
on a square domain is represented by:

relax(a, b, c, d, e, f, u, rjac)

multigrid(M, ncycle)

Data Fitting

Interpolation
Interpolation involves using existing data points to predict values between these data
points. Mathcad allows you to connect the data points either with straight lines (linear
interpolation) or with sections of a cubic polynomial (cubic spline interpolation).
Unlike the regression functions discussed in the next section, these interpolation

a . . . e = Square matrices all of the same size containing coefficients of the above
equation.

f = Square matrix containing the source term at each point in the region in
which the solution is sought.

u = Square matrix containing boundary values along the edges of the region
and initial guesses for the solution inside the region.

rjac = Spectral radius of the Jacobi iteration. This number between 0 and 1
controls the convergence of the relaxation algorithm. Its optimal value
depends on the details of your problem.

M = row square matrix whose elements correspond to the
source term at the corresponding point in the square domain.

ncycle = The number of cycles at each level of the multigrid iteration. A
value of 2 generally gives a good approximation of the solution.

u x y,()

aj k, uj 1+ k, bj k, uj 1– k, cj k, uj k 1+, dj k, uj k 1–, ej k, uj k,+ + + + fj k,=

1 2n+()

146 / Chapter 9
functions return a curve which must pass through the points you specify. If your data
is noisy, you should consider using regression functions instead (see page 147).
Cubic spline interpolation passes a curve through a set of points in such a way that the
first and second derivatives of the curve are continuous across each point. This curve
is assembled by taking three adjacent points and constructing a cubic polynomial
passing through those points. These cubic polynomials are then strung together to form
the completed curve. In the case of “traditional” cubic splines, the data points to be
interpolated define the “knots” where the polynomials are joined, but B-splines
(implemented in the function bspline) join the polynomials at arbitrary points.
Linear prediction involves using existing data values to predict values beyond the
existing ones.
The coefficients returned by the spline interpolation functions bspline, cspline, lspline,
and pspline and the regression functions regress and loess described in the next section
are designed to be passed to Mathcad’s interp function. interp returns a single
interpolated y value for a given x value, but as a practical matter you’ll probably be
evaluating interp for many different points, as shown in Figure 9-12. Store the
coefficients returned by the spline or regression functions in a vector (such as vs in
Figure 9-12) that can be passed to interp for evaluation, plotting, or further calculation.

Tip For best results with spline interpolation, do not use the interp function on values of x far from
the fitted points. Splines are intended for interpolation, not extrapolation.

Figure 9-12: Spline curve for the points stored in vx and vy. Since the random
number generator gives different numbers every time, you may not be able to
recreate this example exactly as you see it.

Data Fitting / 147
Note Mathcad handles two-dimensional cubic spline interpolation in much the same way as the one-
dimensional case illustrated: in this case the spline function takes two matrix arguments, Mxy
and Mz. The first is an matrix specifying the points along the diagonal of a rectangular
grid, and the second is an matrix of z-values representing the surface to be interpolated.
Mathcad passes a surface through the grid of points. This surface corresponds to a cubic
polynomial in x and y in which the first and second partial derivatives are continuous in the
corresponding direction across each grid point. For an example see the “Data Analysis”
QuickSheets from the Help menu.

Regression and Smoothing Functions
Mathcad includes a number of functions for performing regression. Typically, these
functions generate a curve or surface of a specified type in some sense minimizes the
error between itself and the data you supply. The functions differ primarily in the type
of curve or surface they use to fit the data. Unlike interpolation functions, these
functions do not require that the fitted curve or surface pass through points you supply,
and they are therefore less sensitive to spurious data.
Smoothing involves taking a set of y (and possibly x) values and returning a new set of
y values that is smoother than the original set. Unlike the regression and interpolation
functions, smoothing results in a new set of y values, not a function that can be evaluated
between the data points you specify. Thus, if you are interested in y values between the
y values you specify, you should use a regression or interpolation function.
Polynomial functions are useful when you have a set of measured y values
corresponding to x values (or possibly multiple x values) and you want to fit a
polynomial through those y values.
Use regress when you want to use a single polynomial to fit all your data values. The
regress function lets you fit a polynomial of any order. However as a practical matter,
you rarely should go beyond .
The loess function performs a more localized regression. Instead of generating a single
polynomial the way regress does, loess generates a different second order polynomial
depending on where you are on the curve. It does this by examining the data in a small
neighborhood of a point you’re interested in.
As in the case of Mathcad’s spline interpolation functions, the coefficients returned by
regress and loess are designed to be passed to Mathcad’s interp function. interp returns
a single interpolated y value for a given x value, but as a practical matter you’ll probably
be evaluating interp for many different points.

Note Mathcad also allows multivariate polynomial regression with regress or loess to fit y values
corresponding to two or more independent variables. In this case, the regression function’s first
two arguments are Mx and vy: the first is an matrix specifying the m values of n predictor
variables, and the second is a vector of response data corresponding to the factors in Mx. For an
example see the “Data Analysis” QuickSheets under the Help menu. You can add independent
variables by simply adding columns to the Mx array and a corresponding number of rows to the
vector you pass to the interp function.

n 2×
n n×

n 4=

n m×

148 / Chapter 9
Specialized regression

expfit(vx, vy, vg) vg, the guess value for expfit, is optional.
lgsfit(vx, vy, vg)
lnfit(vx, vy)
logfit(vx, vy, vg)
pwrfit(vx, vy, vg)
sinfit(vx, vy, vg)
Use these functions when you have a set of measured y values corresponding to x values
and you want to fit a special type of curve through those y values. Although you can
use the genfit function described on page 148 to perform a curve fit on any function,
the functions outlined above are designed for ease of use. Use them if they address the
particular function curve to which you are fitting your data.

Generalized regression

linfit(vx, vy, F)
genfit(vx, vy, vg, F)
linfit is designed to model your data by a linear combination of arbitrary functions:

genfit is designed to model your data by some arbitrary (possibly nonlinear) function
whose parameters must be chosen. For example, if your data is to be modeled by the sum

Figure 9-13: Using the specialized regression function expfit.

y a0 f0 x()⋅ a1 f1 x()⋅ … an fn x()⋅+ + +=

f x() 2 a1x()sin⋅ 3 a2x()tanh⋅+=

Data Fitting / 149
and you wish to solve for the unknown parameters and , you would use genfit.
An example of using genfit is given in Figure 9-14.

Anything you can do with linfit you can also do, albeit less conveniently, with genfit.
The difference between these two functions is the difference between solving a system
of linear equations and solving a system of nonlinear equations. The latter generally
must be solved by iteration, which explains why genfit needs a vector of guess values
as an argument and linfit does not.

Smoothing functions

medsmooth(vy, n)
ksmooth(vx,vy, b)
supsmooth(vx,vy)
medsmooth is the most robust of the three smoothing functions since it is least likely
to be affected by spurious data points. This function uses a running median smoother,
computes the residuals, smooths the residuals the same way, and adds these two
smoothed vectors together. Note that medsmooth leaves the first and last
points unchanged. In practice, the length of the smoothing window, n, should be small
compared to the length of the data set.
ksmooth uses a Gaussian kernel to compute local weighted averages of the input vector
vy. This smoother is most useful when your data lies along a band of relatively constant
width. If your data lies scattered along a band whose width fluctuates considerably, you
should use an adaptive smoother like supsmooth. supsmooth uses a symmetric k nearest
neighbor linear least-squares fitting procedure to make a series of line segments through
your data. Unlike ksmooth which uses a fixed bandwidth for all your data, supsmooth
adaptively chooses different bandwidths for different portions of your data.

Figure 9-14: Using genfit for finding the parameters of a function so that it
best fits the data.

a1 a2

n 1–() 2⁄

Chapter 10
Inserting Graphics and Other
Objects

! Overview

! Inserting Pictures

! Inserting Objects

! Inserting Graphics Computationally Linked to Your Worksheet

Overview

To illustrate your Mathcad calculations visually, you many want to add graphs, pictures,
or other objects. You can include the following in your Mathcad worksheet:
• 2D graphs
• 3D graphs
• Pictures based on values in a matrix, pasted from another application, or based on

an image file
• Objects created by another application (.AVI files, .DOC files, .MDI files, etc.)
• Graphics computationally linked to your calculations
This chapter describes how to insert pictures and objects into a Mathcad worksheet and
format them. The last section introduces how to insert a graphic that is computationally
linked to your calculations. See also Chapter 14, “Importing and Exporting Data.”

Inserting Pictures

This section describes techniques for creating and formatting pictures—static images—
in your worksheet.

Creating a Picture
You can create a picture in a worksheet by:
• Creating a picture region and supplying either the name of a Mathcad matrix (or

matrices) or the name of an external image file.
• Importing an image from another application via the Clipboard.

Creating pictures from matrices

You can view as a grayscale picture any single matrix by creating a picture region:
1. Click in a blank space in your worksheet.
2. Choose Picture from the Insert menu or click on the Matrix toolbar.
3. Type the name of a matrix in the placeholder at the bottom of the picture region.
151

152 / Chapter 10
Mathcad creates a 256-shade grayscale representation of the data in the matrix, with
each matrix element corresponding to a pixel in the picture.

Note Mathcad’s picture region assumes a 256-color model with the value 0 represented as black and
255 as white. Numbers outside the range 0–255 are reduced modulo 256, and any noninteger
value is treated as if its decimal part has been removed.

To create a color picture in Mathcad, you must define three matrices of the same size
that describe either:
• The red, green, and blue (RGB) components,
• The hue, saturation, and value (Smith’s HSV color model) components, or
• The hue, lightness, and saturation (Otswald’s HLS color model) components of

each pixel in the picture.
To view as a color picture in Mathcad any three same-size matrices:
1. Click in a blank space and choose Picture from the Insert menu.
2. Type the names of the three matrices, separated by commas, in the placeholder at

the bottom of the picture region.
By default, Mathcad creates a 3-layer, 256-color, or RGB, representation of the data in
the matrices. This setting can be changed, however, through the Properties dialog box
and the Picture toolbar. See “Modifying a picture” on page 153.
Since the matrices used in picture rendering are usually quite large, this technique of
creating a picture is most useful when you import graphics files into Mathcad as
matrices as described in “File Access Functions” on page 250. For example, you can
use the READBMP function to read an external graphics file into a matrix, and then
view it as a picture in Mathcad.

Creating a picture by reference to an image file

Mathcad can create a picture directly from an external image file in a number of image
file formats, including BMP, JPEG, GIF, TGA, PCX, and more. To do so, click in a
blank space and then:
1. Choose Picture from the Insert menu, or click

 on the Matrix toolbar, to insert a picture.
2. In the placeholder, type a string containing the

name of an image file in the current directory,
or type a full path to an image file. You create
a string in the placeholder by first typing the
double-quote (") key.

Inserting Pictures / 153
3. Click outside the picture region. The
bitmap appears in your worksheet.

Each time you open the worksheet or calculate
the worksheet, the image file is read into the
picture region.

Note If you modify the source image file, you must recalculate your worksheet to see the modified
image. If you move the source image file, Mathcad can no longer display the picture.

Modifying a picture

You can modify the orientation, view (zoom and pan factors),
brightness, contrast, and grayscale mapping of a picture in
Mathcad using the Picture toolbar. To do so:
1. Click on the picture so you see hash marks around the

picture’s border, as shown at the right.
2. The Picture toolbar will pop up. To find out what operation

each tool performs, hover over it briefly to see its tooltip.

For example, to zoom in on the picture, click on the Picture
toolbar and then repeatedly click the picture until you reach the desired resolution. To

zoom out, zoom to window, or reset the zoom factor, click the toolbar buttons ,

, and , respectively, to activate those commands.

Note If you have the Image Processing Extension Pack or the Communication System Design (CSD)
Pack, then you already have an Image Viewer component that behaves in a manner similar to a
picture region. Both the Image Viewer component and a picture region allow you to import
image files and manipulate them with specialized toolbar options.

You can change your color model or select an output option under the Properties dialog
box. To do so:
1. Right click on the picture and select Properties from the popup menu.
2. Under the Input and Output tab of the Properties dialog box, make your adjustments

in the Input and Output panels.
For example, you can send the color map information for a selected rectangle of the
picture to a variable. You might do this if you want to create another picture that only
captures part of the whole image. In the Properties dialog box, check “Output Selected
Rectangle” in the output pane and select a color map option. Once you click “OK,” you
need to type a variable name in the placeholder at the left of the picture region.

Creating a picture by importing from another application

You can copy an image from another application and paste it into Mathcad. This section
describes using the Paste Special command on the Edit menu to paste an image into
Mathcad in a noneditable format: as a metafile or bitmap. A metafile, which is strictly

154 / Chapter 10
a Windows graphic format, can be resized in Mathcad without undue loss of resolution,
whereas a bitmap is usually viewed best only at its original size. A device-independent
bitmap, or DIB, is stored in a bitmap format that is portable to other operating systems.

Note If you use the Paste command on Mathcad’s Edit menu to paste in an image or use drag-and-
drop from another application, you are pasting a linked OLE object into your Mathcad
worksheet, (“Inserting Objects” on page 155.) When you double-click a linked OLE object, you
activate the application that created the object and are able to edit the object directly in your
Mathcad worksheet.

To paste an image from another application into Mathcad, do the following:
1. Open the application and select and Copy it. Many Windows applications have this

feature.
2. Click the mouse in your Mathcad worksheet.
3. Choose Paste Special from the Edit menu, and choose “Picture (metafile)” or

“Device Independent Bitmap.”
4. Mathcad creates a picture region and puts the image into it.
The format choices in the Paste Special dialog box will vary, depending on the
application from which you originally copied a picture.
Mathcad stores the color depth—the number of colors in the image—at the time you
paste it into a worksheet. This means that you can safely resave any worksheets that
contain color images on systems that have different color displays, either fewer or more
colors. The images continue to display at the proper color depth on the systems that
created the worksheets.

Note When you import directly by pasting, the picture information is stored as part of the Mathcad
worksheet. This makes the file size larger. It also means that when you copy the worksheet, the
picture information travels along with it.

Note To avoid making your Mathcad file too large, paste bitmaps that have been saved in as few colors
as possible such as 16 or 256 colors and crop them as close as possible to the actual image rather
than importing white space.

Formatting a Picture
This section describes options for formatting a picture.

Resizing a picture

To resize a picture region, do the following:
1. Click the mouse inside the picture region to select it.
2. Move the mouse pointer to one of the handles along the edge of region. The pointer

changes to a double-headed arrow.
3. Press and hold down the left mouse button. With the button still held, drag the mouse

in the direction you want the picture region to be stretched.

Inserting Objects / 155
Tip When you change the size of the picture region, the picture inside may be distorted. If you resize
the picture by dragging diagonally on the handle in the lower right corner, you preserve the
aspect ratio—the ratio of height to width—of the original picture. To restore a picture to its
original size, click on the picture and choose Properties from the Format menu. On the display
tab of the Properties dialog box, check “Display at Original Size.”

Framing a picture

Mathcad allows you to place a border around a picture region. To do so:
1. Double-click the picture, or choose Properties from the Format menu to bring up

the Properties dialog box.
2. Click “Show Border.”
3. Mathcad draws a border around the picture region.

Controlling color palettes

If you are using a 256-color display and have color bitmaps in your Mathcad
worksheets, Mathcad by default uses a single 256-color palette to display all the bitmaps
in your worksheets. This is the same default color palette Mathcad uses for displaying
the rest of the Mathcad screen and is suitable for most pictures.
This default color palette, however, may not be the exact one that any color bitmaps in
a worksheet were designed to use. To improve the appearance of bitmaps in your
worksheet, you can tell Mathcad to optimize its default color palette so that it chooses
the best possible 256 colors to display bitmaps in the worksheet. To do so:
1. Choose Color⇒Optimize Palette from the Format menu. Mathcad surveys the

pictures in the worksheet and generates an optimal 256-color palette to use for all
of them.

2. Make sure that Color⇒Use Default Palette in the Format menu is checked. Then
Mathcad uses the new default palette it generates.

Note If your display driver supports more than 256 colors, the palette-setting options on the Format
menu are grayed.

Inserting Objects

This section describes inserting and editing objects created by other applications into
Mathcad. OLE (Object Linking and Embedding) technology in Microsoft Windows
makes it possible to insert static pictures of objects into Mathcad (or Mathcad objects
into other applications), so that they can be fully edited in their originating applications.
An object can be either embedded in or linked to a Mathcad worksheet. An object that
is linked must exist in an external saved file. An object that you embed may be created
at the time of insertion. When you edit a linked object, any changes you make to the
object also update the original file containing the object. When you edit an embedded
object, any changes you make to the object affect it only in the Mathcad worksheet.
The original object in the source application is unchanged.

156 / Chapter 10
Tip For information about components to import and export data, as well as setting dynamic
connections between Mathcad and other applications see Chapter 14, “Importing and Exporting
Data.”

Inserting an Object into a Worksheet
You insert an object into Mathcad, which is an OLE 2–compatible application, by using
the Object command from the Insert menu, by copying and pasting, or by dragging
and dropping. The method you choose depends on whether you want to create the object
on the fly, whether the object has already been created, or whether you want the object
to be an entire file. You can edit objects in a Mathcad worksheet simply by double-
clicking them, causing in-place activation of the originating application in most cases.

Tip You use the same methods to insert a Mathcad object into another application and edit it inside
that application as you do to insert objects into a Mathcad worksheet. However, the details
depend on the extent to which the application receiving a Mathcad object supports OLE 2. Once
you’ve inserted a Mathcad object into a compatible application, you can edit it by double-
clicking it. If the application supports in-place activation, as current releases of Microsoft Office
applications do, the menus and toolbars will change to Mathcad’s.

Insert Object command

The Object command from the Insert menu allows you to insert an object that you
create at the time of insertion or an existing file.
To insert an object or a saved file:
1. First click in your worksheet so that you see the crosshair.
2. Choose Object from the

Insert menu to bring up
the Insert Object dialog
box. By default “Create
New” is selected:

3. Check “Display As Icon”
if you want an icon to
appear in your worksheet.
The icon is typically the
icon of the application that
created the object.

To create a new object:
1. Select an application from the “Object Type” list, which depends on the applications

you have installed.
2. The source application opens so that you can create the object. When you are

finished, exit the source application. The object you created is then embedded in
your Mathcad worksheet.

Inserting Objects / 157
If you want to insert a
previously created file:
1. Click “Create from File”

in the Insert Object dialog
box. The dialog box then
changes appearance.

2. Type the path to the
object file or click
“Browse” to locate it.

3. Check “Link” to insert a
linked object. Otherwise,
the object is embedded.

Pasting an object into a worksheet

You can copy an object from a source application and paste it directly into Mathcad.
This method is particularly useful when you’ve already created the object in another
application and you don’t want to insert an entire file.
To insert an embedded or linked object into a worksheet by copying:
1. Open the source application containing the object.
2. Copy the object from the source application. You typically do this by choosing

Copy from the Edit menu or by pressing [Ctrl]C.
3. Click in the Mathcad worksheet.
4. Choose Paste or Paste Special from Mathcad’s Edit menu.
If you choose Paste, the object is pasted in your Mathcad worksheet in a format that
depends on what the source application has placed on the Clipboard. The behavior
differs depending on whether you have selected a math placeholder or are pasting into
a blank space in the worksheet. Mathcad creates one of the following:
• A matrix, if you are pasting numeric data into an empty math placeholder.
• A text region, if you are pasting text that does not contain numeric data exclusively.
• A bitmap or picture (metafile), if the originating application generates graphics.
• An embedded object, if the originating application supports OLE.
If you choose Paste Special, you have the option of pasting the object in one of the
several formats. You can choose to paste the object as an embedded or linked OLE
object (if the object was stored in a saved file in an OLE-compatible source application),
a picture (metafile), or a bitmap. See “Creating a picture by importing from another
application” on page 153 for pasting metafiles and bitmaps.

Dragging and dropping an object into a worksheet

A third way to insert an OLE object into a Mathcad worksheet is to drag it from the
source application and drop it into the worksheet. This is very similar to copying and
pasting, but does not allow you to create a link to an object. To do so, open both Mathcad
and the source application and arrange the two windows side by side on the screen.

158 / Chapter 10
Then select the object in the source application and drag it with the mouse into your
Mathcad worksheet. The object appears when you release the mouse button.

Editing an Object
To edit an embedded object in a Mathcad worksheet, double-click the object. Mathcad’s
menus and toolbars change to those of the source application, and a hatched border
surrounds the object so that you can edit it. This OLE editing mechanism is called in-
place activation. For example, you can use in-place activation to edit objects created
by Microsoft applications such as Excel and Word inside Mathcad.
If the source application does not support in-place activation inside Mathcad or the
object is linked, the behavior is different. In the case of an embedded object, a copy of
the object is placed into a window from the other application. If the object is linked,
the source application opens the file containing the object.

Editing a Link
If you’ve inserted a
linked object into a
Mathcad worksheet, you
can update the link,
eliminate it, or change
the source file to which
the object is linked. To
do so, choose Links
from the Edit menu.
Choose the link you
want to edit from the list
of links. Then make
changes using the available options.

Online Help See the online Help topic “Links dialog box” for information on each option in the dialog box.

Inserting Graphics Computationally Linked to Your Worksheet

If you want to insert a drawing or other kind of graphic that is computationally linked
to your Mathcad worksheet, you can insert a component. A component is a specialized
OLE object. Unlike other kinds of OLE objects you can insert into a worksheet, a
component can receive data from Mathcad, return data to Mathcad, or both, linking the
object dynamically to your Mathcad computations.
The SmartSketch component, for example, allows you to insert SmartSketch drawings
whose dimensions are computationally linked to your Mathcad calculations.
An example using the SmartSketch component is shown in Figure 10-1. In addition to
the SmartSketch component, Mathcad includes several components for exchanging
data with applications such as Excel, MATLAB, and ODBC databases. For more
information see Chapter 14, “Importing and Exporting Data.”

Inserting Graphics Computationally Linked to Your Worksheet / 159
Figure 10-1: The SmartSketch component inserted into a Mathcad worksheet.

Chapter 11
2D Plots

! Overview of 2D Plotting

! Graphing Functions and Expressions

! Plotting Vectors of Data

! Formatting a 2D Plot

! Modifying a 2D Plot’s Perspective

Overview of 2D Plotting

To visually represent a function or expression of a single variable or X-Y data in
Mathcad, you can create either a Cartesian X-Y plot or a polar plot. A typical polar plot
shows angular values, θ, versus radial values, r. Figure 11-1 shows several examples
of 2D plots.

Figure 11-1: Examples of 2D plots.
161

162 / Chapter 11
Creating an X-Y Plot
To create an X-Y plot:
1. Click in your worksheet.
2. Choose Graph⇒X-Y Plot from the Insert menu

or click on the Graph toolbar. Alternatively,
type [Shift]2 or @. Mathcad inserts a blank X-
Y plot.

3. Fill in both the x-axis placeholder (bottom center)
and the y-axis placeholder (left center) with a
function, expression, or variable.

4. Click outside the plot or press [Enter].
Mathcad automatically chooses axis limits for you. If you want to specify the axis limits
yourself, click in the plot and type over the numbers in the placeholders at the ends of
the axes.
Mathcad creates the plot over a default range using default limits. See “Formatting a
2D Plot” on page 168 for how to modify these defaults.

Resizing a graphf

To resize a plot, click in the plot to select it. Then move the cursor to a handle along
the edge of the plot until the cursor changes to a double-headed arrow. Hold the mouse
button down and drag the mouse in the direction that you want the plot’s dimension
to change.

Note If a point is complex, Mathcad does not graph it. To graph the real or imaginary part of a point
or expression, use the Re and Im functions to extract the real and imaginary parts, respectively.

To resize a plot, click in the plot to select it. Then move the cursor to a handle along
the right or bottom edge of the plot until the cursor changes to a double-headed arrow.
Hold the mouse button down and drag the mouse in the direction that you want the
plot’s dimension to change.

Note If some points in a function or expression are valid and others are not, Mathcad plots only the
valid ones. If the points are not contiguous, Mathcad does not connect them with a line. You may
therefore see a blank plot if none of the points are contiguous. To see the points, format the trace
to have symbols. See “Formatting a 2D Plot” on page 168.

Creating a polar plot
To create a polar plot:
1. Choose Graph⇒Polar Plot from the Insert menu or

click on the Graph toolbar.
2. Fill in both the angular-axis placeholder (bottom

center) and the radial-axis placeholder (left center)
with a function, expression, or variable.

Graphing Functions and Expressions / 163
3. Click outside the plot or press [Enter].
Mathcad creates the plot over a default range using default limits.

Graphing Functions and Expressions

2D QuickPlots
A 2D QuickPlot is a plot created from an expression or function which represents the
y-coordinates of the plot. With a QuickPlot, there is no need to define the independent
or x-axis variable.
To create an X-Y plot of a single expression or function:
1. Type the expression or function of a single variable you want

to plot. Make sure the editing lines remain in the expression.
2. Choose Graph⇒X-Y Plot from the Insert

menu or click on the Graph toolbar.
3. Click outside the graph or press [Enter].
Mathcad automatically produces a plot over a
default domain for the independent variable,
from –10 to 10.
To change the default domain for the
independent variable in a 2D QuickPlot, change the axis limits on the plot.

Defining an independent variable
If you don’t want Mathcad to use a default range for the independent variable, you can
define the independent variable as a range variable before creating the plot. For
example:
1. Define a range variable, such as x, that takes on the values you

want to graph. See “Range Variables” on page 103.
2. Enter an expression or function you want to plot using that

variable. Make sure the editing lines remain in the expression.
3. Choose Graph⇒X-Y Plot from the Insert menu
4. Type the name of the variable into the x-axis

placeholder.
5. Click outside the graph or press [Enter].
Mathcad graphs one point for every value of the
range variable, and, unless you specify
otherwise, connects each pair of points with a
straight line.

Tip To override Mathcad’s choices for the axis limits on a plot, click in the plot and type over the
limits in the placeholders at the ends of the axes (see “Setting Axis Limits” on page 169).

164 / Chapter 11
 Plotting Multiple 2D Curves
You can graph several traces on the same X-Y or polar plot. A graph can show several
y-axis (or radial) expressions against the same x-axis (or angular) expression. See Figure
11-3. Or it can match up several y-axis (or radial) expressions with the corresponding
number of x-axis (or angular) expressions. See Figure 11-2.
To create a QuickPlot containing more than one trace:
1. Enter the expressions or functions of a single variable

you want to plot, separated by commas. Make sure the
editing lines remain in the expression.

2. Choose Graph⇒X-Y Plot from the

Insert menu or click on the Graph
toolbar.

3. Click outside the graph or press [Enter].
Mathcad produces a single graph containing
plots of all the expressions or functions, over
a default range for the independent
variable(s), from –10 to 10.
In a QuickPlot with multiple traces, you need
not use the same independent variable in every y-axis (or radial-axis) expression.
Mathcad will provide the appropriate corresponding variable in the x-axis (or angular-
axis) placeholder.
To create a graph containing several independent curves:
1. Choose Graph⇒X-Y Plot from the Insert menu.
2. Enter two or more expressions separated by commas in the y-axis placeholder.
3. Enter the same number of expressions separated by commas in the x-axis

placeholder.
Mathcad matches up the expressions in pairs—the first x-axis expression with first y-
axis expression, the second with the second, and so on. It then draws a trace for each
pair. Figure 11-2 shows an example.

Note All traces on a graph share the same axis limits. For each axis, all expressions and limits on that
axis must have compatible units.

Creating a parametric plot
A parametric plot is one in which a function or expression is plotted against another
function or expression that uses the same independent variable. You can create either
an X-Y or polar parametric plot.
To create an X-Y parametric plot:
1. Choose Graph⇒X-Y Plot from the Insert menu.
2. In both the x-axis and y-axis placeholders, enter a function or expression.
3. Press [Enter].

Graphing Functions and Expressions / 165
Mathcad produces a QuickPlot over a default range for the independent variable. Figure
11-1 shows an example of a parametric plot.
If you don’t want Mathcad to use a default range for the plot, define the independent
variable as a range variable before creating the plot. Mathcad graphs one point for each
value of the independent variable and connects each pair of points with a straight line.
Figure 11-4 shows two functions of θ plotted against each other. The range variable θ
was previously defined. See “Range Variables” on page 103.

Figure 11-2: Graph with multiple expressions on both axes.

Figure 11-3: Graph with multiple y-axis expressions.

166 / Chapter 11
Plotting Vectors of Data

To graph a vector of data, you can create either an X-Y plot or a polar plot. You need
to use the vector subscript (see “Vector and Matrix Operators” on page 398) to specify
which elements to plot. Some graphs of data vectors are shown in Figure 11-5.

Plotting a single vector of data
To create an X-Y plot of a single vector of data:
1. Define a range variable, such as i, that references the subscript of each element of

the vector you want to plot. For example, for a vector with 10 elements, your
subscript range variable would be i := 0 .. 9.

2. Choose Graph⇒X-Y Plot from the Insert menu.
3. Enter i in the bottom placeholder and the vector name with the subscript (for

example) in the placeholder on the left. Type [as a shortcut to create the subscript.

Note Subscripts must be integers greater than or equal to ORIGIN. Τhis means that the x-axis or
angular variable used in the graphs in Figure 11-5 can run through whole number values only.
If you want to graph fractional or negative values on the x-axis, graph a function or graph one
vector against another, as described in the next section.

Tip If you have a handful of data points, you can use a data table to create a vector as shown in the
second graph in Figure 11-5 or Figure 11-7. See “Entering a Matrix as a Data Table” on page 55.

Plotting one data vector against another
To graph all the elements of one data vector against all the elements in another, enter
the names of the vectors in the axis placeholders of an X-Y plot or polar plot.
To create an X-Y plot of two data vectors x and y:
1. Define the vectors x and y.

Figure 11-4: Graphing one function against another.

yi

Plotting Vectors of Data / 167
2. Choose Graph⇒X-Y Plot from the Insert menu.

3. Enter in the y-axis placeholder and in the x-axis placeholder.

Mathcad plots the elements in the vector x against the elements in the vector y.

Note If the vectors being plotted are not the same length, Mathcad plots the number of elements in the
shorter vector.

If you want to plot only certain vector elements, define a range variable and use it as a
subscript on the vector names. In the example above, to plot the fifth through tenth
elements of x and y against each other:
1. Define a range variable, such as k, going from 4 to 9 in increments of 1. (Note that

the first elements of the vectors x and y are and by default.)
2. Enter and in the axis placeholders.

Figure 11-5: Graphing a vector.

Figure 11-6: Graphing two vectors.

y x

x0 y0
yk xk

168 / Chapter 11
Note If you have a set of data values to graph, create a vector by reading in data from a data file, by
pasting in the data from the Clipboard, or by typing data directly into a data table. See Chapter
5, “Vectors, Matrices, and Data Arrays.” See Figure 11-7 for an example showing the use of a
data table.

Formatting a 2D Plot

You can override Mathcad’s default settings for axes and traces. You can also add titles
and labels and control the default settings of the graph.
To format a 2D graph:
1. Double-click the graph. Or click once

on the graph and choose Graph⇒X-Y
Plot or Graph⇒Polar Plot from the
Format menu. You’ll see the dialog
box for formatting a selected graph.

2. Use the Axes tab to determine the
appearance of the axes and grid lines.
Use the Traces tab to set the color,
type, and width of the traces. Use the
Labels tab to insert labels on the axes.
Use the Defaults tab to specify the
default appearance of your graphs.

3. Make the appropriate changes in the
dialog box.

4. Click Apply to see the effect of your changes without closing the dialog box.

Note In the X-Y Axes page, make sure you turn options on and off in the appropriate axis column. In
the Traces page, click on a trace’s name in the Legend Label column and change characteristics
by clicking on the arrow beside each of the drop-down options.

Figure 11-7: Plotting vectors from a data table.

Formatting a 2D Plot / 169
Tip If you double-click an axis on a graph, you’ll see a formatting dialog box for that axis alone.

Online Help Click Help in the dialog box for details on particular formatting options.

Setting Axis Limits
When you create a 2D graph, the Autoscale option is turned on. Use the Axes page of
the plot formatting dialog box to turn Autoscale on or off:
• With Autoscale on, Mathcad automatically sets each axis limit to the first major

tick mark beyond the end of the data. This is a reasonably round number large
enough to display every point being graphed.

• With Autoscale off, Mathcad automatically sets the axis limits exactly at the data
limits.

Specifying Other Limits

You can override Mathcad’s automatic limits by entering limits directly on the graph.
To do so:
1. Click the graph to select it. Mathcad displays four additional numbers, one by each

axis limit. These numbers are enclosed within corner symbols, as illustrated in the
selected plot in Figure 11-8.

2. Click on each of these numbers and type a number to replace it.
3. Click outside the graph. Mathcad redraws it using the new axis limits you specified.

The corner symbols below the limits you changed disappear. Figure 11-8 shows
the effect of manually setting limits on a graph.

Figure 11-8: Data limits set automatically and manually.

170 / Chapter 11
Setting Default Formats
Mathcad uses default settings to format the axes and traces of new graphs you create.

Copying Defaults from an Existing Graph

One way to create a new set of defaults
is to use the format settings of an existing
graph. To do so:
1. Double-click the graph, or click in

the graph and choose Graph⇒X-Y
Plot (or Graph⇒Polar Plot) from
the Format menu. Mathcad displays
the dialog box for formatting a
selected graph.

2. Click the Defaults tab to see the
Defaults page.

3. Check Use for Defaults. When you
click OK, to close the dialog box,
Mathcad saves these settings as your
default settings.

Setting Defaults Without Using a Graph

You can use the Setting Default Formats dialog box to change default plot settings.
To do so:
1. Make sure that you don’t have any graphs selected.
2. Choose Graph⇒ X-Y Plot (or Graph⇒Polar Plot) from the Format menu.

You’ll see the Setting Default Formats dialog box.
3. Change the appropriate settings on the Axes and Traces pages.
4. Click OK to accept your changes and close the dialog box.

Adding Custom Titles, Labels, and Other Annotations
One way to add titles and labels to your 2D graph is to use the options on the Labels
tab of the 2D Plot Format dialog box. A second way to add titles and labels, as well as
annotations, is to create text or some other object in your worksheet and then move it
on top of the graph.
To create an annotation for your 2D graph:
1. Create a text region, or insert a graphic object in your worksheet by pasting it in or

by choosing Object from the Insert menu.
2. Drag the text or object onto your 2D graph and position it appropriately.
Figure 11-9 shows a graph containing both a text region (“inflection pt”) and a graphic
object (an arrow).

Note If you choose Separate Regions from the Format menu, all overlapping regions in your
worksheet will separate. In the case of annotated graph, such as the one shown above, all
annotations move below the graph when you separate regions.

Modifying a 2D Plot’s Perspective / 171
Modifying a 2D Plot’s Perspective

Mathcad provides zoom and trace on 2D plots.

Zooming in on a Plot
To zoom in on a portion of a graph, follow these steps:
1. Click in the graph and choose Graph⇒Zoom from

the Format menu, or click on the Graph toolbar.
The Zoom dialog box appears. The X-Y Zoom dialog
box is shown to the right.

2. If necessary, reposition the Zoom dialog box so that
you can see the entire region of the graph you want
to zoom.

3. Click the mouse at one corner of the region in the graph you want to magnify.
4. Press and hold down the mouse button and drag the mouse. A dashed selection

outline emerges from the anchor point. The coordinates of the selected region are
listed in the Min and Max text boxes (or the Radius text box of the Polar Zoom
dialog box).

5. When the selection outline just encloses the region you want to magnify, let go of
the mouse button. If necessary, click on the selection outline, hold the mouse button
down, and move the outline to another part of the graph.

6. Click Zoom to redraw the graph. The axis limits are temporarily set to the
coordinates specified in the Zoom dialog box. To make these axis limits permanent,
click OK.

Tip If you’re working with a graph that has already been zoomed, you can restore the default
appearance of the graph. To do so, click Full View in the Zoom dialog box.

Figure 11-9: Mathcad graph with annotations.

172 / Chapter 11

Getting a Readout of Plot Coordinates
To see a readout of coordinates of the specific points that make up a trace, follow these
steps:
1. Click in the graph and choose Graph⇒Trace from

the Format menu, or click on the Graph
toolbar. The X-Y Trace dialog box appears as
shown. Check Track Data Points if it isn’t already
checked. If necessary, reposition the Trace dialog
box so that you can see the entire graph.

2. Click and drag the mouse along the trace whose coordinates you want to see. A
dotted crosshair jumps from one point to the next as you move the pointer along
the trace.

3. If you release the mouse button, you can use the left and right arrows to move to
the previous and next data points. Use the up and down arrows to select other traces.

4. As the pointer reaches each point on the trace, Mathcad displays the values of that
point in the X-Value and Y-Value boxes (or the Radius and Angle boxes in the
Polar Trace dialog box).

5. The values of the last point selected are shown in the boxes. The crosshair remains
until you click outside the plot.

Tip When Track Data Points is unchecked in the Trace dialog box, you can see a readout of
coordinates for any location in a graph, not just the data points that created an individual plot.

Figure 11-10: A zoomed-in region of an X-Y plot.

Modifying a 2D Plot’s Perspective / 173
Figure 11-11 shows an example of a plot whose coordinates are being read.

To copy and paste a coordinate:
1. Click Copy X or Copy Y (or Copy Radius or Copy Angle in the case of a polar plot).
2. You can then paste that value into a math or text region in your Mathcad worksheet,

into a spreadsheet, or into any other application that allows pasting from the
Clipboard.

Figure 11-11: Reading coordinates from a graph.

Chapter 12
3D Plots

! Overview of 3D Plotting

! Creating 3D Plots of Functions

! Creating 3D Plots of Data

! Formatting a 3D Plot

! Rotating and Zooming on 3D Plots

Overview of 3D Plotting

To visually represent in three dimensions a function of one or two variables or to plot
data in the form of x-, y-, and z-coordinates, you can create a surface plot, a contour
plot, a 3D bar plot, a 3D scatter plot, or a vector field plot. Mathcad renders 3D plots
with sophisticated, high performance OpenGL graphics.

Inserting a 3D Plot
To create a three-dimensional plot:
1. Define a function of two variables or a matrix of data.
2. Choose Graph from the Insert menu and select a 3D plot. Alternatively, click one

of the 3D graph buttons on the Graph toolbar. Mathcad inserts a blank 3D plot with
axes and an empty placeholder.

3. Enter the name of the function or matrix in the placeholder.
4. Click outside the plot or press [Enter]. Mathcad creates the plot according to the

function or matrix of data.
For example, the surface plot shown below was
created in Mathcad from the function:
When you create a 3D plot from a function, it’s called
a QuickPlot. A QuickPlot uses default ranges and
grids for the independent variables. To change these
settings, double-click on the graph and use the
QuickPlot Data page of the 3D Plot Format dialog.
(See “Formatting a 3D Plot” on page 184.)
To learn how to create a plot from a matrix of values,
see Figure 12-2 on page 179.

3D Plot Wizard
The 3D Plot Wizard gives you more control over the
format settings of the plot as you insert it. To use the Wizard:
1. Choose Graph⇒3D Plot Wizard from the Insert menu.
175

176 / Chapter 12
2. Select the type of three-dimensional graph you want to see and click “Next.”
3. Make your selections for the appearance and coloring of the plot on subsequent

pages of the Wizard. Click “Finish” and a graph region with a blank placeholder
appears.

4. Enter appropriate arguments (a function name, data vectors, etc.) for the 3D plot
into the placeholder.

5. Click outside the plot or press [Enter].
The plot is created using the settings you specified in the Wizard. (See “Formatting a
3D Plot” on page 184.)

Creating 3D Plots of Functions

This section describes how to create various 3D plots from functions in Mathcad, also
known as QuickPlots. Although the instructions focus on using commands on the Insert
menu and changing settings through the 3D Plot Format dialog box, you can also use
the 3D Plot Wizard, as described above.

Tip To see a variety of two- and three-dimensional functions and data sets visualized in plots, visit
the Graphics Gallery section of the Mathcad Web Library at http://www.mathcad.com.

Creating a Surface, Bar, Contour, or Scatter Plot
You can visualize any function of two variables as a surface, bar, contour, or scatter
plot in three dimensions.

Step 1: Define a function or set of functions

First, define the function in your worksheet in any one of the following forms:

F(x,y) is a function of two variables. In this type of function, the x- and y-coordinates
of the plot vary, by default, from –5 to 5 with a step size of 0.5. Each z-coordinate is
determined by the function using these x- and y-values.
G(u,v) is a vector-valued function of two variables. In this type of function, the
independent variables u and v vary, by default, from –5 to 5 with a step size of 0.5. The
x-, y-, and z-coordinates are plotted parametrically according to the definitions in the
three elements of the vector using these u- and v-values.
X(u,v), Y(u,v), and Z(u,v) are functions of two variables. In this type of function triple,
the independent variables u and v vary, by default, from –5 to 5 with a step size of 0.5.
The x-, y-, and z-coordinates are plotted parametrically according to the three function
definitions using these u- and v-values.

Creating 3D Plots of Functions / 177
Note The function descriptions above assume that you are working in Cartesian coordinates. If your
function represents spherical or cylindrical coordinates, you can automatically convert the
function to Cartesian coordinates. Double-click on the plot, go to the QuickPlot Data page of the
3D Plot Format dialog box, and click “Spherical” or “Cylindrical” under Coordinate System.

Step 2: Insert a 3D plot

After you define a function or set of functions to plot, choose Graph from the Insert
menu and select a 3D plot type.
For example, to create a surface plot from the functions X, Y, and Z, defined above:
1. Choose Graph⇒Surface Plot from the Insert menu. Mathcad inserts a blank

3D plot.
2. Enter the name of the functions in the

placeholder. When you have more than one
function definition for a single surface, separate
the function names by commas and enclose the
function names in parentheses. For this
example, type:

3. Press [Enter].

To change your plot to a different plot type:
1. Double-click on the graph to bring up the 3D

Plot Format dialog box.
2. In the Display As section on the General tab, select Bar Plot, Contour Plot, or Data

Points from the array of plot types.
Figure 12-1 shows a 3D scatter plot created from the function G, and a contour plot
created from the function F, both defined above:

Figure 12-1: A scatter plot and a contour plot created from functions of two
variables.

178 / Chapter 12
Note All 3D QuickPlots are parametric curves or surfaces. In other words, all QuickPlots are created
from three vectors or matrices of data representing the x-, y-, and z-coordinates of the plot. In the
case of a single function of two variables, Mathcad internally creates two matrices of x- and y-
data over the default range –5 to 5 with a step size of 0.5, and then generates z-data using these
x- and y-coordinates.

To change the default ranges and grids for the independent variables, double-click on
the graph and use the QuickPlot Data page of the 3D Plot Format dialog. (See
“Formatting a 3D Plot” on page 184.)

Creating a Space Curve
You can visualize any parametrically-defined function of one variable as a scatter plot
in three dimensions.

Step 1: Define a function or set of functions

First, define the function in your worksheet
in one of the following forms:
H(u) is a vector-valued function of one
variable. In this type of function, the
independent variable u varies, by default,
from –5 to 5 with a step size of 0.5. The x-, y-, and z-coordinates of the plot are
determined by the functions in each element of the vector using these u-values.
R(u), S(u), and T(u) are functions of one variable. In this type of function triple, the
independent variable u varies, by default, from –5 to 5 with a step size of 0.5. The x-,
y-, and z-coordinates are plotted according to the function definitions using these u-
values.

Note A space curve often represents the path of a particle in motion through space where u is a time
parameter.

Step 2: Insert a 3D scatter plot

To create a space curve from a single function or set of functions:
1. Choose Graph⇒3D Scatter Plot from the Insert menu. Mathcad inserts a blank

3D plot.
2. Enter the name of function or functions in the

placeholder. When you have more than one
function definition, separate the function names
by commas and enclose the function names in
parentheses. To create a space curve from the
functions R, S, and T, defined above, type (R,
S, T).

For specific information on formatting a scatter
plot, refer to “Scatter Plots” in online Help.

Creating 3D Plots of Data / 179
Creating 3D Plots of Data

You can also create various 3D plots from data in Mathcad. Although theses instructions
focus on using commands on the Insert menu and changing settings through the 3D
Plot Format dialog, you can also use the 3D Plot Wizard, as described on page 175.

Creating a Surface, Bar, or Scatter Plot
Surface, bar, and scatter plots are useful for visualizing two-dimensional data contained
in an array as either a connected surface, bars above and below the zero plane, or points
in space.
For example, to create a surface plot from data:
1. Create or import a matrix of values to plot. The row and column numbers represent

the x- and y-coordinate values. The matrix elements themselves are the z-coordinate
values plotted as heights above and below the xy-plane (at z = 0).

2. Choose Graph⇒Surface Plot from the Insert menu.
3. Enter the name of the matrix in the placeholder.
Figure 12-2 shows a 3D bar plot created from a matrix, M:

In the default perspective, the first row of the matrix extends from the back left corner
of the grid to the right, while the first column extends from the back left corner out
toward the viewer. See “Formatting a 3D Plot” on page 184 to change this default view.

Figure 12-2: Defining a matrix of data and plotting it as a 3D bar plot.

180 / Chapter 12
Creating a Parametric Surface Plot
A parametric surface plot is created by passing three matrices representing the x-, y-,
and z- coordinates of your points in space to the surface plot.
To create a parametric surface plot:
1. Create or import three matrices having the same number of rows and columns.
2. Choose Graph⇒Surface Plot from the Insert menu.
3. Type the names of the three matrices separated by commas and enclosed in

parentheses in the placeholder.
Figure 12-3 shows a parametric surface plot created from the matrices, X, Y, and Z,
defined above the plot.

Note The underlying parameter space is a rectangular sheet covered by a uniform mesh. The three
matrices map this sheet into three-dimensional space. For example, the matrices X, Y, and Z
defined in Figure 12-3 carry out a mapping that rolls the sheet into a tube and then joins the ends
of the tube to form a torus.

For specific information on formatting a parametric surface plot, refer to the topic
“Surface Plots” in online Help.

Figure 12-3: Defining data for a parametric surface plot.

Creating 3D Plots of Data / 181
Creating a Three-dimensional Parametric Curve
A three-dimensional parametric curve is created by passing three vectors representing
the x-, y-, and z-coordinates of your points in space to the surface plot.
To create a three-dimensional parametric curve:
1. Create or import three vectors having the same number of rows.
2. Choose Graph⇒Scatter Plot from the Insert menu.
3. Type the names of the three vectors separated by commas and enclosed in

parentheses in the placeholder.
Figure 12-4 shows a three-dimensional parametric curve created from the vectors, P,
Q, and R, defined above the plot:

For specific information on formatting a scatter plot, see “Scatter Plots” in online Help.

Creating a Contour Plot
To view three-dimensional data as a two-dimensional contour map, you can create a
contour plot:
1. Define or import a matrix of values to plot.
2. Choose Graph⇒Contour Plot from the Insert menu. Mathcad shows a blank plot

with a single placeholder.
3. Type the name of the matrix in the placeholder.
Figure 12-5 shows a contour plot created from the matrix, C, defined above the plot:

The contour plot is a visual representation of the matrix’s level curves. Mathcad
assumes that the rows and columns represent equally spaced intervals on the axes, and
then linearly interpolates the values of this matrix to form level curves or contours.

Figure 12-4: Defining data for a space curve.

182 / Chapter 12
Each level curve is formed such that no two cross. By default, the z-contours are shown
on the x-y plane. Mathcad plots the matrix such that the element in row 0 and column
0 is in the lower left corner. Thus the rows of the matrix correspond to values on the x-
axis, increasing to the right, and the columns correspond to values along the y-axis,
increasing toward the top.
For information on formatting a contour plot, see “Contour Plots” in online Help.

Note If you create a contour plot of a function as described above, the positive x-axis of the plot
extends to the right and the positive y-axis extends toward the top of the plot.

Creating a Vector Field Plot
In a vector field plot, each point in the x-y plane is assigned a two-dimensional vector.
There are two ways to set up the data needed for a vector field plot:
1. Create a matrix of complex numbers in which the following conditions exist:

• The row and column numbers represent the x- and y-coordinates
• The real part of each matrix element is the x-component of the vector associated

with that row and column
• The imaginary part of each element is the y-component of the vector associated

with that row and column.
2. Create two matrices having the same number of rows and columns. The first matrix

should have the x-components of the vectors, the second the y-components.

Figure 12-5: Defining data for a contour plot.

Creating 3D Plots of Data / 183
Once you have defined your data to create a vector field plot:
1. Choose Graph⇒Vector Field Plot from the Insert menu.
2. Type the name(s) of the matrix or matrices in the placeholder. If you have more

than one matrix for a vector field plot, separate the matrix names by commas and
enclose the matrix name set in parentheses.

Figure 12-6 shows a vector field plot created from the matrix, Q, defined above the plot:

For specific information on formatting a vector field plot, see “Vector field plots” in
online Help.

Graphing Polyhedra
The uniform polyhedra are regular polyhedra whose
vertices are congruent. Each has a name, a number, a
dual (the name of another polyhedron), and a Wythoff
symbol associated with it. To look up the name,
Wythoff symbol, and dual name of a polyhedron, use
PolyLookup.
To graph a uniform polyhedron:
1. Click in a blank spot of your worksheet. Choose

Graph⇒Surface Plot from the Insert menu.
2. In the placeholder, enter the Polyhedron function

with an appropriate string argument.
3. Click outside the plot or press [Enter].

Figure 12-6: Defining data for a vector field plot.

184 / Chapter 12
Graphing Multiple 3D Plots
Just as you can plot more than one trace on a two-dimensional graph, you can place
more than one surface, curve, contour, bar, or scatter plot on a three-dimensional graph.
For example, to create a 3D graph with a contour plot and a surface plot:
1. Define two functions of two variables or any combination of two acceptable

argument sets for a 3D plot (two matrices, two sets of three vectors, etc.).
2. Choose Graph⇒Contour Plot from the Insert menu.
3. Enter the name of the function or matrix for the contour plot into the placeholder.

Then type , (a comma).
4. Enter the name of the function or matrix for the surface plot.
5. Press [Enter]. You see two contour plots.
6. Double-click the graph to bring up the 3D Plot Format dialog box. In the Display

As section of the General tab, click the tab labeled Plot 2 and select Surface from
the array of plot types. Click “OK.”

Both the contour plot and the surface plot, with default format settings, appear in a
single graph.

Tip As a general rule, you will not want to create a 3D graph with more than two or three plots
together since they may obscure each other and make the graph difficult to interpret.

Formatting a 3D Plot

A three-dimensional plot’s default appearance depends on how you insert it. When you
choose Graph⇒3D Plot Wizard from the Insert menu, you make selections in the
pages of the Wizard that determine a plot’s appearance. When you insert a plot by
choosing a plot type from the Insert menu, however, the plot acquires default
characteristics.

Figure 12-7: Two plots, one contour and one surface, shown on the same graph.

Formatting a 3D Plot / 185
You can change the appearance of any 3D plot by using the many options available in
the 3D Plot Format dialog box. For example, you can use the options to change a plot’s
color, format the axes, add backplanes, and format the lines or points.
To bring up the 3D Plot Format dialog box:
1. Click once on the plot to select

it and choose Graph⇒3D Plot
from the Format menu.
Alternatively, double-click the
plot itself. Mathcad brings up
the 3D Plot Format dialog box.
The General page is shown at
right.

2. Click the tabs to go to each page.
3. Make the appropriate changes in

the dialog box.
4. Click Apply to see the effect of

your changes without closing the dialog box.
5. Close the dialog by clicking OK.

The 3D Plot Format Dialog Box
Some options available on certain pages in the dialog box depend on the kind of plot
you are formatting. Options on other pages are available for any three-dimensional
graph.
• The General page options control the overall appearance of the graph. You can

control the position of a plot, set the axis style, draw a border or a box, or convert
a plot to another type.

• The Axes page options control exactly how each axis looks. You can specify the
weight of each axis and whether it has numbers or tick marks. You can also specify
the axis limits and label each axis with text. Use the tabs at the top of the page to
format the x-, y-, or z-axis.

• The Backplanes page options specify whether a backplane is filled with a color,
has a border, or has grid lines or tick marks. Use the tabs at the top of the page to
format the xy-, yz-, or xz-backplane.

Note Both the Backplanes page and the Axes page have options for setting and formatting grid lines.
When you set the grid lines for an axis on the Axes tab, you set them for the two backplanes
shared by the axis. When you set the grid lines on the Backplanes tab, you set them for one
backplane only.

• Use the options on the Appearance page to format the surfaces, lines, and points
that make up a plot. For example, you can apply color directly to a plot’s surface,
its contours, or its lines and points.

• The Lighting page options control both the overall lighting of the plot as well as
individual lights directed onto it. See “Lighting” on page 190.

186 / Chapter 12
• The Title page provides a text box for entering a title for the graph and options for
specifying the location of the title on the graph.

• The Special page allows you to control options related to specific kinds of plots.
For example, the Bar Plot Layout options let you specify the way the bars are
arranged in a 3D bar plot.

• The Advanced page is used only when you need very fine control over the
appearance of a plot, such as the vertical scale.

• The QuickPlot Data page contains the range and grid settings for the independent
variables that control a 3D QuickPlot. Additionally, you can specify whether your
function(s) are in Cartesian, spherical, or cylindrical coordinates.

Online Help For details on the options available on a particular page in the 3D Plot Format dialog box, click
the Help button at the bottom of the dialog box.

Some options in the 3D Plot Format dialog box work together to control the appearance
of a plot. For example, the choices on the Appearance page, the Lighting page, and the
Special and Advanced pages together control the color of a plot.

Note When you format a graph containing more than one plot, some options in the 3D Plot Format
dialog box apply to an entire graph while others apply to individual plots. For example, all the
options on the Axes, Backplanes, and Lighting pages are for the graph as a whole: each plot on
the graph uses common axes, backplanes, and lighting. However, options on the Appearance tab
are specific to each plot on the graph. That is, each plot can be filled with its own color, have its
own lines drawn, etc. The tabs labeled Plot 1, Plot 2, etc. control the settings for individual plots.

Fill Color
The color of a plot is primarily determined by its fill color. This section describes the
ways to apply color to a plot by filling its surfaces or contours. A plot’s color and
shading are also affected by lighting, as described on page 190.
Mathcad allows you to apply either a solid color or a colormap to the surface or contours
of a plot. A solid color is useful when you don’t want to overcomplicate a plot with
many colors or when you want to use lighting to shade a plot. A colormap applies an
array of color to a plot according to its coordinates.

Note Mathcad comes with a variety of colormaps for applying rainbow colors and shades of gray, red,
green, and blue. You can also create and load custom colormaps in Mathcad by using the
SaveColormap function (page 308) and LoadColormap function (page 368). By default, a
colormap is applied in the direction of the z-values, or according to the height of the plot. You
can apply the colormap in the direction of the x-values or y-values by clicking the Advanced tab
and choosing a direction in the Colormap section. For more information, see online Help.

Formatting a 3D Plot / 187
Filling the Surface

The options on the Appearance page of the 3D Plot Format dialog box allow you to fill
the plot’s surface with a solid color or a colormap. For example, to color the bars in a
3D bar plot according to a colormap:
1. Double-click the graph to bring

up the 3D Plot Format dialog
box.

2. Click the Appearance tab.
3. Click both Fill Surface in Fill

Options and Colormap in Color
Options.

4. Click Apply to preview the
plot.

Figure 12-8 shows an example.

The plot is shaded using the default colormap “Rainbow.” To choose a different
colormap, click the Advanced tab of the 3D Plot Format dialog box and select a
colormap from the Choose Colormap drop-down menu.
If you wanted to fill the bars of the plot with a solid color, choose Solid Color instead
of Colormap and click the color box next to Solid Color to select a color.

Filling Contours

When you format a surface plot, you can choose Fill Contours instead of Fill Surface
in the Fill Options section of the Appearance page. If you fill the contours of a surface
plot, the plot is filled according to its contours rather than directly by its data. You can
fill according to the x-, y-, or z-contours or two at the same time. For a contour plot,
you must choose Fill Contours instead of Fill Surface to fill the contours of the plot.

Figure 12-8: Filling the surface or contours of a plot.

188 / Chapter 12
For example, to fill a contour plot with color:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. In the Fill Options section, click Fill Contours.
4. Click Apply to preview the plot.
The plot is shaded using the default colormap Rainbow. To choose a different colormap,
click the Advanced tab of the 3D Plot Format dialog box and select a colormap from
the Choose Colormap drop-down menu.

Note If you have a contour plot projected on a plane other than the x-y plane, you can fill the contour
using options on the Special page of the 3D Plot Format dialog box. To do so, click the Special
tab, then choose a contour direction from the drop-down menu. Click Fill for each contour you
want to color. For example, if you have Fill checked for the z-contours and x-contours, you will
see contour color on both the x-y backplane and the y-z backplane.

Lines
Mathcad provides many ways to control the appearance of the lines on a three-
dimensional plot. You can draw the lines so they form a wireframe, or you can draw
only the contour lines. You can also control the weight and color of the lines on a plot.

Drawing a Wireframe

To control whether lines form a wireframe on a plot, use the options on the Appearance
page of the 3D Plot Format dialog box. For example, to remove the wireframe on a
surface plot as shown in Figure 12-9:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. In the Line Options section, click No Lines.
To turn lines on again later, choose Wireframe on the Appearance page.

Drawing Contour Lines

When you format a surface plot, you can choose Contour instead of Wireframe in the
Line Options section of the Appearance page. Contour lines are those drawn according
to the contours of a surface. You can draw either the x-, y-, or z- contour lines, two of
these contours lines, or all three.

Note For contour plots, Mathcad always chooses Contour instead of Wireframe to draw contour lines.

For example, to draw lines showing the x-contours of a surface plot:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. Click Contour in the Line Options section.
4. Click the Special tab.

Formatting a 3D Plot / 189
5. Verify that Z-Contours is selected in the drop-down menu at the bottom of the
Contour Options section. Click Draw Lines to remove the check mark. This turns
lines off for the z-contours.

6. Choose Z-Contours from the drop-down menu on the Special page.
7. Check Draw Lines.
The surface plot is drawn with contour lines perpendicular to the z-axis, as shown in
Figure 12-9.

Note When you format a contour plot on a multi-plot graph (see page 176), the options in the drop-
down menu on the Special tab determine on which backplane the contour lines are drawn. For
example, if you have Draw Lines checked for the z-contours and x-contours, you will see contour
lines on both the x-y backplane and the y-z backplane.

Line Color

You can control the color of the lines in a plot using the color options in the Line Options
section of the Appearance page. Just as you can fill a plot’s surface with a colormap or
a solid color, described on page 187, you can also apply a colormap or solid color to
the lines in a plot.
For example, to make the lines of a contour plot orange:
1. Double-click the graph to bring up the tabbed dialog box.
2. Click the Appearance tab.
3. In the Line Options section, click Contour to draw contour lines and Solid Color.
4. Click the color box next to Solid Color, click the orange box, and click OK.

Figure 12-9: A wireframe vs. contour lines on a surface plot.

190 / Chapter 12
Points
You can draw and format points on most three-dimensional plots, since all 3D plots
are constructed from discrete data points. (The exceptions are vector field plots, contour
plots, bar plots, and patch plots.) Points are most useful, however, on a 3D scatter plot
in which points are the main focus of the plot. Mathcad allows you to control the symbol
used for the points in a plot as well as the color and size of the symbol.
To draw or remove points on a surface plot:
1. Double-click the graph to bring up the 3D Plot Format dialog box.
2. Click the Appearance tab.
3. In the Points Options section, check (or uncheck) Draw Points.
To format the symbol, color, and size of the points on your 3D scatter plot using the
Points Options section of the Appearance tab:
• Choose a Symbol from the drop-down list to change the symbol displayed.
• Use the arrows next to Size to increase or decrease the size of the symbol.
• Click the color box next to Solid Color and choose a hue from the color palette, or

click Colormap to change the coloring of the symbols.

Lighting
The color of a three-dimensional plot is a result of color you use to fill its surface, lines,
and points as well as the color of any ambient light or directed lights shining on it. This
behavior is identical to the affect of light on object color in the real world. Objects
reflect and absorb light depending on their color. For example, a yellow ball reflects
mostly yellow light and absorbs others, and it can look grayish under dim lighting,
green under blue lighting, and bright yellow in bright lighting.
Light is controlled using the options on the Lighting page of the 3D Plot Format dialog
box. If you are content to fill a plot with a colormap, you may not need to use lighting
at all. However, if you want to shade the plot differently, or if you fill the plot with a
solid color and want to shade it, you can enable lighting.

Note If your 3D graph contains multiple plots, lighting affects all the plots in a graph, but you can fill
individual plots with color independently.

Figure 12-10: A white surface plot with lighting enabled.

Formatting a 3D Plot / 191
Note If you want lighting to be the sole determinant of the color of a plot, use the Appearance page
options in the 3D Plot Format dialog box to fill the plot with solid white.

To enable lighting:
1. Double-click the plot to open the tabbed dialog box.
2. Click the Lighting tab.
3. Check Enable Lighting in the Lighting section.
4. Click the options on tabs labeled Light 1, Light 2, etc. to enable a directed light and

set its color and location. Mathcad lets you set up to eight directed lights.
5. Click the Ambient Light Color box to set the ambient light color. Note that black

corresponds to no ambient light.

Online Help For details on the options available on the Lighting page, click the Help button at the bottom of
the dialog box. For additional information on lighting, see online Help.

Changing One 3D Plot to Another

Note You can change almost any three-dimensional plot into another kind of three-dimensional plot
by using the Display As options on the General tab in the 3D Plot Format dialog box. Simply
select another available 3D plot type and click Apply or OK to change the plot instantaneously
to another type. Figure 12-11 shows the same matrix displayed as three different plot types.

Note Some three-dimensional plots cannot be converted to other forms. For example, you cannot
convert a vector field plot into any other kind of plot. If a plot cannot be converted to another
kind of plot, that plot type is grayed in the 3D Plot Format dialog box.

Annotations

To add a text annotation to a three-dimensional plot, just drag text or bitmaps directly
onto the plot.
You can select the text annotation on your plot to reposition it. To edit a text annotation
on a plot, select the text and drag it off the plot to your worksheet. You can now edit
the text region. Then drag the text region back onto the plot.

Tip To place a bitmap you created in another application onto a three-dimensional plot, copy the
bitmap from the other application to the Clipboard, right click on the plot and choose Paste
Special from the popup menu.

Modifying 3D QuickPlot Data
When you create a 3D QuickPlot you can change the range and step size of each
independent variable by using the settings on the QuickPlot Data page of the 3D Plot
Format dialog box.
To change the range of either independent variable:
1. Set the start and end values of either range using the text boxes for each range.
2. Click Apply to preview.

192 / Chapter 12
To change the step size, the number of grids generated along each variable’s axis
between the start and end values:
1. Use the arrows next to # of Grids for each range to increase or decrease the grid

value. Alternatively, you can type in a value in the text box.
2. Click Apply to preview your changes.
The ranges you set for the independent variables in the QuickPlot Data page do not
necessarily control the axis limits of the plot, unless you are plotting a single function
of two variables in Cartesian coordinates. In all other cases, the axis limits are
determined by the x-, y-, and z-data generated for the QuickPlot by your function(s).
To perform automatic coordinate system conversions on your QuickPlot data:
1. Click the radio button under the Coordinate System corresponding to the coordinate

system of the function you are plotting.
2. Click Apply to preview your changes.

Figure 12-11: The same data displayed in several different 3D plots.

Rotating and Zooming on 3D Plots / 193
Rotating and Zooming on 3D Plots

You can resize a three-dimensional plot using the same methods you use to resize any
graph region in Mathcad. Click on it and use the handles that appear along the edges
to drag out the edges. Mathcad provides several additional options for manipulating
the presentation of your 3D plot:
• You can rotate the plot to see it from a different perspective.
• You can set the plot in motion about an axis of rotation so that it spins continuously.
• You can zoom in or out on a portion of the plot.

Note When you rotate, spin, or zoom a three-dimensional plot, any visible axes move or resize
themselves with the plot. Text or graphic annotations you add to the plot (see page 191) remain
anchored at their original sizes and positions.

Rotating a Plot
You can rotate a plot interactively with the mouse or by specifying parameters in the
3D Plot Format dialog box.
To rotate a three-dimensional plot interactively by using the mouse:
1. Click in the plot, and hold the mouse button down.
2. Drag the mouse in the direction you want the plot to turn.
3. Release the mouse button when the plot is in the desired position.
To rotate a three-dimensional plot by using the 3D Plot Format dialog box:
1. Click once on the plot to select it and choose Graph⇒3D Plot from the Format

menu.
2. Click the General tab.
3. Edit the settings for Rotation, Tilt, and Twist in the View options.
4. Click Apply to preview the plot.

Spinning a Plot
You can set a plot in motion so that it spins continuously about an axis of rotation:
1. Click in the plot, and hold the [Shift] key and the mouse button down.
2. Drag the mouse in the direction you want the plot to spin.
3. Release the mouse button to set the plot in motion.
 The plot spins continuously until you click again inside the plot.

Note If you make changes to equations that affect a plot, the plot recomputes even when it is spinning!

Tip To create an AVI file of a spinning plot, see “Animation” on page 121.

194 / Chapter 12
Zooming a Plot
You can zoom in or out of a plot interactively or by specifying a zoom factor in the 3D
Plot Format dialog box.
To zoom in on a three-dimensional plot by using the mouse:
1. Click in the plot, and hold the [Ctrl] key and the mouse button down.
2. Drag the mouse toward the top of the plot to zoom out, or drag the mouse toward

the bottom to zoom in.
3. Release the mouse button when the plot is at the desired zoom factor.

Tip If you use an IntelliMouse-compatible mouse with a center wheel, you can rotate the wheel to
zoom in or out of a three-dimensional plot.

To zoom in or out of a three-dimensional plot by using the 3D Plot Format dialog box:
1. Click once on the plot to select it and choose Graph⇒3D Plot from the Format

menu.
2. Click the General tab.
3. Edit the Zoom setting in the View options.
4. Click Apply to preview the plot.

Chapter 13
Symbolic Calculation

! Overview of Symbolic Math

! Live Symbolic Evaluation

! Using the Symbolics Menu

! Examples of Symbolic Calculation

! Symbolic Optimization

Overview of Symbolic Math

Whenever you evaluate an expression numerically, Mathcad returns one or more
numbers, as shown at the top of Figure 13-1. When Mathcad calculates symbolically,
however, the result of evaluating an expression is generally another expression, as
shown in the bottom of Figure 13-1.

There are three ways to perform a symbolic transformation on an expression.
• You can use the symbolic equal sign as described in “Live Symbolic Evaluation”

on page 196. This method feels very much as if you’re engaging in numeric math.
If you need more control over the symbolic transformation, you can use keywords
with the symbolic equal sign.

• You can use commands from the Symbolics menu. See “Using the Symbolics
Menu” on page 201.

• You can make the numeric and symbolic processors work together, the latter
simplifying an expression behind the scenes so that the former can work with it
more efficiently. This is discussed in “Symbolic Optimization” on page 212.

Figure 13-1: A numeric and symbolic evaluation of the same expression.
195

196 / Chapter 13
Note For a computer, symbolic operations are, in general, much more difficult than the corresponding
numeric operations. In fact, many complicated functions and deceptively simple-looking
functions have no closed-forms as integrals or roots.

Live Symbolic Evaluation

The symbolic equal sign provides a way to extend Mathcad’s live document interface
beyond the numeric evaluation of expressions. You can think of it as being analogous
to the equal sign “=.” Unlike the equal sign, which always gives a numeric result on
the right-hand side, the symbolic equal sign is capable of returning expressions. You
can use it to symbolically evaluate expressions, variables, functions, or programs.
To use the symbolic equal sign:
Make sure that Calculate⇒Automatic Calculation on the Tools menu has a check
beside it. If it doesn’t, choose it from the menu.

1. Enter the expression you want to evaluate.

2. Click on the Symbolic toolbar or press [Ctrl].
(the Control key followed by a period). Mathcad
displays a symbolic equal sign, “→”

3. Click outside the expression. Mathcad displays a
simplified version of the original expression. If an
expression cannot be simplified further, Mathcad
simply repeats it to the right of the symbolic equal sign.

The symbolic equal sign is a live operator just like any Mathcad operator. When you
make a change anywhere above or to the left of it, Mathcad updates the result. The
symbolic equal sign “knows” about previously defined functions and variables and uses
them wherever appropriate. You can force the symbolic equal sign to ignore prior
definitions of functions and variables by defining them recursively just before you
evaluate them, as shown in Figure 13-6 on page 201.
Figure 13-2 shows some examples of how to use the symbolic equal sign, “→”

Note The symbolic equal sign, “→,” applies to an entire expression. You cannot use the symbolic
equal sign to transform only part of an expression.

Tip Figure 13-2 also illustrates the fact that the symbolic processor treats numbers containing a
decimal point differently from numbers without a decimal point. When you send numbers with
decimal points to the symbolic processor, any numeric results you get back are decimal
approximations to the exact answer. Otherwise, any numeric results you get back are expressed
without decimal points whenever possible.

Live Symbolic Evaluation / 197
Using Keywords
The “→” takes the left-hand side and places a simplified version of it on the right-hand
side. Of course, exactly what “simplify” means is a matter of opinion. You can, to a
limited extent, control how the “→” transforms the expression by using one of the
symbolic keywords.
 To do so:

1. Enter the expression you want to evaluate.

2. Click on the Symbolic toolbar or press [Ctrl]
[Shift]. (Press the Control and Shift keys and type a
period.) Mathcad displays a placeholder to the left of the symbolic equal sign, “→.”

3. Click on the placeholder to the left of the symbolic equal sign
and type any of the keywords from the following table. If the
keyword requires any additional arguments, separate the
arguments from the keyword with commas.

4. Press [Enter] to see the result.

Tip Another way to use a keyword is to enter the expression you want to evaluate and click on a
keyword button from the Symbolic toolbar. This inserts the keyword, placeholders for any
additional arguments, and the symbolic equal sign, “→.” Just press [Enter] to see the result.

Chapter 18, “Symbolic Keywords,” lists and describes all the symbolic keywords
accessible from the Symbolics and Modifier toolbars.

Figure 13-2: Using the symbolic equal sign.

198 / Chapter 13
Many of the keywords take at least one additional argument, typically the name of a
variable with respect to which you are performing the symbolic operation. Some of the
arguments are optional. See Figure 13-3 and Figure 13-4 for examples.

Note Keywords are case sensitive and must therefore be typed exactly as shown. Unlike variables,
however, they are not font sensitive.

Figure 13-3: Using keywords with a symbolic evaluation sign.

Figure 13-4: Evaluating expressions symbolically.

Live Symbolic Evaluation / 199
Keyword modifiers

Some keywords take additional modifiers that specify the kind of symbolic evaluation
even further.
To use a modifier, separate it from its keyword with a comma. For example, to use the
“assume=real” modifier with the simplify keyword on an expression:
1. Enter the expression to simplify.

2. Click on the Symbolic toolbar or press [Ctrl] [Shift]. (hold down the
Control and Shift keys and type a period). Mathcad displays a placeholder to the
left of the symbolic equal sign, “→.”

3. Enter simplify,assume=real into the placeholder (press [Ctrl]= for the
equal sign).

4. Press [Enter] to see the result.
The Modifiers keyword button corresponds to symbolic modifiers. Modifiers for
“assume” are detailed on page 422, and modifiers for “simplify” are described on
page 428.
Figure 13-5 shows some examples using the simplify keyword with and without
additional modifiers.

Using More Than One Keyword
In some cases, you may want to perform two or more types of symbolic evaluation
consecutively on an expression. Mathcad allows you to apply several symbolic
keywords to a single expression. There are two ways of applying multiple keywords.
The method you choose depends on whether you want to see the results from each
keyword or only the final result.

Figure 13-5: Modifiers such as “assume=real” allow you to control
simplification.

200 / Chapter 13
To apply several keywords and see the results from each:

1. Enter the expression you want to evaluate.

2. Press on the Symbolic toolbar or type
[Ctrl] [Shift]. (Hold down the Control and
Shift keys and type a period.) Mathcad displays a placeholder to the left of the
symbolic equal sign, “→.”

3. Enter the first keyword into the placeholder to
the left of the symbolic equal sign, including
any comma-delimited arguments the keyword
takes.

4. Press [Enter] to see the result from the first
keyword.

5. Click on the result and press [Ctrl] [Shift].
again. The first result disappears temporarily.
Enter a second keyword and any modifiers into
the placeholder.

6. Press [Enter] to see
the result from the
second keyword.

Continue applying keywords to the intermediate results in this manner.
To apply several keywords and see only the final result:

1. Enter the expression you want to evaluate.

2. Click on the Symbolic toolbar or press
[Ctrl] [Shift]. so that Mathcad displays a
placeholder to the left of the symbolic equal sign, “→.”

3. Enter the first keyword into the placeholder,
including any comma-delimited arguments it
takes.

4. Press [Ctrl] [Shift]. again and enter a
second keyword into the placeholder. The
second keyword is placed immediately below
the first keyword.

5. Continue adding keywords by pressing [Ctrl]
[Shift]. after each one. Press [Enter] to see
the final result.

Using the Symbolics Menu / 201
Ignoring Previous Definitions
When you use the symbolic equal sign to evaluate an expression, Mathcad checks all
the variables and functions making up that expression to see if they’ve been defined
earlier in the worksheet. If Mathcad does find a definition, it uses it. Any other variables
and functions are evaluated symbolically.
There are two exceptions to this. In evaluating an expression made up of previously
defined variables and functions, Mathcad ignores prior definitions when the variable
has been defined recursively.
This exception is illustrated in Figure 13-6.

Using the Symbolics Menu

One advantage to using the symbolic equal sign, sometimes together with keywords
and modifiers as discussed in the last section, is that it is “live,” just like the numeric
processing in Mathcad. That is, Mathcad checks all the variables and functions making
up the expression being evaluated to see if they’ve been defined earlier in the worksheet.
If Mathcad does find a definition, it uses it. Any other variables and functions are
evaluated symbolically. Later on, whenever you make a change to the worksheet, the
results automatically update. This is useful when the symbolic and numeric equations
in the worksheet are tied together.
There may be times, however, when a symbolic calculation is quite separate from the
rest of your worksheet and does not need to be tied to any previous definitions. In these
cases, you can use commands from the Symbolics menu. These commands are not live:
you apply them on a case by case basis to selected expressions, they do not “know”
about previous definitions, and they do not automatically update.
The commands on the Symbolics menu perform the same manipulations as many of
the keywords listed on page 421. For example, the Symbolics menu command
Polynomial Coefficients evaluates an expression just as the keyword coeffs does.
The only differences are that the menu command does not recognize previous
definitions and does not automatically update.

Figure 13-6: Defining a variable in terms of itself makes the symbolic
processor ignore previous definitions of that variable.

202 / Chapter 13
The basic steps for using the Symbolics menu are the same for all the menu commands:
1. Place whatever math expression you want to evaluate between the two editing lines.

You can drag-select a part of the expression to place it between the editing lines.
2. Choose the appropriate command from the Symbolics menu. Mathcad then places

the evaluated expression into your document.
For example, to evaluate an expression symbolically using the Symbolics menu, follow
these steps:

1. Enter the expression you want to evaluate.

2. Surround the expression with the editing lines.

3. Choose Evaluate⇒Symbolically from the Symbolics menu.
Mathcad places the evaluated expression into your worksheet. The
location of the result in relation to the original expression depends on the Evaluation
Style you’ve selected (see “Displaying Symbolic Results” on page 202).

Some commands on the Symbolics menu require that you click on or select the variable
of interest rather than select the entire expression. If a menu command is unavailable,
try selecting a single variable rather than an entire expression.

Tip Since the commands on the Symbolics menu operate only on the part of the expression currently
selected by the editing lines, they are useful when you want to address parts of an expression.
For example, if evaluating or simplifying the entire expression doesn’t give the answer you
want, try selecting a subexpression and choose a command from the Symbolics menu.

Long Results
Symbolic calculations can easily produce results so long that they don’t fit conveniently
in your window. If you obtain a symbolic result consisting of several terms by using
commands on the Symbolics menu, you can reformat such a result by using Mathcad’s
“Addition with line break” operator (see “Operators” on page 391).
Sometimes, a symbolic result is so long that you can’t conveniently display it in your
worksheet. When this happens, Mathcad asks if you want the result placed in the
Clipboard. If you click “OK,” Mathcad places a string representing the result on the
Clipboard. When you examine the contents of the clipboard, you’ll see a result written
in a Fortran-like syntax. See the topic “Special functions and syntax used in Symbolic
results” in the online Help for more information on this syntax.

Displaying Symbolic Results
If you’re using the symbolic equal sign, “→,” the result of a symbolic transformation
always goes to the right of the “→.” However, when you use the Symbolics menu, you
can tell Mathcad to place the symbolic results in one of the following ways:
• The symbolic result can go below the original expression.
• The symbolic result can go to the right of the original expression.
• The symbolic result can simply replace the original expression.

Examples of Symbolic Calculation / 203
In addition, you can choose whether you want Mathcad to generate text describing what
had to be done to get from the original expression to the symbolic result. This text goes
between the original expression and the symbolic result, creating a narrative for the
symbolic evaluation. These text regions are referred to as “evaluation comments.”
To control both the placement of the symbolic result and the presence of narrative text,
choose Evaluation Style from the Symbolics menu to bring up the “Evaluation Style”
dialog box.

Examples of Symbolic Calculation

Just as you can carry out a variety of numeric calculations in Mathcad, you can carry
out all kinds of symbolic calculations. As a general rule, any expression involving
variables, functions, and operators can be evaluated symbolically using either the
symbolic equal sign or the menu commands, as described earlier in this chapter.

Tip When deciding whether to use the symbolic equal sign or menu commands from the Symbolics
menu, remember that unlike the keyword-modified expressions, expressions modified by
commands from the Symbolics menu do not update automatically.

Note Functions and variables you define yourself are recognized by the symbolic processor when you
use the symbolic equal sign. They are not, however, recognized when you use the Symbolics
menu commands. Figure 13-7 shows the difference.

Figure 13-7: The symbolic processor recognizes certain built-in functions.
Functions and variables you define yourself are only recognized when you
use the symbolic equal sign.

204 / Chapter 13
Derivatives
To evaluate a derivative symbolically, you can use Mathcad’s derivative operator and
the live symbolic equal sign as shown in Figure 13-8:

1. Click on the Calculus toolbar or type ? to insert the derivative operator.

Alternatively, click on the Calculus toolbar or type [Ctrl]? to insert the nth
order derivative operator.

2. Enter the expression you want to differentiate and the variable with respect to which
you are differentiating in the placeholders.

3. Click on the Symbolic toolbar or press [Ctrl]. (the Control key followed by
a period). Mathcad displays a symbolic equal sign, “→.”

4. Press [Enter] to see the result.
Figure 13-9 shows you how to differentiate an expression without using the derivative
operator. The Symbolics menu command Variable⇒Differentiate differentiates an
expression with respect to a selected variable. For example, to differentiate
with respect to x:
1. Enter the expression.
2. Click on the x to select it.
3. Choose Variable⇒Differentiate from the Symbolics menu. Mathcad displays the

derivative, . Note that y is treated as a constant.

If the expression in which you’ve selected a variable is one element of an array, Mathcad
differentiates only that array element. To differentiate an entire array, differentiate each
element individually: select a variable in that element and choose
Variable⇒Differentiate from the Symbolics menu.

Figure 13-8: Evaluating integrals and derivatives symbolically.

2 x2⋅ y+

4 x⋅

Examples of Symbolic Calculation / 205
Tip Be sure to select a variable in an expression before choosing from the Symbolics menu.
Otherwise, the Variable⇒Differentiate menu command is not available.

Integrals
To symbolically evaluate a definite or indefinite integral:

1. Click or on the Calculus toolbar to insert the definite or indefinite integral
operator.

2. Fill in the placeholder for the integrand and, if applicable, the placeholders for the
limits of integration.

3. Place the integration variable in the placeholder next to the “d.” This can be any
variable name.

4. Click on the Symbolic toolbar or press [Ctrl]. (the Control key followed by
a period). Mathcad displays a symbolic equal sign, “→.”

5. Press [Enter] to see the result.
See Figure 13-8 for examples of integrals evaluated symbolically.
When evaluating a definite integral, the symbolic processor attempts to find an
indefinite integral of your integrand before substituting the limits you specified. If the
symbolic integration succeeds and the limits of integration are integers, fractions, or
exact constants like π, you get an exact value for your integral. If the symbolic processor
can’t find a closed form for the integral, you’ll see an appropriate error message.
Another way to integrate an expression indefinitely is to enter the expression and click
on the variable of integration. Then choose Variable⇒Integrate from the Symbolics
menu. See Figure 13-9 for an example.

Figure 13-9: Differentiating and integrating with menu commands.

206 / Chapter 13
Tip When you apply the Variable⇒Integrate command on the Symbolics menu, the expression
you select should not usually include the integral operator. You should select only an expression
to integrate. If you include the integral operator in the selected expression, you are taking a
double integral.

Limits
Mathcad provides three limit operators. These can only be evaluated symbolically. To
use the limit operators:

1. Click on the Calculus toolbar or press [Ctrl]L to insert the limit operator. To

insert the operator for a limit from the left or right, click , or on the Calculus
toolbar or press [Ctrl][Shift]B or [Ctrl][Shift]A.

2. Enter the expression in the placeholder to the right of the “lim.”
3. Enter the limiting variable in the left-hand placeholder below the “lim.”
4. Enter the limiting value in the right-hand placeholder below the “lim.”

5. Click on the Symbolic toolbar or press [Ctrl]. (the Control key followed by
a period). Mathcad displays a symbolic equal sign, “→.”

6. Press [Enter] to see the result.
Mathcad returns a result for the limit. If the limit does not exist, Mathcad returns an
error message. Figure 13-10 shows some examples of evaluating limits.

Solving an Equation for a Variable
To solve an equation symbolically for a variable, use the keyword solve:

1. Type the equation. Make sure you click on the Boolean toolbar or type
[Ctrl]= to create the bold equal sign.

Figure 13-10: Evaluating limits.

Examples of Symbolic Calculation / 207
Note When solving for the root of an expression, there is no need to set the expression equal to zero.
See Figure 13-11 for an example.

2. Click on the Symbolic toolbar or type [Ctrl] [Shift]. (hold down the
Control and Shift keys and type a period). Mathcad displays a placeholder to the
left of the symbolic equal sign, “→.”

3. Type solve in the placeholder, followed by a comma and the variable for which
to solve.

4. Press [Enter] to see the result.
Mathcad solves for the variable and inserts the result to the right of the “→.” Note that
if the variable was squared in the original equation, you may get two results back when
you solve. Mathcad displays these in a vector. Figure 13-11 shows an example.

Tip Another way to solve for a variable is to enter the equation, click on the variable you want to
solve for in the equation, and choose Variable⇒Solve from the Symbolics menu.

Solving a System of Equations Symbolically: “Solve” Keyword
One way to symbolically solve a system of equations is to use the same solve keyword
used to solve one equation in one unknown. To solve a system of n equations for n
unknowns:

1. Press on the Matrix toolbar or type [Ctrl]M to insert a vector having n rows
and 1 column.

2. Fill in each placeholder of the vector with one of the n equations making up the

system. Make sure you click on the Boolean toolbar or type [Ctrl]= to enter
the bold equal sign.

Figure 13-11: Solving equations, solving inequalities, and finding roots.

208 / Chapter 13
3. Press on the Symbolic toolbar or type [Ctrl] [Shift]. (hold down the
Control and Shift keys and type a period). Mathcad displays a placeholder to the
left of the symbolic equal sign, “→.”

4. Type solve followed by a comma in the placeholder.

5. Type [Ctrl]M or press on the Matrix toolbar to create a vector having n rows
and 1 column. Then enter the variables you are solving for.

6. Press [Enter] to see the result.
Mathcad displays the n solutions to the system of equations to the right of the symbolic
equal sign. Figure 13-12 shows an example.

Solving a System of Equations Symbolically: Solve Block
Another way to solve a system of equations symbolically is to use a solve block, similar
to the numeric solve blocks described in “Solving and Optimization Functions” on page
125:
1. Type the word Given. This tells Mathcad that what follows is a system of equations.

You can type Given in any combination of upper- and lowercase letters and in any
font. Just be sure you don’t type it while in a text region.

2. Now enter the equations in any order below the word Given. Make sure that for

every equation you click on the Boolean toolbar or type [Ctrl]= to insert the
bold equal sign for each equation.

3. Enter the Find function with arguments appropriate for your system of equations.
This function is described in “Linear/Nonlinear System Solving and Optimization”
on page 127.

4. Click on the Symbolic toolbar or press [Ctrl]. (the Control key followed by
a period). Mathcad displays the symbolic equal sign.

Figure 13-12: Two methods for solving a system of equations symbolically.

Examples of Symbolic Calculation / 209
5. Click outside the Find function or press [Enter].
Mathcad displays the solutions to the system of equations to the right of the symbolic
equal sign. Figure 13-12 shows an example.
Most of the guidelines for solve blocks described in “Linear/Nonlinear System Solving
and Optimization” on page 127 apply to the symbolic solution of systems of equations.
The main difference is that when you solve equations symbolically, you do not enter
guess values for the solutions.

Symbolic Matrix Manipulation
You can use Mathcad to find the symbolic transpose, inverse, or determinant of a matrix
using a built-in operator and the symbolic equal sign. To find the transpose of a matrix,
for example:
1. Place the entire matrix between the two editing lines by clicking [Space] one or

more times.

2. Click on the Matrix toolbar or press [Ctrl] | to insert the matrix transpose
operator.

3. Click on the Symbolic toolbar or press [Ctrl]. (the Control key followed by
a period). Mathcad displays the symbolic equal sign, “→.”

4. Press [Enter] to see the result.
Mathcad returns the result to the right of the “→.” Figure 13-13 shows some examples.

Figure 13-13: Symbolic matrix operations.

210 / Chapter 13
Another way to find the transpose, inverse, or determinant of a matrix is to use the
Matrix commands on the Symbolics menu. For example, to find the transpose of a
matrix:
1. Place the entire matrix between the two editing lines by pressing [Space] one or

more times.
2. Choose Matrix⇒Transpose from the Symbolics menu.
Unlike matrices evaluated with the symbolic equal sign, matrices modified by
commands from the Symbolics menu do not update automatically, as described in the
section “Using the Symbolics Menu” on page 201.

Transformations
You can use symbolic keywords to evaluate the Fourier, Laplace, or z- transform of a
expression and to evaluate the inverse transform. For example, to evaluate the Fourier
transform of an expression:
1. Enter the expression you want to transform.

2. Click on the Symbolic toolbar or type [Ctrl] [Shift]. (hold down the
Control and Shift keys and type a period). Mathcad displays a placeholder to the
left of the symbolic equal sign, “→.”

3. Type fourier in the placeholder, followed by a comma and the name of the
transform variable.

4. Press [Enter] to see the result.

Note Mathcad returns a function in a variable commonly used for the transform you perform. If the
expression you are transforming already contains this variable, Mathcad avoids ambiguity by
returning a function of a double variable. For example, Mathcad returns a function in the variable
ω when you perform a Fourier transform. If the expression you are transforming already contains
an ω, Mathcad returns a function of the variable ωω instead.

The Fourier transform result is a function of ω given by:

Use the keyword invfourier to return the inverse Fourier transform as a function
given by:

where f(t) and F(ω) are the expressions to be transformed.
Use the keywords laplace, invlaplace, ztrans, and invztrans to perform
a Laplace or z-transform or their inverses.
The Laplace transform result is a function of s given by:

f t()e i– ωt td
∞–

 ∞+

∫

1
2π
------ F ω()eiωt ωd

∞–

 ∞+

∫

f t()e st– td
0

 ∞+

∫

Examples of Symbolic Calculation / 211
Its inverse is given by:

where f(t) and F(s) are the expressions to be transformed. All singularities of F(s) are
to the left of the line .

The z-transform result is a function of z given by:

Its inverse is given by:

where f(n) and F(z) are the expressions to be transformed and C is a contour enclosing
all singularities of the integrand.

Tip You can substitute a different variable for the one Mathcad returns from a transform or its
inverse by using the substitute keyword.

Another way to evaluate the Fourier, Laplace, or z- transform or their inverses on an
expression is to use commands on the Symbolics menu. For example, to find the
Laplace transform of an expression:
• Enter the expression.
• Click on the transform variable.
• Choose Transform⇒Laplace from the Symbolics menu.
Keep in mind that, unlike keyword-modified expressions, expressions modified by
commands from the Symbolics menu do not update automatically, as described in the
section “Using the Symbolics Menu” on page 201.

Note Results from symbolic transformations may contain functions that are recognized by Mathcad’s
symbolic processor but not by its numeric processor. An example is the function Dirac shown
in the middle of Figure 13-14. You’ll find numeric definitions for this and other such functions
in “Appendix A: Special Functions” on page 432, as well as in the QuickSheet titled “Special
Functions.”

1
2π
------ F s()est td

σ i∞–

σ i∞+
∫

Re s() σ=

f n()z n–

n 0=

 ∞+

∑

1
2πi
-------- F z()zn 1– zd

C

∫

212 / Chapter 13
Symbolic Optimization

In general, Mathcad’s symbolic and numeric processors don’t communicate with one
another. You can, however, make the numeric processor ask the symbolic processor
for advice before starting what could be a needlessly complicated calculation.
For example, if you were to evaluate an expression such as:

Mathcad would undertake the task of evaluating a numeric approximation of the triple
integral even though one could arrive at an exact solution by first performing a few
elementary calculus operations.
This happens because by itself, Mathcad’s numeric processor does not simplify before
plunging ahead into the calculation. Although Mathcad’s symbolic processor knows
all about simplifying complicated expressions, these two processors do not consult with
each other, although for certain definitions, it would be helpful. To make these two
processors talk to each other for a particular definition click on a definition with the
right mouse button and choose Optimize from the popup menu.
Once you’ve done this, Mathcad’s live symbolic processor simplifies the expression to
the right of a “:=” before the numeric processor begins its calculations. This helps
Mathcad’s numeric processor evaluate the expression more quickly. It can also avoid
any computational issues inherent in the numeric calculation.
If Mathcad finds a simpler form for the expression, it responds by doing the following:
• It marks the region with a red asterisk.
• It internally replaces what you’ve typed with a simplified form.

Figure 13-14: Performing symbolic transforms.

x2 y2 z2 xd yd zd+ +
0

w
∫0

v
∫0

u
∫

Symbolic Optimization / 213
• The equivalent expression is evaluated instead of the expression you specified. To
see this equivalent expression, double-click the red asterisk beside the region.

If Mathcad is unable to find a simpler form for the expression, it places a blue asterisk
next to it.
In the previous example, the symbolic processor would examine the triple integral and
return the equivalent, but much simpler expression:

Then it uses any definitions that exist in your worksheet and simplifies the expression
further. To see this expression in a popup window, click the red asterisk with the right
mouse button and choose Show Popup from the popup menu (see Figure 13-15).

To enable optimization for an entire worksheet, choose Optimize⇒Worksheet from
the Tools menu. To disable optimization for an expression, right click it and uncheck
Optimize on the popup menu. Mathcad evaluates the expression exactly as you typed it.
To disable optimization for all expressions, remove the check from
Optimize⇒Worksheet on the Tools menu.

Figure 13-15: A popup window showing the equivalent expression that
Mathcad actually evaluates.

1
3
--- w3vu wv3u wvu3+ +()

Chapter 14
Importing and Exporting Data

! Overview

! Functions for Reading and Writing Files

! Exchanging Data with Other Applications

! Data Input and Output Components

! Application Components

Overview

In this chapter, you will learn how to extend Mathcad’s functionality by bringing the
feature sets and data of other applications into your Mathcad worksheet. Likewise, you
can expand the usefulness of other programs by interfacing them with Mathcad. In both
cases, you take advantage of Mathcad’s Object Linking and Embedding (OLE)
capabilities.

Functions for Reading and Writing Files

Mathcad comes with a set of built-in functions for reading and writing files in various
formats. While the File Input/Output and Data Table components discussed later in this
chapter are fairly flexible in allowing you to access data files, you will need to use these
command line functions in program, for reading images and WAVs, and when reading
a file with global definitions.
Mathcad’s built-in file access functions can be broken down into four categories:
• ASCII Data File functions, which allow you to create, modify, and access

structured data files. Mathcad contains three built-in functions for accessing ASCII
data files: READPRN, WRITEPRN, and APPENDPRN.

• Binary Data File functions, which allow you to create and access binary data files.
Mathcad contains two built-in functions for accessing binary data files: READBIN
and WRITEBIN.

• Image functions, which allow you to create and access file formats designed to
store image data. Mathcad contains eighteen built-in functions specifically for
accessing image files. See “Image Processing Functions” on page 253 for a
complete list.

• WAV functions, which allow you to create and edit pulse-code-modulated files
stored in Microsoft's WAV format. Mathcad contains three built-in functions
specifically for accessing WAV files: READWAV, WRITEWAV, and
GETWAVINFO.

See Chapter 16, “Functions,” and on-line Help for more information.
215

216 / Chapter 14
Exchanging Data with Other Applications

Mathcad components are specialized OLE objects in your Mathcad worksheet. They
allow you to exchange data with other applications or sources. Application components
allow you to access functions and data from other computational applications such as
Excel, SmartSketch, and MATLAB. Unlike other kinds of OLE objects described in the
section “Inserting Objects” in Chapter 10, a component can receive data from Mathcad,
return data to Mathcad, or do both, dynamically linking the object to your Mathcad
computations.
Components that connect Mathcad to other applications include:
• File Input and Output components for reading and writing data files.
• Axum, for creating highly customizable Axum graphs
• Excel, for accessing cells and formulas in a Microsoft Excel spreadsheet.
• MATLAB, for accessing the programming environment of MATLAB.

• ODBC Input for retrieving data from an ODBC-compliant database that supports
SQL.

• SmartSketch, for creating 2D drawings and designs.
• S-PLUS Graph, for creating S-PLUS graphs.
• S-PLUS Script, for accessing the programming environment of S-PLUS.

Note To use an application component, you must have the application for that component installed,
but not necessarily running, on your system.

Other built-in components that may be customized using scripting:
• Data Acquisition, for sending data to or getting data from a measurement device
• Mathsoft Controls, for creating custom forms controls such as buttons and text

boxes
For linking dynamically to an object for which Mathcad does not have a dedicated
component, see “Scripting Custom OLE Automation Objects” on page 243.

Tip See “Using Mathcad with Other Applications” in QuickSheets under the Help menu for a
variety of example files.

How to Use Components
In general, components receive input from one or more Mathcad variables, perform
operations on the data you specify, and return output to other Mathcad variables. An
“input variable” is a scalar, vector, matrix, or, in some cases, a string, that you have
already defined in your Mathcad worksheet. It contains the data that is passed into a
component. Output from a component (again, either a scalar, vector, matrix, or string)
is then assigned to a Mathcad variable. This variable is referred to as an “output
variable.”

Exchanging Data with Other Applications / 217
The basic steps for using a component are as follows:
1. Insert the component.
2. Specify the input variable(s) and output variable(s).
3. Configure the component to handle inputs from and return outputs to Mathcad.
Since some components only take input or only send output, these steps differ slightly
for each component. The ideas presented in the steps that follow provide an overview
of the process.

Note You cannot insert a component into an existing variable definition. You must click in a blank
area of the worksheet, insert the component, then fill in the variable name after the component
is created.

Step 1: Inserting a component

To insert a component into a Mathcad worksheet:
1. Click in a blank area of your Mathcad worksheet. Click below or to the right of

definitions for any variables that will become inputs to the component.
2. Choose Data, Controls, or Component from the Insert menu. This launches the

Component Wizard for the component type you are trying to insert.
3. Choose a component from the list and click “Next” or “Finish,” depending on the

component you choose. You may see additional dialog boxes that let you specify
properties of the component before it is inserted. When you click “Finish,” the
component is inserted into your worksheet.

If you don’t see a Wizard when you choose one of the components from the Insert
Component dialog box, you’ll immediately see the component inserted into your
worksheet with some default properties.
Each component has its own particular appearance, but all components have one or
more placeholders to the left of the :=, if it returns data to Mathcad, and/or at the bottom
of the component, if it receives data from Mathcad. For example, the Excel component
(with one input and two outputs) looks like this when inserted into your worksheet:

The placeholder(s) at the bottom of the component are for the names of previously
defined input variables. The placeholder(s) you see to the left of the := are for the output
variables.

218 / Chapter 14
After you fill in the placeholders for the input and output variables, you can hide the
variables by clicking with the right mouse button on the component and choosing Hide
Arguments from the pop up menu.
When you insert an application component, you see a small window on that
application’s environment embedded in your Mathcad worksheet. When you double-
click the component, the component is in-place activated, and Mathcad’s menus and
toolbars change to those of the other application. This gives you access to the features
of that application without leaving the Mathcad environment.

Step 2: Configuring a component

Once you’ve inserted a component, you can configure its properties so that the
component knows how to handle any inputs it receives from Mathcad and what to send
as output. To configure the properties for a component:
1. Click on the component once to select it.
2. Right click on the component to see a pop up menu.
3. Choose Properties from the pop up menu.
The settings in the Properties dialog box differ for each component. For example, the
Properties dialog box for the Excel component lets you specify the starting cells in
which the input values are stored and the cell range from which the output is sent.
To add an input or output variable, right click on the component and choose Add Input
Variable or Add Output Variable from the pop up menu. To eliminate an input or
output, choose Remove Input Variable or Remove Output Variable from the menu.
Some components limit you to a finite number of inputs and outputs in which case Add
Input Variable or Add Output Variable is grayed out on the pop up menu.

Tip You can hide the input and output variables for a component by right clicking on the component
and choosing Hide Arguments from the pop up menu.

Note Some components require you to use certain variables within the component itself in order to
exchange data with Mathcad

Step 3: Exchanging data

Once you’ve configured the component, click outside it elsewhere in the worksheet.
At that point, the region recalculates and data exchange takes place: data passes from
the input variable(s) into the component, the component processes the data, and the
output variable(s) receive output from the component. This exchange happens
whenever:
• You click on the component and press [F9] to recalculate the region.
• The input variables change and Automatic Calculation is turned on.
• You choose Calculate⇒Calculate Worksheet from the Tools menu.

Tip Some components allow you to save the file with which the component exchanges data as a
separate file. Click on a component with the right mouse button and choose Save As... from the
pop up menu.

Data Input and Output Components / 219
Data Input and Output Components

File Input and File Output
File Input, File Output, and Data Tables can be found under Data in the Insert menu.
Use File Input/Output to link a particular data file dynamically to a Mathcad worksheet.
For File Input, when the data source is updated, so are calculations dependent on it in
the worksheet. For File Output, the data file is updated whenever calculations in the
worksheet change. Use Data Tables to copy data from the clipboard or a data file or to
enter data by hand into a table in your worksheet.

Tip Mathcad also provides a number of built-in functions for importing ASCII data files, binary
files, and image files. These are useful inside program loops and in global assignments, where
components cannot be used. See “File Access Functions” on page 250.

When you use File Input or File Output from the Insert ⇒Data
menu pick, you’ll see an icon and the path to the data file with
an assignment operator (:=) and an empty placeholder. Enter
the name of a Mathcad variable in the placeholder. When you
click outside this new equation region, the data file is read, and the data is assigned to
the Mathcad array variable entered in the placeholder. The data can now be used like
any other Mathcad array or matrix.
Mathcad File Input and Output components can import and export real numbers,
complex numbers, numbers with exponential notation, and strings from the various file
formats. File Input and File Output also accept a variety of delimeters between data
fields in text files, including tabs, semicolons, spaces, and commas. The delimeter must
be consistent throughout the file. Mathcad tries to determine if data entries are strings
automatically by comparing against various standard number formats.

Note If a data file has alphabetic characters in some cells, or a space between characters when spaces
are not the data delimeter, then data are imported as a string variable, and display in quotes.
Empty cells are imported as 0.

Each time you calculate the worksheet, Mathcad re-reads the data from the file you
have specified. Figure 14-1 shows an example. If you want to import data from a file
just once into Mathcad using a Data Table, see “Importing Once from a Data File” on
page 220.
To read in a different data file or a different type of data file:
1. Right click on the component and select Properties from the component pop up

menu.
2. On the File Options tab, select your file type from the dropdown list, and browse

or type the name of the file you’d like to open.
3. If desired, click the “Data Range” tab and select a subset of the rows, columns or

cells in your data file.
4. On the File Options tab, click “Open.”

220 / Chapter 14
Tip All file reading and writing components described in this section can be created using buttons
on the Standard toolbar in Mathcad. To add these buttons to your toolbar, right click on the
toolbar and add the desired buttons to the list.

Importing Once from a Data File

File Input and Output components read the contents of their associated data file every
time their regions are calculated. You can use a Data Table component to import a data
file only once.
1. Insert an Data Table by selecting Data⇒Table from the Insert menu.
2. In the placeholder that appears to the left of the table, enter the name of the Mathcad

variable to which this data will be assigned.
3. Click on the table to select it. Then right click on the table and choose Import from

the popup menu.
4. The Read from File dialog box appears. In the “Files of type” dropdown list, choose

the type of file you’d like to import. If desired, click the data range tab and select
a subset of the rows, columns or cells in your data file. Use the dialog box to browse
to the data file and click “Open.”

The data from the data file appears in your worksheet in the table.

ODBC Input
The Open Database Connectivity (ODBC) Input component allows you to retrieve
information from a database that supports SQL in its ODBC driver, like Microsoft
Access or FoxPro. There are some programs that have SQL support within their
application, but do not support SQL in their ODBC driver, such as Microsoft Excel.

Figure 14-1: Reading in data from a data file. Whenever you calculate the
worksheet, the data file is read in.

Data Input and Output Components / 221
In order to establish a link to a database on your system or network, in Start⇒Settings
open Administrative Tools⇒Data Sources (ODBC) control panel (Windows 2000
or XP) or ODBC Data Sources control in Windows 98 and NT. For more information
about ODBC and SQL support, check the documentation that comes with your database
application.

Inserting an ODBC Input component

When you insert an ODBC Input component, the Component Wizard presents you with
the following options:
• Select ODBC Data Source. Specifies the data source to access with the component.
• Username/Password. If the data source you are attempting to access is password-

protected, you will need to enter a username and password. If the data source is not
password protected, these fields must be left blank.

• Select Table. Selects the table to access. You can only access one table per ODBC
Input component.

• Select Fields. Selects the fields to access and pass to Mathcad. By default, only
field types supported by Mathcad are shown.

• Show fields with unsupported data types. Displays those fields Mathcad cannot
read.

Once a link to a particular database has been established, you may want to change the
data source, the table, or the columns of data to be imported to your Mathcad worksheet.
To change the data imported from an ODBC Input component:
1. Right click the component and select Properties from the pop up menu.
2. On the Data Source tab, change the database, table, and columns of data as

necessary. If required, specify a valid username and password.
3. Click “OK” to close the dialog box and update your worksheet.

Note You can change the order in which the fields of your database are stored in the columns of the
output matrix in Mathcad. To do so, right click the ODBC Input component and choose
Properties from the pop up menu. Navigate to the Advanced tab, and rearrange the order of the
fields in the columns of the matrix using the “move up” and “move down” buttons.

To filter your data before bringing it into a Mathcad output variable, you can query
your database directly through the ODBC Input component using a SQL “where”
statement.
To filter your data through the ODBC Input component:
1. Right click the component and select Properties from the pop up menu.
2. On the Advanced tab, check “Select data rows using a SQL ‘where’ clause” and

type a “where” statement in the text box.
3. Click “OK” to close the dialog box and update your worksheet.
Figure 14-2 shows the use of a SQL “where” statement.

222 / Chapter 14
Tip Checking the “Show fields with unsupported data types” option in the ODBC Input component
Wizard or on the Data Source page of the Properties dialog box displays all data fields, even
those not supported by Mathcad variables. For example, Mathcad does not support any time data
types, but you can select and display time indices from your database in a Mathcad output
variable.

Application Components

Application components allow you to exchange data between Mathcad and another
application via an ActiveX control. When you insert an application component, a
document object for the application is created in your worksheet. If the component
wizard allows you to create this object from an existing file, a copy of the file is inserted
into your worksheet. Changing the document will not change the original file. If you
want your component to access and update a file on your system, use the File Input/
Output components discussed previously in the section “Data Input and Output
Components” on page 219.

Excel Component
The Excel component allows you to exchange data with and access the functions of
Microsoft Excel (version 7 or higher), if it is installed on your system.

Note The Excel component accepts scalars, vectors, two-dimensional matrices, and strings as input
and output.

Figure 14-2: Using a SQL “where” statement to filter data through the ODBC
component.

Application Components / 223
Tip If you only need to import or export a static data file in Excel format, use File Input and Output
described above.

Inserting an Excel component

When you insert an Excel component, the Component Wizard offers you the following
options:
• Create an empty Excel Worksheet. Creates your component using a blank file

based on the Excel worksheet template.
• Create from file. Creates your component using a specific Excel worksheet. If you

already have an Excel worksheet and want to supply input data to it from Mathcad,
or want to use its results in your Mathcad worksheet, use this option.

• Display as Icon. Inserts your Excel component in icon form. This is particularly
useful if your worksheet is fairly large, or if viewing the results in Excel is not
important.

• The number of input and output variables. Controls the number of multiple input
and output variables your component is inserted with. The number of input and
output variables you can pass between Mathcad and Excel is only limited by the
memory and speed of your computer. There is no set limit.

• Input ranges. Specifies the cells in which the values of each input variable from
Mathcad will be stored. Enter the starting cell, which is the cell that will hold the
element in the upper left corner of an input array. For example, for an input variable
containing a matrix of values, you can specify A1 as the starting cell, and the
values will be placed in cells A1 through C3.

• Output ranges. Specifies the cells whose values you want to pass back to Mathcad.
For example, enter C2:L11 to extract the values in cells C2 through L11 and create
a matrix.

Tip You can specify a particular Excel worksheet and cell range using standard Excel notation such
as Sheet2!B2:C2. You can also specify named cells and cell ranges.

When you finish using the Wizard, the Excel component appears in your worksheet
with placeholders for the input and output variables. Enter the names of input variables
in the bottom placeholders. Enter the names of the output variables into the placeholders
to the left of the :=. When you click outside the component, input variables are sent to
Excel from Mathcad and a range of cells are returned to Mathcad.
Figure 14-3 shows an example of an Excel component in a Mathcad worksheet.

Note By default, the Excel component displays only some of the rows and columns of the underlying
spreadsheet object. To see more or fewer rows and columns, click the component so that you see
handles along its sides. Resize the component by dragging a handle. To see different rows or
columns than the ones shown in the view, double-click the component and use the scroll bars to
find the rows or columns of interest.

3 3×

10 10×

224 / Chapter 14
Changing the inputs and outputs

If you add input or output variables, you will need to specify which cells in the
component will store the new input and which will provide the new output. You can
do so in the Excel component’s Properties dialog on either the Inputs or Outputs tab.
From here, you can also change the cell ranges for inputs and outputs initially specified
in the Setup Wizard.

Axum/S-PLUS Graph and Script Components
The Axum/S-PLUS Graph and Script components allow you to access the advanced
charting capabilities of Insightful’s Axum and S-PLUS programs. You must have
Axum 5 or higher, or S-PLUS 4.5 or higher installed on your system in order to insert
an Axum/S-PLUS Graph component.

Inserting an Axum or S-PLUS Graph component

The Component Wizard offers you the following options:
• Axis and Plot Type. Allows you to customize the graph displayed.
• The number of input variables. Controls the number of input variables to insert

the component. The maximum number of input variables for Axum and S-PLUS
components is four.

• Use Last Input for Conditioning Variables. Defines a conditioning variable for
creating a Trellis graph.

When you click outside the component, input variables from Mathcad are sent to Axum/
S-PLUS and the graph updates.

Figure 14-3: An Excel spreadsheet object in a Mathcad worksheet.

Application Components / 225
Note If you want to create an Axum graph component with two independent traces, define x- and y-
vectors for each plot. Then, choose the plot type “Scatter Plots of XY Pairs” from the Axum
Graph dialog and specify the input variables corresponding to your vectors of data. Enter the
vector names in the placeholders in xy-pairs, i.e., (x1 y1 x2 y2).

If you change the vectors of data upon which your Axum graph component is
dependent, your graph updates automatically. Figure 14-4 shows an Axum graph that
has been customized with axes labels, a title, and text and graphic annotations.

Inserting an Axum or S-PLUS Script Component

When you insert an Axum or S-PLUS Script component in your worksheet, the
Component Wizard offers you the following options:
• S-PLUS Script Text. You can enter your S-PLUS Script into the component

wizard. If you have an S-PLUS script (*.ssc) file, you can leave this blank.
• The number of input and output variables. Controls the number of input and

output variables your component is inserted with. The Axum/S-PLUS Script
component is limited to four inputs and four outputs.

Tip To import an S-PLUS script file into your component, right click the component and choose
Edit Script... from the popup menu to access the script editor. In the script editor, import your
script by choosing Import from the File menu.

When you click outside the component, input variables from Mathcad are sent to Axum/
S-PLUS and values from Axum/S-PLUS are assigned to output variables in Mathcad.
By default, the Mathcad input variables will be sent into the component as variables
named in0, in1, in2, and in3. The Axum/S-PLUS variables out0, out1, out2, and out3
will define the output variables to be created in Mathcad. You can change these names
on the Input Variable Names and Output Variable Names tabs of the component’s
Properties dialog.

Figure 14-4: An Axum graph in a Mathcad worksheet.

226 / Chapter 14
MATLAB Component
The MATLAB component allows you to exchange data with and access the
programming environment of The MathWorks’ MATLAB Professional 4.2c or higher,
if it is installed on your system.

Tip If you only need to import or export a static data file in MATLAB format, use the File Input/
Output component as described previously under “Data Input and Output Components” on page
219.

Note Some versions of MATLAB support multidimensional arrays and other complex data structures.
While you may use these structures within the MATLAB component, you may pass only scalars,
vectors, and two-dimensional arrays from Mathcad to the MATLAB component and vice versa.

Inserting a MATLAB component

Inserting a MATLAB component from the Component Wizard places the component
into your worksheet with no options. However, before you can actually use your
MATLAB component, you must first edit the component’s script.
To use the MATLAB component to perform calculations in MATLAB:
1. Right click the MATLAB component in your Mathcad worksheet and select Edit

Script from the pop up menu. This action opens a text window for entering
MATLAB commands.

2. Edit the MATLAB script to your liking. Be sure to use appropriate MATLAB variable
names to take input from Mathcad and provide output. If you have a MATLAB .m
file, you can import it into the component as well, by choosing Import from the
File menu in the Script Editor window.

When you click outside the component, input variables from Mathcad are sent to
MATLAB, and arrays from MATLAB are assigned to output variables in Mathcad.
By default, the data in the Mathcad input variables are sent into MATLAB variables
named in0, in1, in2, and in3. The MATLAB variables out0, out1, out2, and
out3 define the data to be passed to the Mathcad output variables. To change these
names, choose Properties from the component’s pop up menu and type in new names
in the Inputs and Outputs tabs.

SmartSketch
SmartSketch is a 2D drawing and design tool developed by Intergraph. The
SmartSketch component allows you to create in a Mathcad worksheet SmartSketch
drawings whose dimensions are computationally linked to your Mathcad calculations.
For example, your Mathcad equations can drive the size of drawing objects.
The SmartSketch component makes Mathcad the ideal platform for creating technical
illustrations and specification-driven designs. You can use the SmartSketch component
if you have SmartSketch 3 or higher, Imagination Engineer, or Imagineer Technical 2.

Application Components / 227
Inserting a SmartSketch drawing

When you insert a SmartSketch component, the Component Wizard offers you the
following options:
• New SmartSketch Document. Creates your component with a blank SmartSketch

drawing file.
• From Existing File. Creates your component using a specific SmartSketch drawing

file. If you already have a drawing file and want to supply input data to it from
Mathcad or want to use its results in your Mathcad worksheet, use this option.

• The number of input and output variables. Controls the number of input and
output variables your component is inserted with. The number of input and output
variables you can pass between Mathcad and SmartSketch is only limited by the
memory and speed of your computer. There is no set limit.

• Input and Output Variable names. If you are creating your component with an
existing drawing file, specify the SmartSketch variable corresponding to each input
or output variable.

When you click “Finish,” the SmartSketch component appears in your worksheet with
placeholders for the input and output variables. Enter the names of Mathcad input
variables in the bottom placeholders. Enter the output variables in the placeholders to
the left of the :=.
Next, you need to bind variables, dimensions, or symbols in your drawing to the inputs
or outputs. Each SmartSketch drawing contains a Variable Table where you can define
variables and edit dimensions. The SmartSketch component binds these entries to your
worksheet inputs and outputs. Right click on the component in Mathcad and choose
Properties from the pop up menu, where you can specify:
• Input names. The dimension, symbol, or variable names used in the SmartSketch

drawing that are controlled by the inputs to the SmartSketch component. Choose a
dimension or variable name from the drop-down list.

• Output names. The dimension, symbol, or variable names used in the SmartSketch
drawing that define the output variables in Mathcad. Choose a dimension or variable
name from the drop-down list.

When you click outside the component, input values are sent to the SmartSketch
drawing from Mathcad and values are returned to Mathcad as output.

Note Input values that do not have units attached are passed in SI units. For example, if you send 2.0
as input for a length, it is assumed to be 2.0 meters. SmartSketch, by default, converts this to the
display units (inches by default) and creates the drawing.

Tip If the drawing is so large that it extends beyond the component window, right click on the
component, choose Properties from the pop up menu, and click the box next to Automatic
Resizing.

228 / Chapter 14
Figure 14-5 shows a SmartSketch drawing inserted into a Mathcad worksheet. The
values from the variables RadiusA, RadiusB, and Distance are sent to SmartSketch as
input and used to create the drawing. The variables WrapB, BLength, and Beta1 are
output variables.

Changing the inputs and outputs

If you add input or output variables, you will need to specify which variables in your
drawing will store the new input and which will provide the new output. You can do
so in the component’s Properties dialog, on either the Inputs or Outputs tab. You can
also change the variables mapped to inputs and outputs initially specified in the Setup
Wizard.

Note In order for the dimensions in a drawing to resize relative to any changes to the dimensions,
check the box next to Maintain Relationships under the Tools menu in SmartSketch. To verify
this setting, double-click on the component and choose Tools from the menu bar.

For more information on SmartSketch, refer to the tutorials and documentation
available from the Help menu in SmartSketch. Example Mathcad files containing
SmartSketch components can be found in “Using Mathcad with Other Applications”
in QuickSheets under the Help menu.

Figure 14-5: Integrating a SmartSketch drawing into a Mathcad worksheet

Application Components / 229
The Data Acquisition Control
The Data Acquisition Control (DAC) allows you to read data directly from or send data
directly to a measurement device installed in your system. The DAC eliminates the step
of saving data to an external file before importing your data into Mathcad for display
and analysis, and to some degree allows for “real time” data logging and analysis. The
current version of the DAC supports National Instruments E-series and Measurement
Computing (formerly Computerboards) data acquisition cards and boards. A complete
list of supported devices is available in the online Developer’s Reference.

Note If you are using the DAC control to bring analog waveform data into Mathcad for “real time”
analysis, be sure that Automatic Calculation, under the Tools menu, is turned on. The degree to
which “real time” data logging and analysis is possible depends on the size of the data being
transferred, the complexity of the calculations being performed, and the speed of your computer.
If at some point Mathcad is unable to keep up with the data transfer or calculations, real-time
analysis is no longer possible.

Tip You can simulate a waveform in Mathcad and use the DAC to send it out to a test device, and
then have the results returned to Mathcad via another DAC.

Note The DAC is not a native component, but rather is embedded in a scriptable object component.
As such, some scripting may be necessary for your DAC to work as desired. If you plan to use
the DAC in your worksheet, you should first read the section on “Scripting Custom OLE
Automation Objects” on page 243.

Inserting a Data Acquisition control

Inserting a DAC from the Component Wizard places the component into your Mathcad
worksheet with no options.

Note The Data Acquisition component is only visible in the Components Wizard dialog box when you
have a supported data device attached.

The DAC is inserted into the worksheet with default properties, namely, one output
and single point analog data collection. These properties are easily modified, however,
using either the object’s Properties dialog box, the Script Editor, or the user interface
for the control, shown in Figure 14-6.

230 / Chapter 14
Customizing a Data Acquisition Control

Once you’ve inserted a DAC, you can modify it in several ways:
• The DAC User Interface. The DAC is inserted with a visible user interface, where

you can tailor the data stream to or from the attached measurement device.
• Adding or Removing Inputs and Outputs. The DAC supports up to four inputs

and four outputs. The number of inputs and outputs can be specified by right
clicking on the DAC and selecting Add or Remove Input Variable or Output
Variable from the pop up menu or by selecting Properties from the pop up menu.

• The DAC Script. In addition to changing the DAC’s user interface, you can also
change its functionality programmatically. The function of the DAC is driven by a
Visual Basic script, which you can edit by right clicking on the DAC and choosing
Edit Script from the pop up menu.

Note For more information about the properties and methods associated with the DAC and other
Scriptable Object components, see the Developer’s Reference under the Help menu.

Example worksheets under “Using Mathcad with Other Applications” in the
QuickSheets under the Help menu show usage of the DAC for single point and analog
waveform input and output. Context sensitive help is available for all methods,
properties, and events associated with the Mathcad Data Acquisition control. You can
access context sensitive help by looking at the AnalogIO object in the Visual Basic
object browser and clicking on the help button.

Figure 14-6: User Interface of the Data Acquisition Control (DAC).

Chapter 15
Extending and Automating Mathcad

! Overview

! Programming within Mathcad

! Building Function DLLs

! Creating Your Own Components

! Accessing Mathcad from Within Another Application

Overview

Mathcad comes with functions and operators spanning mathematical disciplines from
simple arithmetic to trigonometry to calculus and beyond. Even so, you may find that
the basic functionality is not enough to meet your needs. With that in mind, Mathcad
can be extended in several ways, outlined in this section.

Programming within Mathcad

A Mathcad program is a special kind of expression made up of a
sequence of statements created using programming operators,
available on the Programming toolbar. You can open the
Programming toolbar from the View menu.
You can think of a program as a compound expression that
involves potentially many programming operators. Like any
expression, a program returns a value — a scalar, vector, array,
nested array, or string — when evaluated either numerically or
symbolically. Just as you can define a variable or function in terms of an expression,
you can also define them in terms of a program.

Note The symbolic processor treats any units it encounters in a program as undefined variables. To
avoid problems — especially with unit conversions — make sure any program you evaluate
symbolically does not involve units.

Defining a Program

The following example shows how to make a simple program to define the function:

Although the example chosen is simple enough not to require programming, it
illustrates how to separate the statements that make up a program and how to use the
local assignment operator, “←.”

f x w,() x
w

 log=
231

232 / Chapter 15
Note A program can have any number of statements. To add a statement, click on the
Programming toolbar or press [. Mathcad inserts a placeholder below whatever statement
you’ve selected. To delete the placeholder, click on it and press [Bksp].

Tip You can use the Add Line operator in any placeholder in a program, including those associated
with other programming operators such as if, for, and while.

1. Type the left side of the function definition, followed by a
“:=”. Make sure the placeholder is selected.

2. Click on the Programming toolbar or press]. You’ll
see a vertical bar with two placeholders, which will hold the
statements that comprise your program.

3. Click in the top placeholder and type z. Click on the
Programming toolbar. Alternatively, press { to insert a “←,”
the local definition symbol.

4. Type x/w in the placeholder to the right of the local definition
symbol. Press [Tab] to move to the bottom placeholder.

5. Enter the value to be returned by the program, in this case
log(z).

You can now use this function just as you would any other function
in your worksheet.

Note You cannot use Mathcad’s usual assignment operator, “:=,” inside a program. You must use the
local assignment operator, represented by “←,” instead. Variables defined inside a program with
the local assignment operator, such as z in the example above, are local to the program and are
undefined elsewhere in the worksheet. However, within a program, you can refer to Mathcad
variables and functions defined previously in the worksheet.

Note Certain operators on the Programming toolbar insert with visible text. When inserting a for,
while, if, otherwise, break, continue, return, or on error operator, you must use the toolbar
button or keystroke. Typing in the word “break,”for example, is not the same as inserting the
break operator.

Figure 15-1 shows a more complex example involving the quadratic formula. Although
you can define the quadratic formula with a single statement as shown in the top half
of the figure, you may find it easier to define it with a series of simple statements as
shown in the bottom half.
As with any expression, a Mathcad program must have a value. This value is simply
the value of the last statement executed by the program. It can be a string expression,
a single number, or an array of numbers. It can even be an array of arrays (see “Nested
Arrays” on page 63).

Programming within Mathcad / 233
You can also write a Mathcad program to return a symbolic expression. When you
evaluate a program using the symbolic equal sign, “→,” described in Chapter 13,
“Symbolic Calculation,” Mathcad passes the expression to its symbolic processor and,
when possible, returns a simplified symbolic expression. You can use Mathcad’s ability
to evaluate programs symbolically to generate complicated symbolic expressions,
polynomials, and matrices. Figure 15-2 shows a function that, when evaluated
symbolically, generates symbolic polynomials.

Note Programs that include the return and on error statements, described on page 238 and
page 239, cannot be evaluated symbolically since the symbolic processor does not recognize
these operators.

Online Help The “Programming” section in the QuickSheets under the Help menu provides examples you
can modify. You can also download the module “Programming in Mathcad” from
www.mathcad.com for more detailed examples and explanations.

Figure 15-1: A more complex function defined in terms of both an expression
and a program.

Figure 15-2: Using a Mathcad program to generate a symbolic expression.

234 / Chapter 15
Conditional Statements
In general, Mathcad evaluates each statement in your program from the top down. There
may be times, however, when you want Mathcad to evaluate a statement only when a
particular condition is met. You can do this by including an if operator.
For example, suppose you want to define a function that forms a semicircle around the
origin but is otherwise constant. To do this:
1. Type the left side of the function definition, followed by

a “:=”. Make sure the placeholder is selected.

2. Click on the Programming toolbar.
Alternatively, press]. You’ll see a vertical bar with two
placeholders. These placeholders will hold the
statements making up your program.

3. Click on the Programming toolbar in the top
placeholder. Alternatively, press }. Do not type “if.”

4. Enter a Boolean expression in the right placeholder
using one of the relational operators on the Boolean
toolbar. In the left placeholder, type the value you want
the program to return whenever the expression in the
right placeholder is true. If necessary, add more placeholders by clicking .

5. Select the remaining placeholder and click on
the Programming toolbar or press [Ctrl] 3.

6. Type the value you want the program to return if the
condition in the first statement is false.

Figure 15-3 shows a plot of this function.

Figure 15-3: Using the if operator to define a piecewise continuous function.

Programming within Mathcad / 235
Note The if operator in a Mathcad program is not the same as the if function (see “Piecewise
Continuous Functions” on page 254). Although it is not hard to define a simple program using
the if function, as shown in Figure 15-3, the if function can become unwieldy when the number
of branches exceeds two.

Note When using a block of conditional statements in a program, you should always end the block
with an otherwise operator. Failing to do so may cause an error when your program is evaluated.

Looping
One of the greatest strengths of programmability is the ability to execute a sequence of
statements repeatedly in a loop. Mathcad provides two loop structures. The choice of
which loop to use depends on how you plan to tell the loop to stop executing.
• If you know exactly how many times you want a loop to execute, use a for loop.
• If you want the loop to stop when a condition has been met, but you don’t know

how many loops will be required, use a while loop.

Tip See “Controlling Program Execution” on page 237 for methods to interrupt calculation within
the body of a loop.

For Loops

A for loop terminates after a predetermined number of iterations. Iteration is controlled
by an iteration variable defined at the top of the loop. The definition of the iteration
variable is local to the program.
To create a for loop:

1. Click on the Programming toolbar or press [Ctrl] “. Do
not type the word “for.”

2. Type the name of the iteration variable in the placeholder to the
left of the “∈.”

3. Enter the range of values the iteration variable should take in the
placeholder to the right of the “∈.” You usually specify this range
the same way you would for a range variable (see page 103).

4. Type the expression you want to evaluate in the remaining
placeholder. This expression generally involves the iteration
variable. If necessary, add placeholders by clicking on the
Programming toolbar.

The upper half of Figure 15-4 shows this for loop being used to add a sequence of integers.

236 / Chapter 15
Note Although the expression to the right of the is usually a range, it can also be a vector or
a list of scalars, ranges, and vectors separated by commas. The lower half of Figure 15-4 shows
an example in which the iteration variable is defined as the elements of two vectors.

While Loops

A while loop is driven by the truth of some condition. Because of this, you don’t need
to know in advance how many times the loop will execute. It is important, however, to
have a statement somewhere, within the loop, that eventually makes the condition false.
Otherwise, the loop executes indefinitely.
To create a while loop:

1. Click on the Programming toolbar or press [Ctrl]].
Do not type the word “while.”

2. Click in the top placeholder and type a condition. This is
typically a Boolean expression like the one shown.

3. Type the expression you want evaluated in the remaining
placeholder. If necessary, add placeholders by clicking

 on the Programming toolbar.
Figure 15-5 shows a larger program incorporating the above loop.
Upon encountering a while loop, Mathcad checks the condition. If the condition is true,
Mathcad executes the body of the loop and checks the condition again. If the condition
is false, Mathcad exits the loop.

Figure 15-4: Using a for loop with two different kinds of iteration variables.

Programming within Mathcad / 237
Controlling Program Execution
The Programming toolbar in Mathcad includes three operators for controlling program
execution:
• Break. Used within a for or while loop to interrupt the loop when a condition occurs

and move execution to the next statement outside the loop.
• Continue: Used within a for or while loop to interrupt the current iteration and force

program execution to continue with the next iteration of the loop.
• Return: Stops a program and returns a particular value from within the program

rather than from the last statement evaluated.

Break and Continue

It is often useful to ignore iterations of a loop upon the occurrence of some condition.
Mathcad offers two programming operators for this purpose: break, if you want to exit
the loop completely, thereby ignoring all further iterations; and continue if you want
to ignore the current iteration and proceed to the next one.To insert the break operator,
click on a placeholder inside a loop and click on the Programming toolbar or
press [Ctrl] {. Do not type the word “break.” You typically insert break into the left-
hand placeholder of an if operator. The break is evaluated only when the right-hand
side of the if is true.

To insert the continue operator, click on a placeholder inside a loop and click
on the Programming toolbar or press [Ctrl] [. Do not type the word “continue.” As
with break, you typically insert continue into the left-hand placeholder of an if
operator. The continue statement is evaluated only when the right-hand side of the if
is true.

Figure 15-5: Using a while loop to find the first occurrence of a particular
number in a matrix.

238 / Chapter 15
In Figure 15-6, break is used to stop a loop when a negative number is encountered in
an input vector and return the result to that point, while continue is used to ignore non-
positive numbers in an input vector, returning a vector of all positive numbers in v.

Return

A Mathcad program returns the value of the last expression evaluated in the program.
In simple programs, the last expression evaluated is in the last line of the program. As
you create more complicated programs, you may need more flexibility. Return allows
you to interrupt the program and return particular values other than the default value.
A return statement can be used anywhere in a program, even within a deeply nested
loop, to force program termination and the return of a scalar, vector, array, or string.
As with break and continue, you typically use return on the left-hand side of an if
operator, and the return statement is evaluated only when the right-hand side is true.
The following program fragment shows how a return statement is used to return a string
upon the occurrence of a particular condition:

1. Click on the Programming toolbar.

2. Now click on the Programming toolbar or
press [Ctrl]|. Do not type “return.”

3. Create a string by typing the double-quote key (")
on the placeholder to the right of return. Then type
the string to be returned by the program. Mathcad
displays the string between a pair of quotes.

4. Type a condition in the right placeholder of if. This
is typically a Boolean expression like the one shown.
(Type [Ctrl]= for the bold equal sign.)

Figure 15-6: Using break statement halts the loop. Program execution resumes
on the next iteration when continue is used instead.

Programming within Mathcad / 239
In this example, the program returns the string “int” when the expression
is true.

Tip You can add more lines to the expression to the right of return by clicking on the
Programming toolbar.

Error Handling
Errors may occur during program execution, causing Mathcad to stop calculating the
program. For example, because of a particular input, a program may attempt to divide
by 0 in an expression and therefore encounter a singularity. In these cases Mathcad
treats the program as it does any math expression: it marks the offending expression
with an error message and highlights the offending name or operator in a different color,
as described in Chapter 8, “Calculating in Mathcad.”
Mathcad gives you two features to improve error handling in programs:
• The on error operator on the Programming toolbar allows you to trap a numerical

error that would otherwise force Mathcad to stop calculating the program.
• The error function gives you access to Mathcad’s error tip mechanism and lets you

customize error messages issued by your program.

On Error

In some cases you may be able to anticipate program inputs that lead to a numerical
error (such as a singularity, an overflow, or a failure to converge) that would force
Mathcad to stop calculating the program. In more complicated cases, especially when
your programs rely heavily on Mathcad’s numerical operators or built-in function set,
you may not be able to anticipate all of the possible numerical errors that can occur in
a program. The on error statement is designed as a general-purpose error trap to
compute an alternative expression a program encounters a numerical error that would
otherwise stop calculation.

To use on error, click on the Programming toolbar or type [Ctrl] ‘. Do not
type “on error.” In the placeholder to the right of on error, enter the program
statement(s) you ordinarily expect to evaluate but in which you wish to trap any
numerical errors. In the placeholder to the left of on error, enter the program
statement(s) you want to evaluate should the default expression on the right-hand side
fail. Figure 15-7 shows on error operating in a program to find a root of an expression.

Issuing Error Messages

Just as Mathcad automatically stops further evaluation and produces an appropriate
“error tip” on an expression that generates an error (see the bottom of Figure 15-7 for
an example), you can use the error function to stop evaluation and create customized
error tips that appear when your programs or other expressions are used improperly or
cannot return answers.
Typically you use the error function in the placeholder on the left-hand side of an if or
on error operator so that an error tip is generated when a particular condition is
encountered. Figure 15-8 shows how custom errors can be used even in a small program.

floor x() x=

240 / Chapter 15
Tip For more information on the error function, see “String Functions” on page 256.

Note Some error strings are automatically translated to a Mathcad error message that is similar to the
error string. For example “must be real” is translated to “This value must be real. Its imaginary
part must be zero.”

Figure 15-7: The on error statement traps numerical errors in a program.

Figure 15-8: Generating custom errors via the error string function.

Programming within Mathcad / 241
Programs Within Programs
The examples in previous sections have been chosen more for illustrative purposes
rather than their power. This section shows examples of more sophisticated programs.
Much of the flexibility inherent in programming arises from the ability to embed
programming structures inside one another. In Mathcad, you can do this in the following
ways:
• You can make one of the statements in a program be another program, or you can

define a program elsewhere and call it from within another program as if it were a
subroutine.

• You can define a function recursively.

Subroutines

In Figure 15-9 both programs contain a statement, which itself is a program. In
principle, there is no limit to how deeply you can nest a program.

One way many programmers avoid overly complicated programs is to bury the
complexity in subroutines. Figure 15-10 shows an example of this technique.

Tip Breaking up long programs with subroutines is good programming practice. Long programs,
especially those containing deeply nested statements can become difficult for other users to
understand at a glance. They are also more cumbersome to edit and debug.

In Figure 15-10, the function adapt carries out an adaptive quadrature or integration
routine by using intsimp to approximate the area in each subinterval. By defining
intsimp elsewhere and using it within adapt, the program used to define adapt becomes
considerably simpler.

Figure 15-9: Programs in which statements are themselves programs.

242 / Chapter 15
Recursion

Recursion is a powerful programming technique where a function is defined in terms
of itself, as was done with the definition of adapt in Figure 15-10. Recursion is similar
to mathematical induction: if you can determine from , and you know

, then you know all there is to know about f. Recursive definitions have two parts:
• A definition, written in terms of a previous evaluation of the function.
• An initial condition, which prevents the recursion from continuing forever.
Some mathematical examples of a recursive function are the factorial, where the
factorial of n is n times the factorial of n–1, and the compounding of interest. Mathcad
implementations of these examples as recursive programs are shown in Figure 15-11.

Tip Recursive function definitions, while appearing elegant and concise, are not always
computationally efficient. You may find that an equivalent definition using one of the iterative
loops evaluates more quickly.

Figure 15-10: Using a subroutine to manage complexity.

Figure 15-11: Defining functions recursively.

f n 1+() f n()
f 0()

Building Function DLLs / 243
Building Function DLLs

If your program is complex enough, you may benefit by implementing it as a DLL. The
UserEFI interface allows you to access a function you compile as if it were built into
Mathcad. Compiling a function into DLL form will speed up its execution and allow
for greater reusability between worksheets. The UserEFI directory of your Mathcad
installation contains header and library files necessary for creating your own DLLs and
instructions for creating Mathcad DLLs with several different C++ compilers. Check
the environment information in your compiler’s documentation before attempting to
compile your own DLLs.
Mathcad’s UserEFI interface allows you to pass scalars, vectors, two-dimensional
arrays, and strings to and from any DLL you create. Nested matrices are not supported
by the UserEFI interface.
Once you create your DLL, you can add it to Mathcad’s Insert Function dialog by
creating a function entry in the file USER.XML, located in the Doc\Funcdoc
directory of your Mathcad installation. USER.XML contains a template you can copy
and fill out with the pertinent information for your function.

Tip For more information on creating your own DLLs, please consult the “Creating a User DLL”
section of the Developer’s Reference, available from the Help.

Creating Your Own Components

Scripting Custom OLE Automation Objects
As described in the previous chapter, Mathcad has several specialized components for
accessing the functionality of other applications within your Mathcad worksheet.
However, it is possible to dynamically exchange data between a Mathcad worksheet
and any other application that supports OLE Automation, even if Mathcad does not
have a specific component for that application. To do so, you must use the Scriptable
Object component (SOC).
In addition to programming the SOC to interface with other OLE applications, you can
build customized Controls that respond to user input in the worksheet, such as buttons
and text boxes. Also, you can use the SOC to retrieve data from measurement devices
attached to your system. Scripted objects to perform these tasks come pre-installed with
Mathcad. Brief descriptions of their use appear under “Customizing and Redistributing
Components” on page 247 and “The Data Acquisition Control” on page 229. These
components appear in the Insert Component list, but they may need to be customized
through modifications to their scripts in your worksheet.

How to Use Scriptable Object Components

In general, you can create a custom scriptable object from any object you can insert
into a Mathcad worksheet as well as any ActiveX controls installed on your computer.

244 / Chapter 15
To create a Scriptable Object component, you must:
1. Be proficient in a supported scripting language installed on your system, such as

Microsoft VBScript or JScript.
2. Be familiar with the Object Model of the application you are scripting.
3. Have the application or control installed on your system.

Scripting Languages

To use a Scriptable Object component, you must have a supported scripting language
installed on your system. Two scripting languages are supported by Mathcad: Microsoft
VBScript (Visual Basic Scripting Edition) and Microsoft JScript (an implementation
of JavaScript). Other languages may be available on your system and usable for
scripting; however, Mathcad will not automatically generate an appropriate script
template for your component, and there is no assurance that a component scripted with
another scripting language will work properly.
VBScript and JScript are included with Microsoft Internet Explorer, which can be
installed from the Mathcad CD. These scripting languages can also be downloaded at
no charge as part of the Microsoft Windows Script package. at:

http://msdn.microsoft.com/scripting

For more information on scripting languages and syntax associated with their usage,
see the Developer’s Reference under the Mathcad Help menu.

Inserting a Scriptable Object

When you select the Scriptable Object component in the Component Wizard, Mathcad,
launches the Scripting Wizard. The “Object to Script” scrolling list shows the available
server applications on your system. Choose an application that supports the OLE 2
automation interface (consult documentation for the application for details).
You must specify:
• Whether the component is a new file or whether you will insert an existing file.
• Whether you will see the actual file or an icon in your Mathcad worksheet.
In the remaining pages of the Wizard you specify: the type of object you want to script,
the scripting language you are using, the name of the object, and the number of inputs
and outputs the object will accept and provide.
A Scriptable Object component appears in your worksheet with placeholders for the
input and output variables. Enter the input variables in the bottom placeholders. Enter
the output variables into the placeholders to the left of the :=.

Tip If you want to set a Mathcad variable using multiple controls, you can use a Frame Object as a
container object. For more information, consult the Developer’s Reference.

Creating Your Own Components / 245
Note There are two Properties dialog boxes for any customized Scripted Object component, one for
the object and one for the embedded control. Access the one for the object by right clicking on
the object and choosing Properties from the popup menu. This dialog box allows you to specify
the number of inputs and outputs and the name of the object. Access the one for the underlying
control by right clicking on the object and choosing [Control Name] Object⇒Properties. This
dialog box allows you to modify the settings for the embedded control. For example, in the Data
Acquisition Control (see page 229), you use it to change the data collection mode from single
point to waveform.

Mathsoft Controls
The Mathsoft Controls allow you to insert buttons, text boxes, list boxes, and sliders
into your Mathcad worksheet. These components operate in a fashion similar to
Microsoft Forms Controls, which you can insert as Scripted Object components.
Mathsoft Controls provide you, as an author, a means of entering information into a
worksheet other than the standard variable mechanism. This is particularly useful if the
end user is a novice user of Mathcad, or if you want to streamline an oft-repeated
process. These controls are also useful for expanding the degree to which worksheets
can be used as templates for processes. For example, a set of controls can allow the
user to specify quickly and easily various parameters used to compute a series of
calculations. In this way, controls further facilitate your design of a solution rather than
just a worksheet.

Note For more information about the properties and methods associated with Mathsoft Controls and
other Scriptable Object components, see the Developer’s Reference under the Help menu in
Mathcad.

Inserting a Mathsoft Control

To insert a Mathsoft Control into a Mathcad worksheet:
1. Click in a blank spot in your worksheet. If you want to send values to the component

from a Mathcad variable, click below or to the right of the variable definition.
2. Choose Control from the Insert menu or the Controls toolbar. Select the control

you want from the submenu.
3. In the placeholder that appears to the left of the component, enter the name of the

Mathcad variable to be defined.
To add input or output variables to your component, right click the embedded control
(i.e., the button, list box, text box, etc.) and select Add Input Variable or Add Output
Variable from the popup menu. If you add or remove input or output variables from
the component, you must make changes to the script. To edit the script, right click the
embedded control and select Edit Script... from the popup menu.
You are allowed a maximum of four inputs and four outputs for any Mathsoft Control.
For information on inputs, outputs, and scripting a control see the Developer’s
Reference under Help in Mathcad.

Tip For most Mathsoft Controls, you specify outputs only. For example, for a TextBox control you
will get 0 inputs and 1 output, the output being based on the text entered in the text box.

246 / Chapter 15
To change the appearance of a Mathsoft Control:
1. Right click on the component and select Mathsoft [Control] Object⇒Properties

from the popup menu.
2. In the Properties dialog box

you will see various options
that let you change the appear-
ance of the control. For exam-
ple, you can change the Button
control from a checkbox to a
push button within this dialog
box. Make your selections.

3. Click “Apply” to keep the
Properties dialog box open and
preview the changes in your
worksheet. Click “OK” to
close the dialog box and return to the worksheet.

Tip To customize a button quickly with a specific graphic image, create an image and copy it into
your clipboard. Right click on the button and select Mathsoft [Control] Object⇒Paste
Bitmap from the popup menu. Alternatively, you can browse for a bitmap or icon file through
the Pictures tab in the Properties dialog box.

Note The properties of a control are not preserved if you change them through the control’s interface
— only if they are changed programmatically, in the script associated with the control. For
example, if you want a checkbox to be checked by default when you open your worksheet, you
should set the checked state in the script, rather than by clicking on the checkbox, and saving the
worksheet.

To edit the script of a Mathsoft Control:
1. Right click on the component and select Mathsoft [Control] Object⇒Edit

Script... from the popup menu.
2. Make your changes and close the Script Editor.
3. To update the component in your Mathcad worksheet, select Calculate⇒Calculate

Worksheet from the Tools menu or click on the component and press [F9].

Note You cannot send a string as input to any Mathsoft Control component. The only types of input
variables allowed are scalars, vectors, and matrices. However, you can define an output variable
as a string in a Mathsoft Control component. See CONTROLS.MCD in the
QSHEET\SAMPLES\CONTROLS directory for examples of Mathsoft Controls.

Creating Your Own Components / 247
Customizing and Redistributing Components
Once you have scripted a scripted object or control to your liking, you can save it as a
customized Scripted Object component for future use. This creates an ActiveX object
on your system that you can insert into your worksheet from the Insert Component
dialog box. You can also redistribute your component to other users of Mathcad
(version 2001 or later), so that they can use it as well. For example, you could create
components to set various Mathcad built-in variables (TOL, ORIGIN, etc.) within a
worksheet you distribute to others, rather than relying on them to know Mathcad
interface well enough to change the variables on their own.
To export a Scripted Object as a component:
1. Right click on the customized control or control that you wish to save. Choose

Export as Component from the popup menu.
2. In the dialog, specify the name of your component, as it will appear in the Insert

Component dialog box, (e.g., My Listbox) and where you would like to save it.
Click “Next.”

3. If you want to protect the script and settings of your component, specify and verify
a password. Otherwise, leave these fields blank. Click “Finish.”

The component will be saved as an MCM file and registered, making it appear in the
Insert Component dialog box and ready to use.
If you want to share your component with another Mathcad user, you need only supply
them with a copy of the MCM file. To use a component you have received:
1. Copy the MCM file to the MCM folder of your Mathcad installation.
2. Double-click the MCM file to register the component.
3. Start Mathcad. The component will be available in the Insert Component dialog.

Deleting an Exported Component
To remove an MCM file from your system, perform the following steps:
1. Open the Start menu in Windows, and click Run.
2. Click the Browse button. Navigate to your Mathcad program directory, and select

the file mcmreg.exe and click “OK.”
3. In the Run dialog, add the following command-line arguments:

/u mcm\control.mcm, where control.mcm is the MCM file you want to delete; for
example, it is located in the MCM directory of your Mathcad installation. The “/u”
removes information on the MCM file from the Windows Registry.

4. Once you have unregistered the component, it will no longer appear in the
Component Wizard and you can delete the MCM file from your system.

These steps will only work for components exported as MCMfiles, and not for
components shipped with Mathcad.

248 / Chapter 15
Opening a Worksheet Containing a Scripted Component
Mathcad can protect you from potentially damaging code within certain types of
scriptable components. By default, Mathcad will prompt you to enable or disable
evaluation of scriptable components upon opening a worksheet containing them. If you
elect to disable evaluation of a scriptable component when opening the worksheet, you
may re-enable evaluation by right clicking on the component and choosing Enable
Evaluation.
You can adjust the level of security for Mathcad on the Security tab in the Preferences
dialog under the Tools menu. There are three settings:
• High Security. All scripted components are disabled when you open a worksheet.
• Medium Security (default setting). You are notified of the presence of one or more

scripted components when opening your worksheet and given the choice to disable
them or not.

• Low Security. No precautions are taken when opening a worksheet containing
scripted components.

Script Security affects the Scriptable Object component, the Mathsoft Controls, and
any scripted components you export as MCM files.

Accessing Mathcad from Within Another Application

The previous sections have described how to extend the functionality of Mathcad.
Mathcad’s OLE automation interface grants the complementary ability to extend
the functionality of other Windows applications by allowing them to access the
computational features of Mathcad. Using Mathcad’s OLE automation interface, you
can send data dynamically to Mathcad from another application, use Mathcad to
perform calculations or other data manipulations, and send results back to the original
application

Mathcad Add-ins
There are several applications for which specialized Mathcad Add-ins have been
created. An Add-in allows you to insert a Mathcad object into another application. Visit
the Download area of the Mathcad web site at http://www.mathcad.com/ for a
complete list of available Mathcad Add-ins and information about how to download
them for use.

Note The OLE automation interface is supported in Mathcad 7.02 and higher and supersedes the DDE
interface supported in Mathcad 5 and 6. For information on the interface, see the Developer’s
Reference under the Help menu in Mathcad. For specific examples, see TRAJECTORY.XLS
in the QSHEET\SAMPLES\EXCEL and DOUGHNUT.EXE in the
QSHEET\SAMPLES\VBASIC in your Mathcad installation.

Chapter 16
Functions

Built-in Functions

Mathcad provides a set of built-in functions, which you can expand by installing
additional Extension Packs or writing your own built-in functions. The core set of
Mathcad functions is accessible by choosing Function from the Insert menu.

Mathcad Extension Packs

An Extension Pack consists of advanced functions geared to a particular area of
application. Available Extension Packs include Signal Processing, Image Processing,
Wavelets, Communications System Design, and Solving and Optimization. To find out
more about Mathcad Extension Packs, contact Mathsoft or your local distributor, or
visit Mathsoft’s Web site at:

http://www.mathcad.com/

After you install an Extension Pack, the additional functions will appear in the Insert
Function dialog box.

Built-in functions you write yourself in C

If you have a supported 32-bit C/C++ compiler, you can write your own built-in
functions for Mathcad. For details see the Developer’s Reference under Help.

Function Categories
Bessel Functions

H(m, x) H1.sc(m, x) H2(m, x) H2.sc(m, x)
I0.sc(x) I1.sc(x)
In.sc(m, x) J0.sc(x)
J1.sc(x) Jn.sc(m, x)

K0.sc(x)

KI.sc(x) Kn.sc(m, x) Y0.sc(x) Y1.sc(x)
Yn.sc(m, x)
The sc versions are scaled.

Complex Numbers Functions
arg(z) csgn(z) Im(z) Re(z)
signum(z)

Ai z() bei n x,() ber n x,() Bi z()

I0 z() I1 z()
In m z,() J0 z()
J1 z() Jn m z,()
js n z,() K0 z() K1 z()

Kn m z,()Y0 z() Y1 z()
Yn m z,() ys n z,()
249

250 / Chapter 16
Curve Fitting and Smoothing Functions
expfit(vx, vy, [vg]) genfit(vx, vy, vg, F) intercept(vx, vy)
ksmooth(vx,vy, b) lgsfit(vx, vy, vg) line(vx, vy)
linfit(vx, vy, F) lnfit(vx, vy) loess(vx, vy, span)
logfit(vx, vy, vg) medfit(vx, vy) medsmooth(vy, n)
pwrfit(vx, vy, vg) regress(vx, vy, n) sinfit(vx, vy, vg)
slope(vx, vy) stderr(vx, vy) supsmooth(vx,vy)
See Chapter 9, “Solving and Data Analysis,” and online Tutorials on Data Analysis
under the Help menu.

Differential Equation Solving Functions
Bulstoer(y, x1, x2, npoints, D) bulstoer(y, x1, x2, acc, D, kmax, save)
bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score) multigrid(M, ncycle)
numol(x_endpts, xpts, t_endpts, tpts, num_pde, num_pae, pde_func, pinit, bc_codes,

bc_func)
Odesolve(vf, x, b, [step])
Pdesolve(u, x, x-range, t, trange, [xpts], [tpts])
Radau(y, x1, x2, npoints, D) radau(y, x1, x2, acc, D, kmax, save)
relax(a, b, c, d, e, f, u, rjac) Rkadapt(y, x1, x2, npoints, D)
rkadapt(y, x1, x2, acc, D, kmax, save) rkfixed(y, x1, x2, npoints, D)
sbval(v, x1, x2, D, load, score) Stiffb(y, x1, x2, npoints, D, J)
stiffb(y, x1, x2, acc, D, J, kmax, save) Stiffr(y, x1, x2, npoints, D, J)
stiffr(y, x1, x2, acc, D, J, kmax, save)
See Chapter 9, “Solving and Data Analysis,” for more information on differential
equation solving in Mathcad.

Expression Type Functions
These functions identify if an expression is a matrix or vector, real or complex, string,
or units of x. They are most useful inside programs.
IsArray(x) IsScalar(x) IsString(x) UnitsOf(x)

File Access Functions
The file argument you supply to a Mathcad file access function is a string—or a variable
to which a string is assigned—that corresponds either to:
• The name of a data or image file in the folder of the Mathcad worksheet you’re

currently working on.
• The name of a colormap file (see page 308) in the CMAP subfolder of your Mathcad

installation folder.
• A full or relative path to a data, image, or colormap file located elsewhere on a local

or network file system.

Reading and writing ASCII data files

APPENDPRN(file) WRITEPRN(file) READPRN(file)

Functions / 251
Files in plain ASCII format consist only of numbers separated by commas, spaces, or
carriage returns. The numbers in the data files can be integers like 3 or –1, floating-
point numbers like 2.54, or E-format numbers like 4.51E-4 (for).

Tip These ASCII data file access functions are provided mainly for compatibility with worksheets
created in earlier versions of Mathcad. The Data Table and File Input/Output components
provide more general methods of importing and exporting data in a variety of formats. See
Chapter 14, “Importing and Exporting Data.”

Reading and writing WAV files

GETWAVINFO(file) READWAV(file) WRITEWAV(file, r, b)

Reading and writing binary (BIN) files

READBIN(file, type, [[endian], [cols], [skip], [maxrows]])
WRITEBIN(file, type, endian)

Loading and saving colormaps

LoadColormap(file) SaveColormap(file, M)

Reading and Writing Image Files

See “Image Processing Functions” on page 253.

Finance Functions
cnper(rate, pv, fv) crate(nper, pv, fv)
cumint(rate, nper, pv, start, end, [type]) cumprn(rate, nper, pv, start, end, [type])
eff(rate, nper) fv(rate, nper, pmt, [[pv], [type]])
fvadj(prin, v) fvc(rate, v)
ipmt(rate, per, nper, pv, [[fv], [type]]) irr(v, [guess])
mirr(v, fin_rate, rein_rate) nom(rate, nper)
nper(rate, pmt, pv, [[fv], [type]]) npv(rate, v)
pmt(rate, nper, pv, [[fv], [type]]) ppmt(rate, per, nper, pv, [[fv], [type]])
pv(rate, nper, pmt, [[fv] [type]]) rate(nper, pmt, pv, [[fv], [type], [guess]])

All finance functions take only real values. Payments made must be entered as negative
numbers. Cash received must be entered as positive numbers. If you want to specify
the timing of a payment, use the optional timing variable, type, which can be equal to
0 for the end of the period and 1 for the beginning. If omitted, type is 0.

Note When using functions that require information about rates and periods, use the same unit of time
for each. For example, if you make monthly payments on a four-year loan at an annual interest
rate of 12%, use 1% as the interest rate per period (one month) and 48 months as the number of
periods.

Fourier Transforms on Real and Complex Data
CFFT(A) cfft(A) FFT(v) fft(v)
ICFFT(A) icfft(A) IFFT(v) ifft(v)
All Fourier transform functions require vectors as arguments.

4.51 10 4–⋅

252 / Chapter 16
Note When you define a vector v for use with Fourier or wavelet transforms, Mathcad indexes the
vector beginning at 0, by default, unless you have set the value of the built-in variable ORIGIN
to a value other than 0 (see page 100). If you do not define , Mathcad automatically sets it to
zero. This can distort the results of the transform functions.

Mathcad comes with two types of Fourier transform pairs: fft / ifft (or the alternative
FFT / IFFT) and cfft / icfft (or the alternative CFFT / ICFFT). These functions are discrete:
they apply to and return vectors and matrices only. You cannot use them with other
functions.
Use the fft and ifft (or FFT / IFFT) functions if:
• the data values in the time domain are real, and
• the data vector has elements.
Use the cfft and icfft (or CFFT / ICFFT) functions in all other cases.
Be sure to use these functions in pairs. For example, if you used CFFT to go from the
time domain to the frequency domain, you must use ICFFT to transform back to the
time domain. See Figure 16-2 for an example.

Note Different sources use different conventions concerning the initial factor of the Fourier transform
and whether to conjugate the results of either the transform or the inverse transform. The

functions fft, ifft, cfft, and icfft use as a normalizing factor and a positive exponent in
going from the time to the frequency domain. The functions FFT, IFFT, CFFT, and ICFFT
use as a normalizing factor and a negative exponent in going from the time to the frequency
domain.

Graph
CreateMesh(F, s0, s1, t0, t1, sgrid, tgrid, fmap)
CreateSpace(F, t0, t1, tgrid, fmap)
Polyhedron(S) PolyLookup(n)

Hyperbolic Functions
acosh(z) acoth(z) acsch(z) asech(z)
asinh(z) atanh(z) cosh(z) coth(z)
csch(z) sech(z) sinh(z) tanh(z)

Figure 16-1: Using the pmt, ipmt, and ppmt functions.

v0

2m

1 N⁄

1 N⁄

Functions / 253
Image Processing Functions
READ_BLUE(file) READBMP(file) READ_GREEN(file)
READ_HLS(file) READ_HLS_HUE(file) READ_HLS_LIGHT(file)
READ_HLS_SAT(file) READ_HSV(file) READ_HSV_HUE(file)
READ_HSV_SAT(file) READ_HSV_VALUE(file) READ_IMAGE(file)
READ_RED(file) READRGB(file) WRITEBMP(file)
WRITE_HLS(file) WRITE_HSV(file) WRITERGB(file)

Interpolation and Prediction Functions
bspline(vx, vy, u, n) cspline(vx, vy) interp(vs, vx, vy, x)
linterp(vx, vy, x) lspline(vx, vy) predict(v, m, n)
pspline(vx, vy)

Log and Exponential Functions
exp(z) ln(z) lnGamma(z) log(z, b)
Mathcad’s exponential and logarithmic functions can accept and return complex
arguments. ln returns the principal branch of the natural log function.

Lookup Functions
hlookup(z, A, r) lookup(z, A, B) match(z, A) vlookup(z, A, r)

Number Theory/Combinatorics
combin(n, k) gcd(A, B, C, ...) lcm(A, B, C, ...)
mod(x, y) permut(n, k)

Figure 16-2: Use of fast Fourier transforms in Mathcad. Since the random
number generator gives different numbers every time, you may not be able to
recreate this example exactly as you see it.

254 / Chapter 16
Piecewise Continuous Functions
ε antisymmetric tensor(i, j, k) if(cond, tvl, fvl) δ Kronecker delta(m, n)
ε(i, j, k) Φ heaviside step(x) sign(x)

Probability Densities and Probability Distributions
cnorm(x) dbinom(k, n, p)
dcauchy(x, l, s) dchisq(x, d) dexp(x, r)
dF() dgamma(x, s) dgeom(k, p)
dhypergeom(M, a, b, n) dlnorm() dlogis(x, l, s)
dnbinom(k, n, p) dnorm() dpois(k, λ)
dt(x, d) dunif(x, a, b) dweibull(x, s)

pbinom(k, n, p) pcauchy(x, l, s)
pchisq(x, d) pexp(x, r) pF()
pgamma(x, s) pgeom(k, p) phypergeom(M, a, b, n)
plnorm() plogis(x, l, s) pnbinom(k, n, p)
pnorm() ppois(k, λ) pt(x, d)
punif(x, a, b) pweibull(x, s) qbeta(p,)
qbinom(p, n, r) qcauchy(p, l, s) qchisq(p, d)
qexp(p, r) qF() qgamma(p, s)
qgeom(p, r) qhypergeom(p, a, b, n) qlnorm()
qlogis(p, l, s) qnbinom(p, n, r) qnorm()
qpois(p, λ) qt(p, d) qunif(p, a, b)
qweibull(p, s)
Mathcad includes functions for working with several common probability densities.
These functions fall into four classes:
• Probability densities, beginning with the letter “d,” give the likelihood that a

random variable will take on a particular value.
• Cumulative probability distributions, beginning with the letter “p,” give the

probability that a random variable will take on a value less than or equal to a
specified value. These are obtained by simply integrating (or summing when
appropriate) the corresponding probability density from to a specified value.

• Inverse cumulative probability distributions, beginning with the letter “q,” take
a probability p between 0 and 1 as an argument and return a value such that the
probability that a random variable will be less than or equal to that value is p.

• Random number generators, beginning with the letter “r,” return a vector of m
elements drawn from the corresponding probability distribution. Each time you
recalculate an equation containing one of these functions, Mathcad generates new
random numbers.

Tip Two additional functions that are useful for common probability calculations are rnd(x), which
is equivalent to runif(1, 0, x), and cnorm(x), which is equivalent to pnorm(x, 0, 1).

dbeta x s1 s2, ,()

x d1 d2, ,
x µ σ, ,

x µ σ, ,

pbeta x s1 s2, ,()
x d1 d2, ,

x µ σ, ,
x µ σ, ,

s1 s2,

p d1 d2, ,
p µ σ, ,

p µ σ, ,

∞–

Functions / 255
Tip Mathcad’s random number generators have a “seed value” associated with them. A given seed
value always generates the same sequence of random numbers, and choosing Calculate from the
Tools menu advances Mathcad along this random number sequence. Changing the seed value,
however, advances Mathcad along a different random number sequence. To change the seed
value, choose Worksheet Options from the Tools menu and enter a value on the Built-in
Variables tab.

Random Numbers
rbeta(m, s1, s2) rbinom(m, n, p) rcauchy(m, l, s)
rchisq(m, d) rexp(m, r) rF(m, d1, d2)
rgamma(m, s) rgeom(m, p) rhypergeom(M, a, b, n)
rlnorm(m, µ, σ) rlogis(m, l, s) rnbinom(m, n, p)
rnd(x) rnorm(m, µ, σ) rpois(m, λ)
rt(m, d) runif(m, a, b) rweibull(m, s)

Solving Functions

Finding Roots

polyroots(v) root(f(var), var, [a, b]) root(f(z), z, a, b)

Solve Blocks

find(var1, var2, ...) maximize(f, var1, var2, ...)
minerr(var1, var2, ...) minimize(f, var1, var2, ...)

Solving a Linear System of Equations

lsolve(M, v)

Sorting Functions
csort(A, n) reverse(A) rsort(A, n) sort(v)

Tip Unless you change the value of ORIGIN, matrices are numbered by default starting with row
zero and column zero. To sort on the first column of a matrix, for example, use csort(A, 0).

Special Functions
erf(x) erfc(x) fhyper(a, b, c, x) Γ(z)
Γ(x, y) Her(n, x) ibeta(a, x, y) Jac(n, a, b, x)
Lag(n, x) Leg(n, x) lnGamma(z)
mhyper(a, b, x) Tcheb(n, x) zUcheb(n, x)

Statistical Functions
corr(A, B) cvar(A, B) gmean(A, B, C, ...)
hist(int, A) histogram(int, A) hmean(A, B, C, ...)
kurt(A, B, C, ...) mean(A, B, C, ...) median(A, B, C, ...)
mode(A, B, C, ...) skew(A, B, C, ...) stderr(vx, vy)
Stdev(A, B, C, ...) stdev(A, B, C, ...) Var(A, B, C, ...)
var(A, B, C, ...)

256 / Chapter 16
If you are interested in graphing the result of a frequency analysis in a 2D bar plot
showing the distribution of data across the bins, use the function histogram rather than
hist, and plot the first column of the result against the second column of the result.

String Functions
concat(S1, S2, S3, ...) error(S) IsString(x)
num2str(z) search(S, S1, m) str2num(S)
str2vec(S) strlen(S) substr(S, m, n)
vec2str(v)
The strings used and returned by most of these functions are typed in a math placeholder
by pressing the double-quote key (") and entering any combination of letters, numbers,
or other ASCII characters. Mathcad automatically places double quotes around the
string expression and displays quotes around a string returned as a result.

Trigonometric Functions
acos(z) acot(z) acsc(z) angle(x, y)
asec(z) asin(z) atan(z) atan2(x, y)
cos(z) cot(z) csc(z) sec(z)
sin(z) sinc(z) tan(z)
Mathcad’s trig functions and their inverses accept any scalar argument: real, complex,
or imaginary. They also return complex numbers wherever appropriate.
Trigonometric functions expect their arguments in radians. To pass an argument in
degrees, use the built-in unit deg. For example, to evaluate the sine of 45 degrees, type
sin(45*deg). Likewise, to convert a result into degrees, either divide the result by
the built-in unit deg or type deg in the units placeholder.

In Mathcad you enter powers of trig functions such as . Alternatively,
you can use the prefix operator described in “Defining a Custom Operator” on page

392. For example, to type , click on the Evaluation toolbar, enter sin2 in
the left-hand placeholder and enter (x) in the right-hand placeholder.

Truncation and Round-off Functions
Ceil(x, y) ceil(x) Floor(x, y) floor(x)
Round(x, y) round(x, n) Trunc(x, y) trunc(x)

User-defined Functions
kronecker(m, n) Psi(z)

Vector and Matrix Functions

Definition

IsArray(x) IsScalar(x)

sin2 x() sin x()2

sin2 x()

Functions / 257
Forming New Matrices

augment(A, B, C, ...)
CreateMesh(F, [[s0], [s1], [t0], [t1], [sgrid], [tgrid], [fmap]])
CreateSpace(F,[[t0], [t1], [tgrid], [fmap]])
matrix(m, n, f) stack(A, B, C, ...) submatrix(A, ir, jr, ic, jc)

Size and Scope of an Array

cols(A) last(v) length(v) max(A, B, C, ...)
min(A, B, C, ...) rows(A)

Solving a Linear System of Equations

lsolve(m, v)

Special Characteristics of a Matrix

cond1(M) cond2(M) conde(M) condi(M)
norm1(M) norm2(M) norme(M) normi(M)
rank(A) tr(M)

Special Types of Matrices

diag(v) geninv(A) identity(n) rref(A)
Note that functions that expect vectors always expect column vectors rather than row
vectors. To change a row vector into a column vector, use the transpose operator (click

 on the Matrix toolbar).

Figure 16-3: Functions for transforming arrays.

258 / Chapter 16
Note For the functions CreateMesh and CreateSpace, instead of using a vector-valued function, F,
you can use three functions, f1, f2, and f3, representing the x-, y-, and z-coordinates of the
parametric surface or space curve. Your call to one of these functions might look something like
this: . Alternatively, for CreateMesh, you can use a single function

of two variables such as .

Figure 16-4 shows examples of using stack and augment.

Mapping Functions

cyl2xyz(r, θ, z) pol2xy(r, θ) sph2xyz(r, θ, φ)
xy2pol(x, y) xyz2cyl(x, y, z) xyz2sph(x, y, z)
Use any of the 3D mapping functions as the fmap argument for the CreateSpace and
CreateMesh functions.

Lookup Functions

lookup(z, A, B) hlookup(z, A, r) vlookup(z, A, r) match(z, A)

Eigenvalues and Eigenvectors

eigenvals(M) eigenvec(M, z) eigenvecs(M) genvals(M, N)
genvecs(M, N)
Figure 16-5 shows how some of these functions are used.

Decomposition

cholesky(M) lu(M) qr(A) svd(A)
svds(A)

Wavelet Transforms
wave(v) iwave(v)

Figure 16-4: Joining matrices with the augment and stack functions.

CreateMesh f1 f2 f3, ,()

F x y,() x()sin y()cos+
2

--------------------------------------=

Functions / 259
Figure 16-5: Eigenvalues and eigenvectors in Mathcad.

260 / Chapter 16
Mathcad Functions Listed Alphabetically
Notes on the Function Listings

Many functions described as accepting scalar arguments will, in fact, accept vector
arguments. For example, while the input z for the acos function is specified as a “real
or complex number,” acos will in fact evaluate correctly at each of a vector input of
real or complex numbers.

Other functions may possess optional arguments, for example, cumint or fv. For such
functions f and g, the notation f(x,[y]) means that y can be omitted, while the notation
g(x,[[y],[z]]) means that both y and z can be omitted (but not just y or just z).

Some functions don’t accept input arguments with units. For such a function, f, an error
message “must be dimensionless” will arise when evaluating f(x), if x has units.

About the References

References are provided in the Appendices for you to learn more about the numerical
algorithm underlying a given Mathcad function or operator. References are not intended
to give a description of the actual underlying source code. The references are cited for
background information only.

Functions

acos Trigonometric

Syntax acos(z)

Description Returns the inverse cosine of z (in radians). The result is between 0 and π if . For
complex z, the result is the principal value.

Arguments
z real or complex number

acosh Hyperbolic

Syntax acosh(z)

Description Returns the inverse hyperbolic cosine of z. The result is the principal value for complex z.

Arguments
z real or complex number

acot Trigonometric

Syntax acot(z)

Description Returns the inverse cotangent of z (in radians). The result is between 0 and π if z is real. For
complex z, the result is the principal value.

Arguments
z real or complex number

1– z 1≤ ≤

Functions / 261
acoth Hyperbolic

Syntax acoth(z)

Description Returns the inverse hyperbolic cotangent of z. The result is the principal value for complex z.
Arguments

z real or complex number

acsc Trigonometric

Syntax acsc(z)

Description Returns the inverse cosecant of z (in radians). The result is the principal value for complex z.

Arguments
z real or complex number

acsch Hyperbolic

Syntax acsch(z)

Description Returns the inverse hyperbolic cosecant of z. The result is the principal value for complex z.

Arguments
z real or complex number

Ai Bessel

Syntax Ai(x)

Description Returns the value of the Airy function of the first kind.

Arguments
x real number

Example

Comments This function is a solution of the differential equation: .

Algorithm Asymptotic expansion (Abramowitz and Stegun, 1972)

See also Bi

x2

2

d
d y x y⋅– 0=

262 / Chapter 16
angle Trigonometric

Syntax angle(x, y)

Description Returns the angle (in radians) from positive x-axis to point (x, y) in x-y plane. The result is between
0 and 2π.

Arguments
x, y real numbers

See also arg, atan, atan2

APPENDPRN File Access

Syntax APPENDPRN(file) := A

Description Appends a matrix A to an existing structured ASCII data file. Each row in the matrix becomes
a new line in the data file. Existing data must have as many columns as A. The function must
appear alone on the left side of a definition.

Arguments
file string variable corresponding to structured ASCII data filename or path

See also WRITEPRN for more details

arg Complex Numbers

Syntax arg(z)

Description Returns the angle (in radians) from the positive real axis to point z in the complex plane. The
result is between −π and π. Returns the same value as that of θ when z is written as .

Arguments
z real or complex number

See also angle, atan, atan2

asec Trigonometric

Syntax asec(z)

Description Returns the inverse secant of z (in radians). The result is the principal value for complex z.

Arguments
z real or complex number

asech Hyperbolic

Syntax asech(z)

Description Returns the inverse hyperbolic secant of z. The result is the principal value for complex z.

Arguments
z real or complex number

r ei θ⋅⋅

Functions / 263
asin Trigonometric

Syntax asin(z)

Description Returns the inverse sine of z (in radians). The result is between −π/2 and π/2 if . For
complex z, the result is the principal value.

Arguments
z real or complex number

asinh Hyperbolic

Syntax asinh(z)

Description Returns the inverse hyperbolic sine of z. The result is the principal value for complex z.

Arguments
z real or complex number

atan Trigonometric

Syntax atan(z)

Description Returns the inverse tangent of z (in radians). The result is between −π/2 and π/2 if z is real. For
complex z, the result is the principal value.

Arguments
z real or complex number

See also angle, arg, atan2

atan2 Trigonometric

Syntax atan2(x, y)

Description Returns the angle (in radians) from positive x-axis to point (x, y) in x-y plane. The result is between
−π and π.

Arguments
x, y real numbers

See also angle, arg, atan

atanh Hyperbolic

Syntax atanh(z)

Description Returns the inverse hyperbolic tangent of z. The result is the principal value for complex z.

Arguments
z real or complex number

augment Vector and Matrix

Syntax augment(A, B, C, ...)

Description Returns a matrix formed by placing the matrices A, B, C, ... left to right.

Arguments
A, B, C, ... at least two matrices or vectors; A, B, C, ... must have the same number of rows

1– z 1≤ ≤

264 / Chapter 16
Example

See also stack

bei Bessel

Syntax bei(n, x)

Description Returns the value of the imaginary Bessel Kelvin function of order n.

Arguments
n integer, n ≥ 0
x real number

Comments The function is a solution of the differential equation:

.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

See also ber

ber Bessel

Syntax ber(n, x)

Description Returns the value of the real Bessel Kelvin function of order n.

Arguments
n integer, n ≥ 0
x real number

Comments The function is a solution of the differential equation:

.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

See also bei

Bi Bessel

Syntax Bi(x)

Description Returns the value of the Airy function of the second kind.

Arguments
x real number

ber n x,() i bei n x,()⋅+

x2

x2

2

d
d y x d

dx
------y i(x2 n2) y⋅+⋅–⋅+ 0=

ber n x,() i bei n x,()⋅+

x2

x2

2

d
d y x d

dx
------y i(x2 n2) y⋅+⋅–⋅+ 0=

Functions / 265
Comments This function is a solution of the differential equation:

.

Algorithm Asymptotic expansion (Abramowitz and Stegun, 1972)

See also Ai for example

bspline Interpolation and Prediction

Syntax bspline(vx, vy, u, n)

Description Returns the vector of coefficients of a B-spline of degree n, given the knot locations indicated
by the values in u. The output vector becomes the first argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

u real vector with fewer elements than vx; elements of u must be in ascending order; first
element of vx is first element of u; last element of vx is last element of u

n integer equal to 1, 2, or 3; represents the degree of the individual piecewise linear, quadratic, or
cubic polynomial fits

Comments The knots, those values where the pieces fit together, are contained in the input vector u. This is
unlike traditional splines (lspline, cspline, and pspline) where the knots are forced to be the
values contained in the vector vx. The fact that knots are chosen or modified by the user gives
bspline more flexibility than the other splines.

See also lspline for more details

bulstoer Differential Equation Solving

Syntax bulstoer(y, x1, x2, acc, D, kmax, save)

Description Solves a differential equation using the smooth Bulirsch-Stoer method. Provides DE solution
estimate at x2.

Arguments Several arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval
acc real acc > 0 controls the accuracy of the solution; a small value of acc forces the algorithm to

take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values
of acc around 0.001 will generally yield accurate solutions.

D(x, y) real vector-valued function containing the derivatives of the unknown functions
kmax integer kmax > 0 specifies maximum number of intermediate points at which the solution is

approximated; places an upper bound on the number of rows of the matrix returned by these
functions

save real save > 0 specifies the smallest allowable spacing between values at which the solutions are
approximated; places a lower bound on the difference between any two numbers in the first
column of the matrix returned by the function

x2

2

d
d y x y⋅ 0=–

n 1–
≥ ≤

266 / Chapter 16
Comments The specialized DE solvers Bulstoer, Rkadapt, Radau, Stiffb, and Stiffr provide the solution
y(x) over a number of uniformly spaced x-values in the integration interval bounded by x1 and
x2. When you want the value of the solution at only the endpoint, y(x2), use bulstoer, rkadapt,
radau, stiffb, and stiffr instead.

Algorithm Adaptive step Bulirsch-Stoer method (Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and arguments.

Bulstoer Differential Equation Solving

Syntax Bulstoer(y, x1, x2, npts, D)

Description Solves a differential equation using the smooth Bulirsch-Stoer method. Provides DE solution at
equally spaced x-values by repeated calls to bulstoer.

Arguments All arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval
npts integer npts > 0 specifies the number of points beyond initial point at which the solution is to be

approximated; controls the number of rows in the matrix output
D(x,y) real vector-valued function containing the derivatives of the unknown functions

Comments When you know the solution is smooth, use the Bulstoer function instead of rkfixed. The
Bulstoer function uses the Bulirsch-Stoer method which is slightly more accurate under these
circumstances than the Runge-Kutta method used by rkfixed.

Algorithm Fixed step Bulirsch-Stoer method with adaptive intermediate steps (Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and arguments.

bvalfit Differential Equation Solving

Syntax bvalfit(v1, v2, x1, x2, xf, D, load1, load2, score)

Description Converts a boundary value differential equation to initial/terminal value problems. Useful when
derivatives have a single discontinuity at an intermediate point xf.

Arguments
v1 real vector containing guesses for initial values left unspecified at x1
v2 real vector containing guesses for initial values left unspecified at x2

x1, x2 real endpoints of the interval on which the solution to the DEs are evaluated
xf point between x1 and x2 at which the trajectories of the solutions beginning at x1 and those

beginning at x2 are constrained to be equal
D(x, y) real n-element vector-valued function containing the derivatives of the unknown functions

load1(x1, v1) real vector-valued function whose n elements correspond to the values of the n unknown functions
at x1. Some of these values are constants specified by your initial conditions. If a value is
unknown, you should use the corresponding guess value from v1

load2(x2, v2) analogous to load1 but for values taken by the n unknown functions at x2
score(xf, y) real n-element vector-valued function used to specify how you want the solutions to match at xf

One usually defines score(xf, y) := y to make the solutions to all unknown functions match up at xf

Functions / 267
Example

Comments If you have information at the initial and terminal points, use sbval. If you know something about
the solution and its first derivatives at some intermediate value xf, use bvalfit.
bvalfit solves a two-point boundary value problem of this type by shooting from the endpoints
and matching the trajectories of the solution and its derivatives at the intermediate point. bvalfit
is especially useful when a derivative has a discontinuity somewhere in the integration interval,
as the above example illustrates. bvalfit does not return a solution to a differential equation. It
merely computes the initial values the solution must have in order for the solution to match the
final values you specify. You must then take the initial values returned by bvalfit and solve the
resulting initial value problem using rkfixed or any of the other more specialized DE solvers.

Algorithm Shooting method with 4th order Runge-Kutta method (Press et al., 1992)

See also rkfixed, for more information on output and arguments.

ceil Truncation and Round-off

Syntax ceil(z)

Description Returns the least integer ≥ z.

Arguments
z complex number

Comments ceil no longer takes arguments with units.
Ceil(x, y) Returns the smallest multiple of y greater than or equal to x. y must be real and nonzero.
Ceil scales by the threshold before performing the truncation, then rescales after truncation.

See also floor for more details, round, trunc

n 1–

268 / Chapter 16
cfft Fourier Transform

Syntax cfft(A)

Description Returns the fast discrete Fourier transform of complex data (representing measurements at regular
intervals in the time domain). Returns an array of the same size as its argument.

Arguments
A real or complex matrix or vector

Example

Comments There are two reasons why you may not be able to use the fft/ifft Fourier transform pair:
• The data may be complex-valued, hence Mathcad can no longer exploit the symmetry present

in the real-valued case.
• The data vector might not have exactly data points in it, hence Mathcad cannot take

advantage of the efficient FFT algorithm used by the fft/ifft pair.
Although the cfft/icfft pair works on arrays of any size, the functions work significantly faster
when the number of rows and columns contains many smaller factors. Vectors with length
fall into this category, as do vectors having lengths like 100 or 120. Conversely, a vector whose
length is a large prime number slows down the Fourier transform algorithm.

Algorithm Singleton method (Singleton, 1986)

See also fft for more details

2n

2n

Functions / 269
CFFT Fourier Transform

Syntax CFFT(A)

Description Returns the fast discrete Fourier transform of complex data (representing measurements at regular
intervals in the time domain). Returns an array of the same size as its argument.
Identical to cfft(A), except uses a different normalizing factor and sign convention (see example).

Arguments
A real or complex matrix or vector

Example

Algorithm Singleton method (Singleton, 1986)

See also fft for more details

cholesky Vector and Matrix

Syntax cholesky(M)

Description Returns a lower triangular matrix L satisfying the equation .

Arguments
M real, symmetric, positive definite, square matrix

Comments cholesky takes M to be symmetric, in the sense that it uses only the upper triangular part of M
and assumes it to match the lower triangular part.

L LT⋅ M=

270 / Chapter 16
cnorm Probability Distribution

Syntax cnorm(x)

Description Returns the cumulative standard normal distribution. Same as pnorm(x, 0, 1).

Arguments
x real number

Comments cnorm is provided mainly for compatibility with documents created in earlier versions of
Mathcad.

cnper Finance

Syntax cnper(rate, pv, fv)

Description Returns the number of compounding periods required for an investment to yield a specified future
value, fv, given a present value, pv, and an interest rate period, rate.

Arguments
rate real rate, rate > -1

pv real present value, pv > 0
fv real future value, fv > 0

Comments If you know the annual interest rate for the investment, ann_rate, you must calculate the interest
rate per period as rate = ann_rate/nper.

See also crate, nper

cols Vector and Matrix

Syntax cols(A)

Description Returns the number of columns in array A.
Arguments

A matrix or vector

Example

See also rows

combin Number Theory/Combinatorics

Syntax combin(n, k)

Description Returns the number of subsets each of size k that can be formed from n objects.

Arguments
n, k integers,

Comments Each such subset is known as a combination. The number of combinations is C .

See also permut

0 k n≤ ≤
n
k

n!
k! n k–()!⋅
---------------------------=

Functions / 271
concat String

Syntax concat(S1, S2, S3, ...)

Description Appends string S2 to the end of string S1, string S3 to the end of string S2, and so on.

Arguments
S1, S2, S3, ... string expressions

cond1 Vector and Matrix

Syntax cond1(M)

Description Returns the condition number of the matrix M based on the norm.

Arguments
M real or complex square matrix

cond2 Vector and Matrix

Syntax cond2(M)

Description Returns the condition number of the matrix M based on the norm.

Arguments
M real or complex square matrix

Algorithm Singular value computation (Wilkinson and Reinsch, 1971)

conde Vector and Matrix

Syntax conde(M)

Description Returns the condition number of the matrix M based on the Euclidean norm.

Arguments
M real or complex square matrix

condi Vector and Matrix

Syntax condi(M)

Description Returns the condition number of the matrix M based on the infinity norm.

Arguments
M real or complex square matrix

corr Statistics

Syntax corr(A, B)

Description Returns the Pearson correlation coefficient for the elements in two arrays A and B:

Arguments
A, B real or complex matrices or vectors of the same size

See also cvar

L1

L2

m n×

corr A B,() cvar A B,()
stdev A() stdev B()⋅
--=

m n×

272 / Chapter 16
cos Trigonometric

Syntax cos(z), for z in radians;
cos(z·deg), for z in degrees

Description Returns the cosine of z.

Arguments
z real or complex number

cosh Hyperbolic

Syntax cosh(z)

Description Returns the hyperbolic cosine of z.

Arguments
z real or complex number

cot Trigonometric

Syntax cot(z), for z in radians;
cot(z·deg), for z in degrees

Description Returns the cotangent of z.

Arguments
z real or complex number; z is not a multiple of π

coth Hyperbolic

Syntax coth(z)

Description Returns the hyperbolic cotangent of z.

Arguments
z real or complex number

crate Finance

Syntax crate(nper, pv, fv)

Description Returns the fixed interest rate required for an investment at present value, pv, to yield a specified
future value, fv, over a given number of compounding periods, nper.

Arguments
nper integer number of compounding periods, nper ≥ 1

pv real present value, pv > 0
fv real future value, fv > 0

See also cnper, rate

Functions / 273
CreateMesh Vector and Matrix

Syntax CreateMesh(F, s0, s1, t0, t1, sgrid, tgrid, fmap)

Description Returns a nested array containing points on the parametric surface in 3D space defined by F.

Arguments
F real three-dimensional vector-valued function of two variables s and t; defines a parametric

surface in (u,v,w)-space
s0, s1 (optional) real endpoints for the domain for s, s0 < s1
t0, t1 (optional) real endpoints for the domain for t, t0 < t1
sgrid (optional) integer number of gridpoints in s, sgrid > 0
tgrid (optional) integer number of gridpoints in t, tgrid > 0

fmap (optional) real three-dimensional vector-valued function of three variables u, v and w; defines
Cartesian coordinates (x,y,z) in terms of (u,v,w)

Comments CreateMesh is used internally by Mathcad when making 3D QuickPlots of surfaces. The default
value for s0 and t0 is -5, for s1 and t1 it is 5, for sgrid and tgrid it is 20, and for fmap it is the
identity mapping. If s0 and s1 are explicitly specified, then t0 and t1 must also be specified. The
number of cells in the grid determined by sgrid and tgrid is (sgrid−1)(tgrid−1).
There is flexibility in specifying the function F. Calls to CreateMesh might look like
CreateMesh(G), where G is a real scalar-valued function of u and v (and w=G(u,v)); or
CreateMesh(h1,h2,h3), where h1, h2, and h3 are real scalar-valued functions of s and t (and
u=h1(s,t), v=h2(s,t), w=h3(s,t)).
Also, the mapping fmap may be defined to be sph2xyz, a Mathcad built-in function which
converts spherical coordinates (r,θ,φ) to Cartesian coordinates (x,y,z):

x = u sin(w) cos(v) = r sin(φ) cos(θ)
y = u sin(w) sin(v) = r sin(φ) sin(θ)
z = u cos(w) = r cos(φ)

or cyl2xyz, which converts cylindrical coordinates (r,θ,z) to (x,y,z) :
x = u cos(v) = r cos(θ)
y = u sin(v) = r sin(θ)
z = w = z.

CreateSpace Vector and Matrix

Syntax CreateSpace(F, t0, t1, tgrid, fmap)

Description Returns a nested array containing points on the parametric curve in 3D space defined by F.

Arguments
F real three-dimensional vector-valued function of one variable t; defines a parametric curve in

(u,v,w)-space
t0, t1 (optional) real endpoints for the domain for t, t0 < t1
tgrid (optional) integer number of gridpoints in t, tgrid > 0

fmap (optional) real three-dimensional vector-valued function of three variables u, v and w; defines
Cartesian coordinates (x,y,z) in terms of (u,v,w)

Comments CreateSpace is used internally by Mathcad when making 3D QuickPlots of curves. The default
value for t0 is -5, for t1 it is 5, for tgrid it is 20, and for fmap it is the identity mapping. The
number of cells in the grid determined by tgrid is tgrid−1.

274 / Chapter 16
There is flexibility in specifying the function F. Calls to CreateSpace might look like
CreateSpace(g1,g2,g3), where g1, g2, and g3 are real scalar-valued functions of t and u=g1(t),
v=g2(t), w=g3(t).

See also CreateMesh for information about the mapping fmap.

csc Trigonometric

Syntax csc(z), for z in radians;
csc(z·deg), for z in degrees

Description Returns the cosecant of z.

Arguments
z real or complex number; z is not a multiple of π

csch Hyperbolic

Syntax csch(z)

Description Returns the hyperbolic cosecant of z.

Arguments
z real or complex number

csgn Complex Numbers

Syntax csgn(z)

Description Returns 0 if z=0, 1 if Re(z)>0 or (Re(z)=0 and Im(z)>0), −1 otherwise.

Arguments
z real or complex number

See also sign, signum

csort Sorting

Syntax csort(A, j)

Description Sorts the rows of the matrix A by placing the elements in column j in ascending order. The result
is the same size as A.

Arguments
A matrix or vector
j integer,

Algorithm Heap sort (Press et al., 1992)

See also sort for more details, rsort

cspline Interpolation and Prediction

One-dimensional Case

Syntax cspline(vx, vy)

Description Returns the vector of coefficients of a cubic spline with cubic ends. This vector becomes the first
argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

m n×

0 j n 1–≤ ≤

Functions / 275
Two-dimensional Case

Syntax cspline(Mxy, Mz)

Description Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be cubic at
region boundaries spanned by Mxy. This vector becomes the first argument of interp.

Arguments
Mxy matrix whose elements, and , specify the x- and y-coordinates along the

diagonal of a rectangular grid. This matrix plays exactly the same role as vx in the one-
dimensional case described above. Since these points describe a diagonal, the elements in each
column of Mxy must be in ascending order (whenever).

Mz matrix whose ijth element is the z-coordinate corresponding to the point and
. Mz plays exactly the same role as vy does in the one-dimensional case above.

Algorithm Tridiagonal system solving (Press et al., 1992; Lorczak)

See also lspline for more details

cumint Finance

Syntax cumint(rate, nper, pv, start, end, [type])

Description Returns the cumulative interest paid on a loan between a starting period, start, and an ending
period, end, given a fixed interest rate, rate, the total number of compounding periods, nper, and
the present value of the loan, pv.

Arguments
rate real rate, rate ≥ 0
nper integer number of compounding periods, nper ≥ 1

pv real present value
start integer starting period of the accumulation, start ≥ 1
end integer ending period of the accumulation, end ≥ 1, start ≤ end, end ≤ nper
type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment

made at the beginning, default is type = 0

Comments If you know the annual interest rate for the loan, ann_rate, you must calculate the interest rate
per period as rate = ann_rate/nper.

See also cumprn, ipmt, pmt

Figure 16-6: Using the cumint function.

n 2× Mxyi 0, Mxyi 1,

Mxyi k, Mxyj k,< i j<

n n× x Mxyi 0,=
y Mxyj 1,=

276 / Chapter 16
cumprn Finance

Syntax cumprn(rate, nper, pv, start, end, [type])

Description Returns the cumulative principal paid on a loan between a starting period, start, and an ending
period, end, given a fixed interest rate, rate, the total number of compounding periods, nper, and
the present value of the loan, pv.

Arguments
rate real rate, rate ≥ 0
nper integer number of compounding periods, nper ≥ 1

pv real present value
start integer starting period of the accumulation, start ≥ 1
end integer ending period of the accumulation, end ≥ 1, start ≤ end, end ≤ nper
type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment

made at the beginning, default is type = 0

Comments If you know the annual interest rate for the loan, ann_rate, you must calculate the interest rate
per period as rate = ann_rate/nper.

See also cumint, pmt, ppmt

cvar Statistics

Syntax cvar(A, B)

Description Returns the covariance of the elements in two arrays A and B:

, where the bar indicates

complex conjugation.

Arguments
A, B real or complex matrices or vectors

See also corr

cyl2xyz Vector and Matrix

Syntax cyl2xyz(r, θ, z) or cyl2xyz(v)

Description Converts the cylindrical coordinates of a point in 3D space to rectangular coordinates.

Arguments
r, θ, z real numbers

Comments x = r cos(θ), y = r sin(θ), z = z,

See also xyz2cyl

dbeta Probability Density

Syntax dbeta(x, s1, s2)

Description Returns the probability density for a beta distribution: .

Arguments
x real number,

s1, s2 real shape parameters,

m n×

cvar A B,() 1
mn
------- Ai j, mean A()–[] Bi j, mean B()–[]

j 0=

n 1–

∑
i 0=

m 1–

∑=

m n×

v
r
θ
z

=

Γ s1 s2+()
Γ s1() Γ s2()⋅
------------------------------- xs1 1– 1 x–()s2 1–⋅ ⋅

0 x 1< <

s1 0> s2, 0>

Functions / 277
dbinom Probability Density

Syntax dbinom(k, n, p)

Description Returns Pr(X = k) when the random variable X has the binomial distribution:
.

Arguments
k, n integers,

p real number,

dcauchy Probability Density

Syntax dcauchy(x, l, s)

Description Returns the probability density for the Cauchy distribution: .

Arguments
x real number
l real location parameter
s real scale parameter,

dchisq Probability Density

Syntax dchisq(x, d)

Description Returns the probability density for the chi-squared distribution: .

Arguments
x real number,
d integer degrees of freedom,

dexp Probability Density

Syntax dexp(x, r)

Description Returns the probability density for the exponential distribution: .

Arguments
x real number,
r real rate,

dF Probability Density

Syntax dF(x, d1, d2)

Description Returns the probability density for the F distribution:

.

Arguments
x real number,

d1, d2 integer degrees of freedom,

n!
k! n k–()!
-----------------------pk 1 p–()n k–

0 k n≤ ≤

0 p 1≤ ≤

πs 1 x l–() s⁄()2+()() 1–

s 0>

e x 2⁄–

2Γ d 2⁄()
---------------------- x

2

 d 2⁄ 1–()

x 0≥

d 0>

re rx–

x 0≥

r 0>

d1
d1 2⁄ d2

d2 2⁄ Γ d1 d2+() 2⁄()
Γ d1 2⁄()Γ d2 2⁄()

--- x d1 2–() 2⁄

d2 d1x+() d1 d2+() 2⁄
--⋅

x 0≥

d1 0> d2, 0>

278 / Chapter 16
dgamma Probability Density

Syntax dgamma(x, s)

Description Returns the probability density for the gamma distribution: .

Arguments
x real number,
s real shape parameter,

dgeom Probability Density

Syntax dgeom(k, p)

Description Returns Pr(X = k) when the random variable X has the geometric distribution: .

Arguments
k integer,
p real number,

dhypergeom Probability Density

Syntax dhypergeom(m, a, b, n)

Description Returns Pr(X = m) when the random variable X has the hypergeometric distribution:

 where ; 0 for m elsewhere.

Arguments
m, a, b, n integers, , ,

diag Vector and Matrix

Syntax diag(v)

Description Returns a diagonal matrix containing, on its diagonal, the elements of v.

Arguments
v real or complex vector

dlnorm Probability Density

Syntax dlnorm(x, µ, σ)

Description Returns the probability density for the lognormal distribution: .

Arguments
x real number,
µ real logmean
σ real logdeviation,

dlogis Probability Density

Syntax dlogis(x, l, s)

Description Returns the probability density for the logistic distribution: .

Arguments
x real number
l real location parameter
s real scale parameter,

xs 1– e x–

Γ s()

x 0≥
s 0>

p 1 p–()k

k 0≥
0 p 1≤<

a
m

 b
n m–

 a b+
n

 ⁄⋅ max 0 n b–,{ } m min n a,{ }≤ ≤

0 m a≤ ≤ 0 n m b≤–≤ 0 n a b+≤ ≤

1
2πσx

----------------- 1
2σ2
---------– x()ln µ–()2

 exp

x 0≥

σ 0>

x l–() s⁄–()exp
s 1 x l–() s⁄–()exp+()2
--

s 0>

Functions / 279
dnbinom Probability Density

Syntax dnbinom(k, n, p)

Description Returns Pr(X = k) when the random variable X has the negative binomial distribution:

Arguments
k, n integers, and

p real number,

dnorm Probability Density

Syntax dnorm(x, µ, σ)

Description Returns the probability density for the normal distribution: .

Arguments
x real number
µ real mean
σ real standard deviation,

Example

dpois Probability Density

Syntax dpois(k, λ)

Description Returns Pr(X = k) when the random variable X has the Poisson distribution: .

Arguments
k integer,
λ real mean, .

dt Probability Density

Syntax dt(x, d)

Description Returns the probability density for Student’s t distribution: .

Arguments
x real number
d integer degrees of freedom, .

n k 1–+
k

 pn 1 p–()k

n 0> k 0≥

0 p 1≤<

1
2πσ

-------------- 1
2σ2
---------– x µ–()2

 exp

σ 0>

λk

k!
-----e λ–

k 0≥
λ 0>

Γ d 1+() 2⁄()
Γ d 2⁄() πd

--------------------------------- 1 x2

d
-----+

 d 1+() 2⁄–

d 0>

280 / Chapter 16
dunif Probability Density

Syntax dunif(x, a, b)

Description Returns the probability density for the uniform distribution: .

Arguments
x real number,

a, b real numbers,

dweibull Probability Density

Syntax dweibull(x, s)

Description Returns the probability density for the Weibull distribution: .

Arguments
x real number,
s real shape parameter,

eff Finance

Syntax eff(rate, nper)

Description Returns the effective annual interest rate given the nominal interest rate, rate, and the number of
compounding periods per year, nper.

Arguments
rate real rate
nper real number of compounding periods, nper ≥ 1

Comments Effective annual interest rate is also known as annual percentage rate (APR).

See also nom

eigenvals Vector and Matrix

Syntax eigenvals(M)

Description Returns a vector of eigenvalues for the matrix M.

Arguments
M real or complex square matrix

Example

Algorithm Reduction to Hessenberg form coupled with QR decomposition (Press et al., 1992)

See also eigenvec, eigenvecs

1
b a–

a x≤ b≤
a b<

sxs 1– x– s()exp

x 0≥

s 0>

Functions / 281
eigenvec Vector and Matrix

Syntax eigenvec(M, z)

Description Returns a vector containing the normalized eigenvector corresponding to the eigenvalue z of the
square matrix M.

Arguments
M real or complex square matrix

z real or complex number

Algorithm Inverse iteration (Press et al., 1992; Lorczak)
See also eigenvals, eigenvecs

eigenvecs Vector and Matrix

Syntax eigenvecs(M)

Description Returns a matrix containing the normalized eigenvectors corresponding to the eigenvalues of the
matrix M. The nth column of the matrix is the eigenvector corresponding to the nth eigenvalue
returned by eigenvals.

Arguments
M real or complex square matrix

Algorithm Reduction to Hessenberg form coupled with QR decomposition (Press et al., 1992)

See also eigenvals, eigenvec

Example

erf Special

Syntax erf(z)

Description Returns the error function .

Arguments
z real or complex number

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)

See also erfc

erf x() 2
π

-------e t2– td
0

x

∫=

282 / Chapter 16
erfc Special

Syntax erfc(z)

Description Returns the complementary error function .

Arguments
z complex or negative number

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972; Lorczak)

See also erf

error String

Syntax error(S)

Description Returns the string S as an error message.

Arguments
S string

Example

Comments Mathcad’s built-in error messages appear as “error tips” when a built-in function is used
incorrectly or could not return a result.
Use the string function error to define specialized error messages that will appear when your
user-defined functions are used improperly or cannot return answers.This function is especially
useful for trapping erroneous inputs to Mathcad programs you write.
When Mathcad encounters the error function in an expression, it highlights the expression in
red. When you click on the expression, the error message appears in a tooltip that hovers over
the expression. The text of the message is the string argument you supply to the error function.

exp Log and Exponential

Syntax exp(z)

Description Returns the value of the exponential function .

Arguments
z real or complex number

expfit Curve Fitting and Smoothing

Syntax expfit(vx, vy, [vg])

Description Returns a vector containing the parameters (a, b, c) that make the function best
approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for (a, b, c) (optional)

erfc x() 1 erf x()–:=

ez

a e⋅ b x⋅ c+

Functions / 283
Comments This is a special case of the genfit function. A vector of guess values may be used for
initialization. If no guess values are provided, the function will generate its own set. By decreasing
the value of the built-in TOL variable, higher accuracy in expfit might be achieved.

See Also line, linfit, genfit, logfit, lnfit, pwrfit, lgsfit, sinfit, medfit

fft Fourier Transform

Syntax fft(v)

Description Returns the fast discrete Fourier transform of real data. Returns a vector of size .

Arguments
v real vector with elements (representing measurements at regular intervals in the time domain),

where n is an integer, n > 0.

Example

2n 1– 1+

2n

284 / Chapter 16
Comments When you define a vector v for use with Fourier or wavelet transforms, be sure to start with
(or change the value of ORIGIN). If you do not define , Mathcad automatically sets it to zero.
This can distort the results of the transform functions.
Mathcad comes with two types of Fourier transform pairs: fft/ifft and cfft/icfft. These functions
can be applied only to discrete data (i.e., the inputs and outputs are vectors and matrices only).
You cannot apply them to continuous data.
Use the fft and ifft functions if:
• the data values in the time domain are real, and
• the data vector has elements.
Use the cfft and icfft functions in all other cases.
The first condition is required because the fft/ifft pair takes advantage of the fact that, for real
data, the second half of the transform is just the conjugate of the first. Mathcad discards the
second half of the result vector to save time and memory. The cfft/icfft pair does not assume
symmetry in the transform; therefore you must use this pair for complex valued data. Because
the real numbers are just a subset of the complex numbers, you can use the cfft/icfft pair for real
numbers as well.
The second condition is required because the fft/ifft transform pair uses a highly efficient fast
Fourier transform algorithm. In order to do so, the vector you use with fft must have elements.
The cfft/icfft Fourier transform pair uses an algorithm that permits vectors as well as matrices
of arbitrary size. When you use this transform pair with a matrix, you get back a two-dimensional
Fourier transform.
If you used fft to get to the frequency domain, you must use ifft to get back to the time domain.
Similarly, if you used cfft to get to the frequency domain, you must use icfft to get back to the
time domain.
Different sources use different conventions concerning the initial factor of the Fourier transform
and whether to conjugate the results of either the transform or the inverse transform. The functions
fft, ifft, cfft, and icfft use as a normalizing factor and a positive exponent in going from the time
to the frequency domain. The functions FFT, IFFT, CFFT, and ICFFT use as a normalizing
factor and a negative exponent in going from the time to the frequency domain. Be sure to use
these functions in pairs. For example, if you used CFFT to go from the time domain to the
frequency domain, you must use ICFFT to transform back to the time domain.
The elements of the vector returned by fft satisfy the following equation:

In this formula, n is the number of elements in v and i is the imaginary unit.
The elements in the vector returned by the fft function correspond to different frequencies. To
recover the actual frequency, you must know the sampling frequency of the original signal. If v
is an n-element vector passed to the fft function, and the sampling frequency is , the frequency
corresponding to is

Therefore, it is impossible to detect frequencies above the sampling frequency. This is a limitation
not of Mathcad, but of the underlying mathematics itself. In order to correctly recover a signal
from the Fourier transform of its samples, you must sample the signal with a frequency of at least
twice its bandwidth. A thorough discussion of this phenomenon is outside the scope of this
manual but within that of any textbook on digital signal processing.

Algorithm Cooley-Tukey (Press et al., 1992)

v0
v0

2n

2n

1 n⁄

cj
1
n

------- vke2πi j n⁄()k

k 0=

n 1–

∑=

fs
ck

fk
k
n
--- fs⋅=

Functions / 285
FFT Fourier Transform

Syntax FFT(v)

Description Identical to fft(v), except uses a different normalizing factor and sign convention. Returns a
vector of size .

Arguments
v real vector with elements (representing measurements at regular intervals in the time domain),

where n is an integer, n > 0.

Comments The definitions for the Fourier transform discussed in the fft entry are not the only ones used.
For example, the following definitions for the discrete Fourier transform and its inverse appear
in Ronald Bracewell’s The Fourier Transform and Its Applications (McGraw-Hill, 1986):

These definitions are very common in engineering literature. To use these definitions rather than
those presented in the last section, use the functions FFT, IFFT, CFFT, and ICFFT. These differ
from those discussed in the last section as follows:
• Instead of a factor of 1/ in front of both forms, there is a factor of 1/n in front of the

transform and no factor in front of the inverse.
• The minus sign appears in the exponent of the transform instead of in its inverse.
The functions FFT, IFFT, CFFT, and ICFFT are used in exactly the same way as the functions fft,
ifft, cfft, and icfft.

Algorithm Cooley-Tukey (Press et al., 1992)

See also fft for more details

fhyper Special

Syntax fhyper(a, b, c, x)

Description Returns the value of the Gauss hypergeometric function .

Arguments
a, b, c, x real numbers,

Comments The hypergeometric function is a solution of the differential equation

.

Many functions are special cases of the hypergeometric function, e.g., elementary ones like

 ,

and more complicated ones like Legendre functions.

Algorithm Series expansion (Abramowitz and Stegun, 1972)

2n 1– 1+

2n

F υ() 1
n
--- f τ()e 2πi υ n⁄()τ–

τ 1=

n

∑= f τ() F υ()e2πi τ n⁄()υ

υ 1=

n

∑=

n

F2 1 a b c x);;,(

1– x 1< <

x 1 x–()
x2

2

d
d y⋅ ⋅ c a b 1+ +()– x⋅() d

dx
------y⋅ a b y⋅ ⋅–+ 0=

1 x+() x fhyper 1 1 2 x–, , ,()⋅=ln x() x fhyper 1
2
--- 1

2
--- 3

2
--- x2, , ,

 ⋅=asin

286 / Chapter 16
Find Solving

Syntax Find(var1, var2, ...)

Description Returns values of var1, var2, ... which solve a prescribed system of equations, subject to
prescribed inequalities. The number of arguments matches the number of unknowns. Output is
a scalar if only one argument; otherwise it is a vector of answers.

Arguments
var1, var2, ... real or complex variables; var1, var2,.. must be assigned guess values before using Find.

Examples

 A solve block with both equations and inequalities.

Comments Mathcad lets you numerically solve a system of up to 200 simultaneous equations in 200
unknowns. If you aren’t sure that a given system possesses a solution but need an approximate
answer which minimizes error, use Minerr instead. To solve an equation symbolically, that is,
to find an exact answer in terms of elementary functions, choose Variable⇒Solve from the
Symbolics menu or use the solve keyword.
There are four steps to solving a system of simultaneous equations:
1. Provide initial guesses for all the unknowns you intend to solve for. These give Mathcad a

place to start searching for solutions. Use complex guess values if you anticipate complex
solutions; use real guess values if you anticipate real solutions.

2. Type the word Given. This tells Mathcad that what follows is a system of equality or
inequality constraints. You can type Given or given in any style. Just don't type it while in
a text region.

3. Type the equations and inequalities in any order below the word Given. Use [Ctrl]= to
type “=.”

4. Finally, type the Find function with your list of unknowns. You can’t put numerical values
in the list of unknowns: for example, Find(2) in Example 1 isn’t permitted. Like given, you
can type Find or find in any style.

Functions / 287
The word Given, the equations and inequalities that follow, and the Find function form a solve
block.
The types of allowable constraints are z=w, x>y, x<y, x≥y and x≤y. Mathcad does not allow the
following inside a solve block:
• Constraints with “≠”
• Range variables or expressions involving range variables of any kind
• Any kind of assignment statement (statements like x:=1)
The popup menu (right mouse click) associated with Find contains the following options:
• AutoSelect
• Linear—applies the linear Simplex method; guess values for var1, var2,... are not required.
• Nonlinear—applies one of the following to the problem: the conjugate gradient solver; if

that fails to converge, the Levenberg-Marquardt solver; if that fails, the quasi-Newton solver;
guess values for var1, var2,... markedly affect the solution

• Quadratic—applies a quadratic simplex method; guess values for var1, var2,... are not
required

• Advanced options—applies only to the nonlinear conjugate gradient and the quasi-Newton
solvers

You may also adjust the values of the built-in variables CTOL and TOL. The constraint
tolerance CTOL controls how closely a constraint must be met for a solution to be
acceptable; TOL is the convergence tolerance . The default value for CTOL is 10-3.
For more information and examples, see Chapter 9, “Solving and Data Analysis.”

Algorithm For the non-linear case: Levenberg-Marquardt, Quasi-Newton, Conjugate Gradient. For the
linear case: simplex method with branch/bound techniques (Press et al., 1992; Polak, 1997;
Winston, 1994)

See also Minerr, Maximize, Minimize

floor Truncation and Round-off

Syntax floor(z)

Description Returns the greatest integer ≤ z.

Arguments
z complex number

Example

Comments Can be used to define the positive fractional part of a number: mantissa(x) := x - floor(x). When
a complex number is used as the argument, floor returns floor(Re) + floor(Im).
floor no longer takes arguments with units.
Floor(x, y) Returns the greatest multiple of y less than or equal to x. y must be real and
nonzero.Floor scales by the threshold before performing the truncation, then rescales after
truncation.

See also ceil, round, trunc

288 / Chapter 16
fv Finance

Syntax fv(rate, nper, pmt, [[pv], [type]])

Description Returns the future value of an investment or loan over a specified number of compounding
periods, nper, given a periodic, constant payment, pmt, and a fixed interest rate, rate.

Arguments
rate real rate
nper integer number of compounding periods, nper ≥ 1
pmt real payment

pv (optional) real present value, default is pv = 0
type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment

made at the beginning, default is type = 0

Comments If you know the annual interest rate, ann_rate, you must calculate the interest rate per period as
rate = ann_rate/nper.
Payments you make, such as deposits into a savings account or payments toward a loan, must be
entered as negative numbers. Cash you receive, such as dividend checks, must be entered as
positive numbers.

See also fvadj, fvc, nper, pmt, pv, rate

fvadj Finance

Syntax fvadj(prin, v)

Description Returns the future value of an initial principal, prin, after applying a series of compound interest
rates stored in a vector, v.

Arguments
prin real principal

v real vector of interest rates

Comments Use fvadj to calculate the future value of an investment with a variable or adjustable interest rate.

See also fv, fvc

fvc Finance

Syntax fvc(rate, v)

Description Returns the future value of a list of cash flows occurring at regular intervals, v, earning a specified
interest rate, rate.

Arguments
rate real rate

v real vector of cash flows

Comments In v, payments must be entered as negative numbers and income must be entered as positive
numbers.
fvc assumes that the payment is made at the end of the period.

See also fv, fvadj

Functions / 289
gcd Number Theory/Combinatorics

Syntax gcd(A)

Description Returns the largest positive integer that is a divisor of all the values in the array A. This integer
is known as the greatest common divisor of the elements in A.

Arguments
A integer matrix or vector; all elements of A are greater than zero

Comments gcd(A, B, C, ...) is also permissible and returns the greatest common divisor of the elements of
A, B, C,

Algorithm Euclid’s algorithm (Niven and Zuckerman, 1972)

See also lcm

genfit Curve Fitting and Smoothing

Syntax genfit(vx, vy, vg, F)

Description Returns a vector containing the parameters that make a function f of x and n parameters
 best approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for the n parameters
F a function that returns an n+1 element vector containing f and its partial derivatives with respect

to its n parameters

Example

Comments The functions linfit and genfit are closely related. Anything you can do with linfit you can also
do, albeit less conveniently, with genfit. The difference between these two functions is analogous
to the difference between solving a system of linear equations and solving a system of nonlinear
equations. The former is easily done using the methods of linear algebra. The latter is far more

u0 u1 … un 1–, , ,

290 / Chapter 16
difficult and generally must be solved by iteration. This explains why genfit needs a vector of
guess values as an argument and linfit does not.
The example above uses genfit to find the exponent that best fits a set of data. By decreasing the
value of the built-in TOL variable, higher accuracy in genfit might be achieved.

Algorithm Levenberg-Marquardt (Press et al., 1992)

See also line, linfit, expfit, logfit, lnfit, pwrfit, lgsfit, sinfit, medfit

geninv Vector and Matrix

Syntax geninv(A)

Description Returns the left inverse of a matrix A.

Arguments
A real matrix, where .

Comments If L denotes the left inverse, then where I is the identity matrix with cols(I)=cols(A).

Algorithm SVD-based construction (Nash, 1979)

genvals Vector and Matrix

Syntax genvals(M, N)

Description Returns a vector v of eigenvalues each of which satisfies the generalized eigenvalue equation
 for nonzero eigenvectors x.

Arguments
M, N real square matrices of the same size

Example

Comments To compute the eigenvectors, use genvecs.

Algorithm Stable QZ method (Golub and Van Loan, 1989)

m n× m n≥

L A⋅ I=

M x⋅ vj N x⋅ ⋅=

Functions / 291
genvecs Vector and Matrix

Syntax genvecs(M, N)

Description Returns a matrix of normalized eigenvectors corresponding to the eigenvalues in v, the vector
returned by genvals. The jth column of this matrix is the eigenvector x satisfying the generalized
eigenvalue problem .

Arguments
M, N real square matrices of the same size

Algorithm Stable QZ method (Golub and Van Loan, 1989)

See also genvals for example

GETWAVINFO File Access

Syntax GETWAVINFO(file)

Description Creates a vector with four elements containing information about file. The elements corresponds
to the number of channels, the sample rate, the number of bits per sample (resolution), and average
number of bytes per second, respectively.

Arguments
file string variable corresponding to pulse code modulated (PCM) Microsoft WAV filename or path

Comments Data from a WAV file is not scaled.

See also READWAV and WRITEWAV

gmean Statistics

Syntax gmean(A)

Description Returns the geometric mean of the elements of A: .

Arguments
A real matrix or vector with all elements greater than zero

Comments gmean(A, B, C, ...) is also permissible and returns the geometric mean of the elements of A, B,
C,

See also hmean, mean, median, mode

H1 Bessel

Syntax H1(m, z)

Description Returns the value of the Hankel function of the first kind.

Arguments
m non-negative real number
z real or complex number

Comments Hankel functions are Bessel functions of the third kind. H1(m,z) = Jn(m,z) + iYn(m,z).
H1.sc(z),where sc means scaled and is a literal subscript, gives exp(-zi)H1(z) . Scaled functions
are useful for calculating large arguments without overflow.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

See also Jn, Yn, H2

M x⋅ vj N x⋅ ⋅=

gmean A() Ai j,

j 0=

n 1–

∏
i 0=

m 1–

∏

 1 mn()⁄

=

m n×

H1 z()

292 / Chapter 16
H2 Bessel

Syntax H2(m, z)

Description Returns the value of the Hankel function of the second kind.

Arguments
m non-negative real number
z real or complex number

Comments Hankel functions are Bessel functions of the third kind. H2(m,z) = Jn(m,z) - iYn(m,z).
H2.sc(z),where sc means scaled and is a literal subscript, gives exp(zi)H2(z). Scaled functions
are useful for calculating large arguments without overflow.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

See also Jn, Yn, H1

Her Special

Syntax Her(n, x)

Description Returns the value of the Hermite polynomial of degree n at x.

Arguments
n integer, n ≥ 0
x real number

Comments The nth degree Hermite polynomial is a solution of the differential equation:

.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

hist Statistics

Uniform Bin Case

Syntax hist(n, A)

Description Returns a vector containing the frequencies with which values in A fall in n subintervals of the
range of equal length. The resulting histogram vector has n
elements.

Arguments
n integer, n > 0
A real matrix

Comments This is identical to hist(intervals, A) with and
 (see below).

Non-uniform Bin Case

Syntax hist(intervals, A)

Description Returns a vector containing the frequencies with which values in A fall in the intervals represented
by the intervals vector. The resulting histogram vector is one element shorter than intervals.

H2 z()

x
x2

2

d
d y⋅ 2 x⋅– d

dx
------y 2 n y⋅ ⋅+⋅ 0=

min A() value max A()≤ ≤

intervalsi min A() max A() min A()–
n

-- i⋅+=
0 i n≤ ≤

Functions / 293
Arguments
intervals real vector with elements in ascending order

A real matrix

Example

Comments The intervals vector contains the endpoints of subintervals constituting a partition of the data.
The result of the hist function is a vector f, in which is the number of values in A satisfying
the condition .
Mathcad ignores data points less than the first value in intervals or greater than the last value in
intervals.

See also histogram

histogram Statistics

Uniform Bin Case

Syntax histogram(n, A)

Description Returns a matrix with two columns. The first column contains midpoints of the n subintervals of
the range of equal length. The second column is identical to
hist(n, A), and hence the resulting matrix has n rows.

Arguments
n integer, n > 0
A real matrix

Comments Using histogram rather than hist saves you the additional step of defining horizontal axis data
when plotting.

Non-uniform Bin Case

Syntax histogram(intervals, A)

Description Returns a matrix with two columns. The first column contains midpoints of the intervals
represented by the intervals vector. The second column is identical to hist(intervals, A),
and hence the resulting matrix has one less row than intervals.

fi
intervalsi value intervalsi 1+<≤

min A() value max A()≤ ≤

294 / Chapter 16
Arguments
intervals real vector with elements in ascending order

A real matrix
See also hist

hlookup Vector and Matrix

Syntax hlookup(z, A, r)

Description Looks in the first row of a matrix, A, for a given value, z, and returns the value(s) in the same
column(s) in the row specified, r. When multiple values are returned, they appear in a vector.

Arguments
z real or complex number, or string

A real, complex or string matrix
r integer,

Comments The degree of precision to which the comparison adheres is determined by the TOL setting of
the worksheet.

See Also lookup, vlookup, match

hmean Statistics

Syntax hmean(A)

Description Returns the harmonic mean of the elements of A: .

Arguments
A real matrix or vector with all elements greater than zero

Comments hmean(A, B, C, ...) is also permissible and returns the harmonic mean of the elements of A, B,
C,

See also gmean, mean, median, mode

I0 Bessel

Syntax I0(z)

Description Returns the value of the modified Bessel function of the first kind. Same as In(0, z).

Arguments
z real or complex number

Comments I0.sc(z),where sc means scaled and is a literal subscript, gives exp(-|Re(z)|)I0(z) . Scaled
functions are useful for calculating large arguments without overflow.

Algorithm Small order approximation (Abramowitz and Stegun, 1972)

See also In

m n×

ORIGIN r ORIGIN m 1–+≤ ≤

hmean A() 1
mn
------- 1

Ai j,

j 0=

n 1–

∑
i 0=

m 1–

∑

 1–

=

m n×

I0 z()

Functions / 295
I1 Bessel

Syntax I1(z)

Description Returns the value of the modified Bessel function of the first kind. Same as In(1, z).

Arguments
z real or complex number

Comments I1.sc(z),where sc means scaled and is a literal subscript, gives exp(-|Re(z)|)I1(z) . Scaled
functions are useful for calculating large arguments without overflow.

Algorithm Small order approximation (Abramowitz and Stegun, 1972)

ibeta Special

Syntax ibeta(a, x, y)
Description Returns the value of the incomplete beta function with parameter a, at (x, y).
Arguments

a real number,
x, y real numbers, x > 0, y > 0

Comments The incomplete beta function often arises in probabilistic applications. It is defined by the
following formula:

.

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)

icfft Fourier Transform

Syntax icfft(A)

Description Returns the inverse Fourier transform corresponding to cfft. Returns an array of the same size
as its argument.

Arguments
A real or complex matrix or vector

Comments The cfft and icfft functions are exact inverses; .

Algorithm Singleton method (Singleton, 1986)

See also fft for more details and cfft for example

ICFFT Fourier Transform

Syntax ICFFT(A)

Description Returns the inverse Fourier transform corresponding to CFFT. Returns an array of the same size
as its argument.

Arguments
A real or complex matrix or vector

Comments The CFFT and ICFFT functions are exact inverses; .

Algorithm Singleton method (Singleton, 1986)

See also fft for more details and CFFT for example

I1 z()

0 a 1≤ ≤

ibeta a x y, ,() Γ x y+()
Γ x() Γ y()⋅
--------------------------- tx 1– 1 t–()y 1–⋅ td

0

a

∫⋅=

icfft cfft A()() A=

ICFFT CFFT A()() A=

296 / Chapter 16
identity Vector and Matrix

Syntax identity(n)

Description Returns the identity matrix.

Arguments
n integer, n > 0

if Piecewise Continuous

Syntax if(cond, x, y)

Description Returns x or y depending on the value of cond.
If cond is true (non-zero), returns x. If cond is false (zero), returns y.

Arguments
cond arbitrary expression (usually a Boolean expression)

x, y arbitrary real or complex numbers, arrays, or strings

Example

Comments Use if to define a function that behaves one way below a certain number and a different way
above that number. That point of discontinuity is specified by its first argument, cond. The
remaining two arguments let you specify the behavior of the function on either side of that
discontinuity. The argument cond is usually a Boolean expression that relates two math
expressions with a Boolean operator from the Boolean toolbar (=, >, <, ≥, ≤, ≠, ∧, ∨, ⊕, or ¬).
(See “Boolean Operators” on page 415.)
To save time, Mathcad evaluates only the necessary arguments. For example, if cond is false,
there is no need to evaluate x because it will not be returned anyway. Therefore, errors in the
unevaluated argument can escape detection. For example, Mathcad will never detect the fact that
ln(0) is undefined in the expression if(|z| < 0, ln(0), ln(z)).
You can combine Boolean operators to create more complicated conditions. For example, the
condition (x < 1) ∧ (x > 0) acts like an “and” gate, returning 1 if and only if x is between
0 and 1. Similarly, the expression (x < 1) ∨ (x > 0) acts like an “or” gate, returning a 1 if and
only if or .

n n×

x 1> x 0<

Functions / 297
ifft Fourier Transform

Syntax ifft(v)

Description Returns the inverse Fourier transform corresponding to fft. Returns a real vector of size .

Arguments
v real or complex vector of size , where n is an integer.

Comments The argument v is a vector similar to those generated by the fft function. To compute the result,
Mathcad first creates a new vector w by taking the conjugates of the elements of v and appending
them to the vector v. Then Mathcad computes a vector d whose elements satisfy this formula:

.

This is the same formula as the fft formula, except for the minus sign in the exponent. The fft
and ifft functions are exact inverses. For all real v, .

Algorithm Cooley-Tukey (Press et al., 1992)

See also fft for more details

IFFT Fourier Transform

Syntax IFFT(v)

Description Returns the inverse transform corresponding to FFT. Returns a real vector of size .

Arguments
v real or complex vector of size , where n is an integer.

Algorithm Cooley-Tukey (Press et al., 1992)

See also fft for more details

Im Complex Numbers

Syntax Im(z)

Description Returns the imaginary part of z.

Arguments
z real or complex number

See also Re

2n

1 2n 1–+

dj
1
n

------- wke 2πi j n⁄()k–

k 0=

n 1–

∑=

ifft fft v()() v=

2n

1 2n 1–+

298 / Chapter 16
In Bessel

Syntax In(m, z)

Description Returns the value of the modified Bessel function of the first kind.

Arguments
m real number,
z complex number

Comments Solution of the differential equation . In.sc(m,z),where
sc means scaled and is a literal subscript, gives exp(-|Re(z)|)In(m,z) . Scaled functions are useful
for calculating large arguments without overflow.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.
See also Kn

intercept Curve Fitting and Smoothing

Syntax intercept(vx, vy)

Description Returns the y-intercept of the least-squares regression line.

Arguments
vx, vy real vectors of the same size

See also slope for more details, line, stderr, medfit

interp Interpolation and Prediction

One-dimensional Case

Syntax interp(vs, vx, vy, x)

Description Interpolates the value from spline coefficients or regression coefficients. Takes three vector
arguments vx, vy (of the same size) and vs. Returns the interpolated y value corresponding to the
point x.

Arguments
vs real vector output from interpolation routine bspline, cspline, lspline, or pspline or regression

routine regress or loess

vx, vy real vectors of the same size
x real number

Comments Let us first discuss interp on the output of cubic spline routines. To find the interpolated value
for a particular x, Mathcad finds the two points which x falls between. It then returns the y value
on the cubic section enclosed by these two points. For x values less than the smallest point in vx,
Mathcad extrapolates the cubic section connecting the smallest two points of vx. Similarly, for
x values greater than the largest point in vx, Mathcad extrapolates the cubic section connecting
the largest two points of vx.
For best results, do not use the interp function on values of x far from the fitted points. Splines
are intended for interpolation, not extrapolation. Consequently, computed values for such x values
are unlikely to be useful. See predict for an alternative.
In the regress case, interp simply computes the value of the regression polynomial; for loess,
interp uses the local least-squares polynomial on the interval.

Im z()

100– m 100≤ ≤

x2
x2

2

d
d y⋅ x d

dx
------y⋅ x2 m2+() y⋅–+ 0=

Functions / 299
Two-dimensional Case

Syntax interp(vs, Mxy, Mz, v)

Description Interpolates the value from spline coefficients or regression coefficients. Takes two matrix
arguments Mxy and Mz (with the same number of rows) and one vector argument vs. Returns
the interpolated z value corresponding to the point and .

Arguments
vs real vector output from interpolation routine bspline, cspline, lspline, or pspline or regression

routine regress or loess

Mxy, Mz real matrices (with the same number of rows)
v real two-dimensional vector

Comments For best results, do not use the interp function on values of x and y far from the grid points.
Splines are intended for interpolation, not extrapolation. Consequently, computed values for such
x and y values are unlikely to be useful. See predict for an alternative.

See also lspline for example, bspline, cspline, pspline, regress, loess

ipmt Finance

Syntax ipmt(rate, per, nper, pv, [[fv], [type]])

Description Returns the interest payment of an investment or loan for a given period, per, based on periodic
constant payments over a given number of compounding periods, nper, using a fixed interest
rate, rate, and a specified present value, pv.

Arguments
rate real rate
per integer period number, per ≥ 1

nper integer number of compounding periods, 1≤ per ≤ nper
pv real present value
fv (optional) real future value, default is fv = 0

type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment
made at the beginning, default is type = 0

Comments If you know the annual interest rate, ann_rate, you must calculate the interest rate per period as
rate = ann_rate/nper.
Payments you make, such as deposits into a savings account or payments toward a loan, must be
entered as negative numbers. Cash you receive, such as dividend checks, must be entered as
positive numbers.

See also cumint, pmt, ppmt

irr Finance

Syntax irr(v, [guess])

Description Returns the internal rate of return for a series of cash flows, v, occurring at regular intervals.

Arguments
v real vector of cash flows

guess (optional) real guess value, default is guess = 0.1 (10%)

Comments In v, payments must be entered as negative numbers and income must be entered as positive
numbers. There must be at least one negative value and one positive value in v.

x v0= y v1=

300 / Chapter 16
If irr cannot find a result that is accurate to within percent after 20 iterations, it returns
an error. In such a case, a different guess value should be tried, although it will not guarantee a
solution. In most cases irr converges if guess is between 0 and 1.

Note irr and npv are related functions. The internal rate of return (irr) is the rate for which the net
present value (npv) is zero.

See also mirr, npv

IsArray Expression Type

Syntax IsArray(x)

Description Returns 1 if x is a matrix or vector; 0 otherwise.

Arguments
x arbitrary real or complex number, array, or string

IsScalar Expression Type

Syntax IsScalar(x)

Description Returns 1 if x is a real or complex number; 0 otherwise.

Arguments
x arbitrary real or complex number, array, or string

IsString Expression Type

Syntax IsString(x)

Description Returns 1 if x is a string; 0 otherwise.

Arguments
x arbitrary real or complex number, array, or string

iwave Wavelet Transform

Syntax iwave(v)

Description Returns the inverse wavelet transform corresponding to wave.

Arguments
v real vector of elements, where n is an integer, n > 0.

Algorithm Pyramidal Daubechies 4-coefficient wavelet filter (Press et al., 1992)

See also wave for example

J0 Bessel

Syntax J0(z)

Description Returns the value of the Bessel function of the first kind. Same as Jn(0, z).

Arguments
z real or complex number

Comments J0.sc(z), where sc means scaled and is a literal subscript, gives J0(z) multiplied by
exp(-|Im(z)|). Scaled functions are useful for calculating large arguments without overflow.

Algorithm SLATEC Common Mathematical Library; ACM TOMS 21 (1995) 388-393

1 10 5–⋅

2n

J0 z()

Functions / 301
J1 Bessel

Syntax J1(z)

Description Returns the value of the Bessel function of the first kind. Same as Jn(1, z).
Arguments

z real or complex number

Comments J1.sc(z), where sc means scaled and is a literal subscript, gives J1(z) multiplied by
exp(-|Im(z)|). Scaled functions are useful for calculating large arguments without overflow.

Algorithm SLATEC Common Mathematical Library; ACM TOMS 21 (1995) 388-393

Jac Special

Syntax Jac(n, a, b, x)

Description Returns the value of the Jacobi polynomial of degree n with parameters a and b, at x.

Arguments
n integer,

a, b real numbers, a > −1, b > −1
x real number

Comments The Jacobi polynomials are solutions of the differential equation:

and include the Chebyshev and Legendre polynomials as special cases.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

Jn Bessel

Syntax Jn(m, z)

Description Returns the value of the Bessel function of the first kind.

Arguments
m real number, .
z real or complex number

Comments Solution of the differential equation .
Jn.sc(m, z),where sc means scaled and is a literal subscript, gives J0(m,z) multiplied by
exp(-|Im(z)|). Scaled functions are useful for calculating large arguments without overflow.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

See also Yn, H1, H2

J1 z()

n 0≥

1 x2–()
x2

2

d
d y⋅ b a– a b 2+ +() x⋅–()+ d

dx
------y n n a b 1+ + +()⋅+ y⋅ ⋅ 0=

Jm z()

100– m 100≤ ≤

x2
x2

2

d
d y⋅ x d

dx
------y⋅ x2 m2–() y⋅+ + 0=

302 / Chapter 16
js Bessel

Syntax js(n, x)

Description Returns the value of the spherical Bessel function of the first kind, of order n, at x.

Arguments
n integer,
x real number, x > 0; x = 0 is permitted for js if

Comments Solution of the differential equation: .

Algorithm Small order approximation, upward recurrence relation (Abramowitz and Stegun, 1972; Press et
al., 1992)

See also ys

K0 Bessel

Syntax K0(z)

Description Returns the value of the modified Bessel function of the second kind. Same as Kn(0, x).

Arguments
z real or complex number

Comments K0.sc(z),where sc means scaled and is a literal subscript, gives K0(z) multiplied by exp(z).
Scaled functions are useful for calculating large arguments with adequate resolution.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

K1 Bessel

Syntax K1(z)

Description Returns the value of the modified Bessel function of the second kind. Same as Kn(1, x).

Arguments
z real or complex number

Comments K1.sc(z), where sc means scaled and is a literal subscript, gives K1(z) multiplied by exp(z).
Scaled functions are useful for calculating large arguments with adequate resolution.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

Kn Bessel

Syntax Kn(m, z)

Description Returns the value of the modified Bessel function of the second kind.

Arguments
m real number
z real or complex number

Comments Solution of the differential equation .
Kn.sc(z),where sc means scaled and is a literal subscript, gives Kn(m, z) multiplied by exp(z).
Scaled functions are useful for calculating large arguments with adequate resolution.

See also In

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

200– n≤

n 0≥

x2

x2

2

d
d y 2x d

dx
------y x2 n n 1+()⋅–()y+⋅+⋅ 0=

K0 x()

K1 x()

Km x()

x2
x2

2

d
d y⋅ x d

dx
------y⋅ x2 m2+() y⋅–+ 0=

Functions / 303
ksmooth Curve Fitting and Smoothing

Syntax ksmooth(vx, vy, b)

Description Creates a new vector, of the same size as vy, by using a Gaussian kernel to return weighted
averages of vy.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

b real bandwidth b > 0; controls the smoothing window and should be set to a few times the spacing
between your data points on the x-axis, depending on how big of a window you want to use when
smoothing

Comments The ksmooth function uses a Gaussian kernel to compute local weighted averages of the input
vector vy. This smoother is most useful when your data lies along a band of relatively constant
width. If your data lies scattered along a band whose width fluctuates considerably, you should
use an adaptive smoother like supsmooth.
For each in the n-element vector vy, the ksmooth function returns a new given by:

 where:

and b is a bandwidth which you supply to the ksmooth function. The bandwidth is usually set
to a few times the spacing between data points on the x axis, depending on how big a window
you want to use when smoothing.

Algorithm Moving window Gaussian kernel smoothing (Lorczak)

See also “medsmooth” on page 318 for more details, “supsmooth” on page 378.

kurt Statistics

Syntax kurt(A)

Description Returns the kurtosis of the elements of A:

Arguments
A real or complex matrix or vector;

Comments kurt(A, B, C, ...) is also permissible and returns the kurtosis of the elements of A, B, C,

Lag Special

Syntax Lag(n, x)

Description Returns the value of the Laguerre polynomial of degree n at x.

Arguments
n integer,
x real number

vyi vy′i

vy′i

K
vxi vxj–

b

 vyj
j 1=

n

∑

K
vxi vxj–

b

j 1=

n

∑

--= K t() 1
2π 0.37()⋅

------------------------------ t2

2 0.37()2⋅
-------------------------–

 exp⋅=

kurt A() mn mn 1+()
mn 1–() mn 2–() mn 3–()

Ai j, mean A()–

Stdev A()
--

4

j 0=

n 1–

∑
i 0=

m 1–

∑

3 mn 1–()2

mn 2–() mn 3–()
---–=

m n× m n 4≥⋅

n 0≥

304 / Chapter 16
Comments The Laguerre polynomials are solutions of the differential equation

.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

last Vector and Matrix

Syntax last(v)

Description Returns the index of the last element in vector v.

Arguments
v vector

Comments last(v) = length(v) − 1 + ORIGIN

See also rows

lcm Number Theory/Combinatorics

Syntax lcm(A)

Description Returns the smallest positive integer that is a multiple of all the values in the array A. This integer
is known as the least common multiple of the elements in A.

Arguments
A integer matrix or vector; all elements of A are greater than zero

Comments lcm(A, B, C, ...) is also permissible and returns the least common multiple of the elements of A,
B, C,

Algorithm Euclid’s algorithm (Niven and Zuckerman, 1972)

See also gcd

Leg Special

Syntax Leg(n, x)

Description Returns the value of the Legendre polynomial of degree n at x.

Arguments
n integer,
x real number

Comments The Legendre polynomials are solution of the differential equation

.

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

length Vector and Matrix

Syntax length(v)

Description Returns the number of elements in vector v.

Arguments
v vector

Comments Same as rows(v)

x
x2

2

d
d y⋅ 1 x–()+ d

dx
------y n y⋅+⋅ 0=

n 0≥

1 x2–()
x2

2

d
d y 2 x d

dx
------y⋅ ⋅ n n 1+() y⋅ ⋅+–⋅ 0=

Functions / 305
lgsfit Curve Fitting and Smoothing

Syntax lgsfit(vx, vy, vg)

Description Returns a vector containing the parameters (a, b, c) that make the function
best approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for (a, b, c)

Comments This is a special case of the genfit function. A vector of guess values is needed for initialization.
By decreasing the value of the built-in TOL variable, higher accuracy in lgsfit might be achieved.

See Also line, linfit, genfit, expfit, logfit, lnfit, pwrfit, sinfit, medfit

line Curve Fitting and Smoothing

Syntax line(vx, vy)

Description Returns a vector containing the y-intercept and the slope of the least-squares regression line.

Arguments
vx, vy real vectors of the same size

See Also slope for more details, intercept, stderr, medfit

linfit Curve Fitting and Smoothing

Syntax linfit(vx, vy, F)

Description Returns a vector containing the coefficients used to create a linear combination of the functions
in F which best approximates the data in vx and vy. See genfit for a more general technique.

Arguments
vx, vy real vectors of the same size; elements of vx should be in ascending order

F a function of a single variable that returns a vector of functions

Example

a 1 b cx–()exp+() 1–⋅

306 / Chapter 16
Comments Not all data sets can be modeled by lines or polynomials. There are times when you need to model
your data with a linear combination of arbitrary functions, none of which represent terms of a
polynomial. For example, in a Fourier series you try to approximate data using a linear
combination of complex exponentials. Or you may believe your data can be modeled by a
weighted combination of Legendre polynomials, but you just don't know what weights to assign.
The linfit function is designed to solve these kinds of problems. If you believe your data could
be modeled by a linear combination of arbitrary functions:

, you should use linfit to evaluate the . The
example above shows a linear combination of three functions x, , and to model
some data.
There are times however when the flexibility of linfit is still not enough. Your data may have to
be modeled not by a linear combination of data but by some function whose parameters must be
chosen. For example, if your data can be modeled by the
sum: and all you need to do is solve for the unknown
weights and , then the linfit function is sufficient. By contrast, if instead your data is to
be modeled by the sum: and you now have to solve for the
unknown parameters and , you should use the genfit function.

Algorithm SVD-based least squares minimization (Press et al., 1992)

See also line, genfit

linterp Interpolation and Prediction

Syntax linterp(vx, vy, x)

Description Returns a linearly interpolated value at x.

Arguments
vx, vy real vectors of the same size; elements of vx should be in ascending order

x real number at which to interpolate

Example

y a0 f0 x()⋅ a1 f1 x()⋅ … an fn x()⋅+ + += ai
x2 x 1+() 1–

f x() a1 2x()sin⋅ a2 3x()tanh⋅+=
a1 a2

f x() 2 a1x()sin⋅ 3 a2x()tanh⋅+=
a1 a2

Functions / 307
Comments Interpolation involves using existing data points to predict values between these data points.
Mathcad allows you to either connect the data points with straight lines (linear interpolation, as
with linterp) or to connect them with sections of a cubic polynomial (cubic spline interpolation,
as with lspline, pspline, cspline, bspline and interp).
Unlike the regression functions discussed elsewhere, these interpolation functions return a curve
which must pass through the points you specify. Therefore, the resulting function is very sensitive
to spurious data points. If your data is noisy, you should consider using the regression functions
instead.
Be sure that every element in the vx and vy arrays contains a data value. Because every element
in an array must have a value, Mathcad assigns 0 to any elements you have not explicitly assigned.
To find the interpolated value for a particular x, linterp finds the two points between which the
value falls and returns the corresponding y value on the straight line between the two points.
For x values before the first point in vx, linterp extrapolates the straight line between the first
two data points. For x values beyond the last point in vx, linterp extrapolates the straight line
between the last two data points.
For best results, the value of x should be between the largest and smallest values in the vector
vx. The linterp function is intended for interpolation, not extrapolation. Consequently, computed
values for x outside this range are unlikely to be useful. See predict for an alternative.

ln Log and Exponential

Syntax ln(z)

Description Returns the natural logarithm of nonzero z (to base e). It is the principal value (imaginary part
between π and −π) for complex z.

Arguments
z real or complex nonzero number

Example

Comments In general, a complex argument to the natural log function returns:

Mathcad's ln function returns the value corresponding to ,
namely: (principal branch of the natural log
function).

See also log

x i y⋅+()ln x i y⋅+ln y x⁄() i⋅atan 2 n π i⋅ ⋅ ⋅+ +=
n 0=

x i y⋅+()ln x i y⋅+ln y x⁄() i⋅atan+=

308 / Chapter 16
lnfit Curve Fitting and Smoothing

Syntax lnfit(vx, vy)

Description Returns a vector containing the parameters (a, b) that make the function best
approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

Comments This is a two-parameter alternative to the three-parameter logfit function. It uses linear regression
to perform the curve fit (by taking the logarithm of y-values), hence there is no need for a guess
values vector.

See Also line, linfit, genfit, expfit, pwrfit, logfit, lgsfit, sinfit, medfit

LoadColormap File Access

Syntax LoadColormap(file)

Description Returns an array containing the values in the colormap file.

Arguments
file string variable corresponding to CMP filename

Comments The file file is the name of a colormap located in the CMAPS subdirectory of your Mathcad
directory. The function LoadColormap is useful when you want to edit a colormap or use it to
create a new colormap. See online Help for more information.

See also SaveColormap

loess Curve Fitting and Smoothing

One-dimensional Case

Syntax loess(vx, vy, span)

Description Returns the vector required by the interp function to find the set of second order polynomials
that best fit particular neighborhoods of data points specified in arrays vx and vy.

Arguments
vx, vy real vectors of the same size

span real specifies how large a neighborhood loess will consider in performing this local
regression

a x()ln⋅ b+

span 0>

Functions / 309
Example

Comments Instead of generating a single polynomial the way regress does, loess generates a different
second order polynomial depending on where you are on the curve. It does this by examining
the data in a small neighborhood of the point you're interested in. The argument span controls
the size of this neighborhood. As span gets larger, loess becomes equivalent to regress with

. A good default value is .
The example above shows how span affects the fit generated by the loess function. A smaller
value of span makes the fitted curve track fluctuations in data more effectively. A larger value
of span tends to smear out fluctuations in data and thereby generates a smoother fit.

Two-dimensional Case

Syntax loess(Mxy, vz, span)

Description Returns the vector required by the interp function to find the set of second order polynomials
that best fit particular neighborhoods of data points specified in arrays Mxy and vz.

Arguments
Mxy real matrix containing x-y coordinates of the m data points

vz real m-element vector containing the z coordinates corresponding to the points specified in Mxy
span real specifies how large a neighborhood loess will consider in performing this local

regression

Comments Can be extended naturally to the three- and four-dimensional cases (that is, up to four independent
variables).

Algorithm Local polynomial estimation (Cleveland and Devlin, 1988)

See also “regress” on page 354 for more details.

n 2= span 0.75=

m 2×

span 0>

310 / Chapter 16
log Log and Exponential

Classical Definition

Syntax log(z)

Description Returns the common logarithm of nonzero z to base 10. The result is the principal value
(imaginary part between π and −π) for complex z.

Arguments
z real or complex nonzero number

Extended Definition

Syntax log(z, b)

Description Returns the logarithm of nonzero z to base b. The result is the principal value (imaginary part
between π and −π) for complex z.

Arguments
z real or complex nonzero number
b real number, b > 0, b ≠ 1

See also ln

logfit Curve Fitting and Smoothing

Syntax logfit(vx, vy, vg)

Description Returns a vector containing the parameters (a, b, c) that make the function best
approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for (a, b, c)

Comments This is a special case of the genfit function. A vector of guess values is needed for initialization.
By decreasing the value of the built-in TOL variable, higher accuracy in logfit might be achieved.

See Also line, linfit, genfit, expfit, pwrfit, lnfit, lgsfit, sinfit, medfit

lookup Vector and Matrix

Syntax lookup(z, A, B)

Description Looks in a vector or matrix, A, for a given value, z, and returns the value(s) in the same position(s)
(i.e., with the same row and column numbers) in another matrix, B. When multiple values are
returned, they appear in a vector in row-wise order, starting with the top left corner of B and
sweeping to the right.

Arguments
z real or complex number, or string

A, B real, complex or string matrices or vectors

Comments The degree of precision to which the comparison adheres is determined by the TOL setting of
the worksheet.

See Also hlookup, vlookup, match

a x b+()ln⋅ c+

m n×

Functions / 311
lsolve Vector and Matrix

Syntax lsolve(M, v)

Description Returns a solution vector x such that .

Arguments
M real or complex square matrix that is neither singular nor nearly singular
v real or complex vector

Example

Comments A matrix is singular if its determinant is zero; it is nearly singular if it has a high condition number.
Alternatively, you can solve a system of linear equations by using matrix inversion, via numeric
or symbolic solve blocks.

Algorithm LU decomposition and forward/backward substitution (Press et al., 1992)

lspline Interpolation and Prediction

One-dimensional Case

Syntax lspline(vx, vy)

Description Returns the vector of coefficients of a cubic spline with linear ends. This vector becomes the first
argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

M x⋅ v=

312 / Chapter 16
Example

Comments Cubic spline interpolation lets you pass a curve through a set of points so that the first and second
derivatives of the curve are continuous across each point. This curve is assembled by taking three
adjacent points and constructing a cubic polynomial passing through those points. These cubic
polynomials are then strung together to form the completed curve.
To fit a cubic spline curve through a set of points:
1. Create the vectors vx and vy containing the x and y coordinates through which you want the

cubic spline to pass. The elements of vx should be in ascending order. (Although we use the
names vx, vy, and vs, there is nothing special about these variable names; you can use
whatever names you prefer.)

2. Generate the vector . The vector vs is a vector of intermediate results
designed to be used with interp. It contains, among other things, the second derivatives for
the spline curve used to fit the points in vx and vy.

3. To evaluate the cubic spline at an arbitrary point, say x0, evaluate
here vs, vx, and vy are the vectors described earlier. You could have accomplished the same
task by evaluating: . As a practical matter, though,
you'll probably be evaluating interp for many different points.

The call to lspline can be time-consuming and the result won't change from one point to the next,
so it makes sense to do it just once and store the outcome in the vs array.
Be sure that every element in the input arrays contains a data value. Because every element in a
array must have a value, Mathcad assigns 0 to any elements you have not explicitly assigned.
In addition to lspline, Mathcad comes with three other cubic spline functions: pspline, cspline,
and bspline. The pspline function generates a spline curve that approaches a parabola at the
endpoints, while the cspline function generates a spline curve that can be fully cubic at the
endpoints. bspline, on the other hand, allows the interpolation knots to be chosen by the user.

vs lspline vx vy,():=

interp vs vx vy x0, , ,()

interp lspline vx vy,() vx vy x0, , ,()

Functions / 313
For lspline, the first three components of the output vector vs are vs0=0 (a code telling interp
that vs is the output of a spline function as opposed to a regression function), vs1=3 (the index
within vs where the second derivative coefficients begin) and vs2=0 (a code denoting lspline).
The first three components for pspline and cspline are identical except vs2=1 (the code denoting
pspline) and vs2=2 (the code denoting cspline), respectively.

Two-dimensional Case

Syntax lspline(Mxy, Mz)

Description Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be linear at
region boundaries spanned by Mxy. This vector becomes the first argument of the interp
function.

Arguments
Mxy matrix whose elements, and , specify the x- and y-coordinates along the

diagonal of a rectangular grid. This matrix plays exactly the same role as vx in the one-
dimensional case described earlier. Since these points describe a diagonal, the elements in each
column of Mxy must be in ascending order (whenever).

Mz matrix whose ijth element is the z-coordinate corresponding to the point and
. Mz plays exactly the same role as vy does in the one-dimensional case above.

Comments Mathcad handles two-dimensional cubic spline interpolation in much the same way as the one-
dimensional case. Instead of passing a curve through a set of points so that the first and second
derivatives of the curve are continuous across each point, Mathcad passes a surface through a
grid of points. This surface corresponds to a cubic polynomial in x and y in which the first and
second partial derivatives are continuous in the corresponding direction across each grid point.
The first step in two-dimensional spline interpolation is exactly the same as that in the one-
dimensional case: specify the points through which the surface is to pass. The procedure,
however, is more complicated because you now have to specify a grid of points.
To perform two-dimensional spline interpolation, follow these steps:
1. Create Mxy.
2. Create Mz.
3. Generate the vector . The vector vs is a vector of intermediate

results designed to be used with interp.
To evaluate the cubic spline at an arbitrary point, say , evaluate

, where vs, Mxy, and Mz are as described earlier.

The result is the value of the interpolating surface corresponding to the arbitrary point
. You could have accomplished exactly the same task by evaluating:

.

As a practical matter though, you'll probably be evaluating interp for many different points. The
call to lspline can be time-consuming, and the result won't change from one point to the next, so
do it just once and store the outcome in the vs array.

n 2× Mxyi 0, Mxyi 1,

Mxyi k, Mxyj k,< i j<

n n× x Mxyi 0,=
y Mxyj 1,=

vs lspline Mxy Mz,():=

x0 y0,()

interp vs Mxy Mz x0
y0

, , ,

x0 y0,()

interp lspline Mxy Mz,() Mxy Mz x0
y0

, , ,

314 / Chapter 16
In addition to lspline, Mathcad comes with two other cubic spline functions for the two-
dimensional case: pspline and cspline. The pspline function generates a spline curve that
approaches a second degree polynomial in x and y along the edges. The cspline function generates
a spline curve that approaches a third degree polynomial in x and y along the edges.

Algorithm Tridiagonal system solving (Press et al., 1992; Lorczak)

lu Vector and Matrix

Syntax lu(M)

Description Returns an matrix whose first n columns contain an permutation matrix P,
whose next n columns contain an lower triangular matrix L, and whose remaining n
columns contain an upper triangular matrix U. These matrices satisfy the equation

.

Arguments
M real or complex matrix

Comments This is known as the LU decomposition (or factorization) of the matrix M, permuted by P.

Algorithm Crout’s method with partial pivoting (Press et al., 1992; Golub and Van Loan, 1989)

match Vector and Matrix

Syntax match(z, A)

Description Looks in a vector or matrix, A, for a given value, z, and returns the index (indices) of its positions
in A. When multiple values are returned, they appear in a nested array in row-wise order, starting
with the top left corner of A and sweeping to the right.

Arguments
z real or complex number, or string

A real, complex or string matrix or vector

Comments The degree of precision to which the comparison adheres is determined by the TOL setting of
the worksheet.

See Also lookup, hlookup, vlookup

matrix Vector and Matrix

Syntax matrix(m, n, f)

Description Creates a matrix in which the ijth element is the value f(i, j), where and
.

Arguments
m, n integers

f scalar-valued function

n 3 n⋅()× n n×
n n×

n n×
P M⋅ L U⋅=

n n×

m n×

i 0 1 … m 1–, , ,=
j 0 1 … n 1–, , ,=

Functions / 315
max Vector and Matrix

Syntax max(A)

Description Returns the largest element in A. If A is complex, returns max(Re(A)) + i max(Im(A)).

Arguments
A real or complex matrix or vector, or string

Comments max(A, B, C, ...) is also permissible and returns the largest element in A, B, C,

See also min

Maximize Solving

Syntax Maximize(f, var1, var2,...)

Description Returns values of var1, var2,... which solve a prescribed system of equations, subject to
prescribed inequalities, and which make the function f take on its largest value. The number of
arguments matches the number of unknowns, plus one. Output is a scalar if only one unknown;
otherwise it is a vector of answers.

Arguments
f real-valued objective function

var1, var2, ... real or complex variables; var1, var2, ... must be assigned guess values before using Maximize

Examples

m n×

316 / Chapter 16 Functions
Comments There are five steps to solving a maximization problem:
1. Define the objective function f.
2. Provide an initial guess for all the unknowns you intend to solve for. This gives Mathcad a

place to start searching for solutions.
3. Type the word given. This tells Mathcad that what follows is a system of equality or

inequality constraints. You can type given or Given in any style. Just be sure you don't type
it while in a text region.

4. Now type the equations and inequalities in any order below the word given. Use [Ctrl]=
to type “=.”

5. Finally, type the Maximize function with f and your list of unknowns. You can’t put
numerical values in the list of unknowns; for example, Maximize(f, 2) isn’t permitted. Like
given, you can type maximize or Maximize in any style.

The Maximize function returns values as follows:
• If there is one unknown, Maximize returns a scalar value that optimizes f.
• If there is more than one unknown, Maximize returns a vector of answers; for example,

Maximize(f, var1, var2) returns a vector containing values of var1 and var2 that satisfy the
constraints and optimize f.

The word Given, the equations and inequalities that follow, and the Maximize function form a
solve block.
By default, Mathcad examines your objective function and the constraints, and solves using an
appropriate method. If you want to try different algorithms for testing and comparison, you can
choose options from the popup menu associated with Maximize (available via right mouse click),
which include:

Functions / 317
• AutoSelect—chooses an appropriate algorithm for you
• Linear option—indicates that the problem is linear (and thus applies linear programming

methods to the problem) − guess values for var1, var2,... are immaterial (can all be zero)
• Nonlinear option—indicates that the problem is nonlinear (and thus applies these general

methods to the problem: the conjugate gradient solver; if that fails to converge, the quasi-
Newton solver)—guess values for var1, var2,... greatly affect the solution

• Quadratic option—indicates that the problem is quadratic (and thus applies quadratic
programming methods to the problem)—guess values for var1, var2,... are immaterial (can
all be zero)

• Advanced options—applies only to the nonlinear conjugate gradient and the quasi-Newton
solvers

These options provide more control for you to try different algorithms for testing and comparison.
You may also adjust the values of the built-in variables CTOL and TOL. The constraint tolerance
CTOL controls how closely a constraint must be met for a solution to be acceptable, e.g., if CTOL
were 0.001, then a constraint such as x < 2 would be considered satisfied if the value of x satisfied
x < 2.001. This can be defined or changed in the same way as the convergence tolerance TOL,
which is discussed further in connection with the Find function. Since Maximize can be used
without constraints, the value of CTOL will sometimes be irrelevant. Its default value is 10-3.
For an unconstrained maximization problem, the word Given and constraints are unnecessary.

Algorithm For the non-linear case: quasi-Newton, conjugate gradient
For the linear case: simplex method with branch/bound techniques (Press et al., 1992; Polak,
1997; Winston, 1994)

See also Find for more details about solve blocks; Minerr, Minimize

mean Statistics

Syntax mean(A)

Description Returns the arithmetic mean of the elements of A: .

Arguments
A real or complex matrix or vector

Comments mean(A, B, C, ...) is also permissible and returns the arithmetic mean of the elements of
A, B, C,

See also gmean, hmean, median, mode

medfit Curve Fitting and Smoothing

Syntax medfit(vx, vy)

Description Returns a vector containing the y-intercept and the slope of the median-median regression line.

Arguments
vx, vy real vectors of the same size

Comments medfit provides a linear fit which is more robust (less sensitive to data outliers) than line. The
data is divided into three sets, the median of the first and last subsets are calculated, and the
intercept and slope of the line connecting those two medians comprises the fit.

See Also line, linfit, genfit, expfit, logfit, lnfit, pwrfit, lgsfit, sinfit

mean A() 1
mn
------- Ai j,

j 0=

n 1–

∑
i 0=

m 1–

∑=

m n×

318 / Chapter 16 Functions
median Statistics

Syntax median(A)

Description Returns the median of the elements of A. The median is the value above and below which there
are an equal number of values. If A has an even number of elements, median is the arithmetic
mean of the two central values.

Arguments
A real matrix or vector

Comments median(A, B, C, ...) is also permissible and returns the median of the elements of A, B, C,

See also gmean, mean, median, mode

medsmooth Curve Fitting and Smoothing

Syntax medsmooth(vy, n)

Description Creates a new vector, of the same size as vy, by smoothing vy with running medians.

Arguments
vy real vector
n odd integer, n > 0, the size of smoothing window

Example

m n×

Functions / 319
Comments Smoothing involves taking a set of y (and possibly x) values and returning a new set of y values
that is smoother than the original set. Unlike the interpolation functions lspline, pspline, cspline
or bspline or regression functions regress or loess, smoothing results in a new set of y values,
not a function that can be evaluated between the data points you specify. If you are interested in
y values between the y values you specify, use an interpolation or regression function.
Whenever you use vectors in any of the functions described in this section, be sure that every
element in the vector contains a data value. Because every element in a vector must have a value,
Mathcad assigns 0 to any elements you have not explicitly assigned.
The medsmooth function is the most robust of Mathcad’s three smoothing functions because
it is least likely to be affected by spurious data points. This function uses a running median
smoother, computes the residuals, smooths the residuals the same way, and adds these two
smoothed vectors together.

medsmooth performs these steps:

1. Finds the running medians of the input vector vy. We'll call this . The ith element is
given by: .

2. Evaluates the residuals: .
3. Smooths the residual vector, vr, using the same procedure described in step 1, to create a

smoothed residual vector, .
4. Returns the sum of these two smoothed vectors: .
medsmooth will leave the first and last points unchanged. In practice, the length of
the smoothing window, n, should be small compared to the length of the data set.

Algorithm Moving window median method (Lorczak)

See also ksmooth and supsmooth

mhyper Special

Syntax mhyper(a, b, x)

Description Returns the value of the confluent hypergeometric function, or .

Arguments
a, b, x real numbers

Comments The confluent hypergeometric function is a solution of the differential equation:

 and is also known as the Kummer function.

Many functions are special cases of this, e.g., elementary ones like

and more complicated ones like Hermite functions.

Algorithm Series expansion, asymptotic approximations (Abramowitz and Stegun, 1972)

vy′
vy′i median vyi n 1 2⁄–()– … vyi … vyi n 1 2⁄–()+, , , ,()=

vr vy vy′–=

vr′

medsmooth vy n,() vy′ vr′+=
n 1–() 2⁄

F1 1 a b x);;(M a b; x;()

x
x2

2

d
d y b x–()+ d

dx
------y a y⋅ 0=–⋅ ⋅

x()exp mhyper 1 1 x, ,()= x()exp h x()sin⋅ x mhyper 1 2 2 x⋅, ,()⋅=

320 / Chapter 16 Functions
min Vector and Matrix

Syntax min(A)

Description Returns the smallest element in A. If A is complex, returns min(Re(A)) + i min(Im(A)).

Arguments
A real or complex matrix or vector, or string

Comments min(A, B, C, ...) is also permissible and returns the smallest element in A, B, C,

See also max

Minerr Solving

Syntax Minerr(var1, var2,...)

Description Returns values of var1, var2, ... which come closest to solving a prescribed system of equations,
subject to prescribed inequalities. The number of arguments matches the number of unknowns.
Output is a scalar if only one argument; otherwise it is a vector of answers.

Arguments
var1, var2, ... real or complex variables; var1, var2, ... must be assigned guess values before using Minerr

Example

Comments The Minerr function is very similar to Find and uses exactly the same algorithm. The difference
is that even if a system has no solutions, Minerr will attempt to find values which come closest
to solving the system. The Find function, on the other hand, will return an error message
indicating that it could not find a solution. You use Minerr exactly the way you use Find.
Like Find, type the Minerr function with your list of unknowns. You can’t put numerical values
in the list of unknowns; e.g., in the example above, Minerr(0.8, 1) isn’t permitted. Like Find,
you can type Minerr or minerr in any style.

m n×

Functions / 321
Minerr usually returns an answer that minimizes the errors in the constraints. However, Minerr
cannot verify that its answers represent an absolute minimum for the errors in the constraints.
If you use Minerr in a solve block, you should always include additional checks on the
reasonableness of the results. The built-in variable ERR gives the size of the error vector for the
approximate solution returned by Minerr. There is no built-in variable for determining the size
of the error for individual solutions to the unknowns.
Minerr is particularly useful for solving certain nonlinear least-squares problems. In the example,
Minerr is used to obtain the unknown parameters in a Weibull distribution. The function genfit
is also useful for solving nonlinear least-squares problems.
The popup menu (available via right mouse click) associated with Minerr contains options that
are further described in the entry on the Maximize function, as well as the built-in variables
CTOL and TOL.

Algorithm Levenberg-Marquardt, quasi-Newton, conjugate gradient

See also Find for more details about solve blocks; Maximize, Minimize

Minimize Solving

Syntax Minimize(f, var1, var2,...)

Description Returns values of var1, var2,... which solve a prescribed system of equations, subject to
prescribed inequalities, and which make the function f take on its smallest value. The number
of arguments matches the number of unknowns, plus one. Output is a scalar if only one unknown;
otherwise it is a vector of answers.

Arguments
f real-valued function

var1, var2, ... real or complex variables; var1, var2, ... must be assigned guess values before using Minimize.

Examples

322 / Chapter 16 Functions
Comment For information about the Minimize function, see the entry on the Maximize function.

See also Find for more details about solve blocks; Maximize, Minerr

mirr Finance

Syntax mirr(v, fin_rate, rein_rate)

Description Returns the modified internal rate of return for a series of cash flows occurring at regular intervals,
v, given a finance rate payable on the cash flows you borrow, fin_rate, and a reinvestment rate
earned on the cash flows as you reinvest them, rein_rate.

Arguments
v real vector of cash flows

fin_rate real finance rate
rein_rate real reinvestment rate

Comments In v, payments must be entered as negative numbers and income must be entered as positive
numbers. There must be at least one positive value and one negative value in v.

See also irr

Functions / 323
mod Number Theory/Combinatorics

Syntax mod(n, k)

Description Returns the remainder of n when divided by k. The result has the same sign as n.

Arguments
n, k integers,

mode Statistics

Syntax mode(A)

Description Returns the value in A that occurs most often.

Arguments
A real or complex matrix or vector

Comments mode(A, B, C, ...) is also permissible and returns the value in A, B, C, ... that occurs most often.

See also gmean, hmean, mean, median

multigrid Differential Equation Solving

Syntax multigrid(M, ncycle)

Description Solves the Poisson partial differential equation over a planar square region. The matrix M
gives source function values, where is a power of 2 and zero boundary conditions on all
four edges are assumed. multigrid uses a different algorithm and is faster than relax, which is
more general.

Arguments
M real square matrix containing the source term at each point in the region in

which the solution is sought (for example, the right-hand side of equation below)
ncycle positive integer specifying number of cycles at each level of the multigrid iteration; a value of

2 generally gives a good approximation of the solution

Example

k 0≠

m n×

n n×
n 1–

1 2k+() 1 2k+()×

324 / Chapter 16 Functions
Comments Two partial differential equations that arise often in the analysis of physical systems are Poisson's
equation:

 and its homogeneous form, Laplace’s equation.

Mathcad has two functions for solving these equations over a square region, assuming the values
taken by the unknown function u(x, y) on all four sides of the boundary are known. The most
general solver is the relax function. In the special case where u(x, y) is known to be zero on all
four sides of the boundary, you can use the multigrid function instead. This function often solves
the problem faster than relax. If the boundary condition is the same on all four sides, you can
simply transform the equation to an equivalent one in which the value is zero on all four sides.
The multigrid function returns a square matrix in which:
• an element's location in the matrix corresponds to its location within the square region, and
• its value approximates the value of the solution at that point.

Algorithm Full multigrid algorithm (Press et al., 1992)

See also relax

nom Finance

Syntax nom(rate, nper)

Description Returns the nominal interest rate given the effective annual interest rate, rate, and the number of
compounding periods per year, nper.

Arguments
rate real rate, rate > −1
nper real number of compounding periods, nper ≥ 1

Comments Effective annual interest rate is also known as annual percentage rate (APR).

See also eff

norm1 Vector and Matrix

Syntax norm1(M)

Description Returns the norm of the matrix M.

Arguments
M real or complex square matrix

norm2 Vector and Matrix

Syntax norm2(M)

Description Returns the norm of the matrix M.

Arguments
M real or complex square matrix

Algorithm Singular value computation (Wilkinson and Reinsch, 1971)

x2

2

∂
∂ u

y2

2

∂
∂ u+ ρ x y,()=

L1

L2

Functions / 325
norme Vector and Matrix

Syntax norme(M)

Description Returns the Euclidean norm of the matrix M.

Arguments
M real or complex square matrix

normi Vector and Matrix

Syntax normi(M)

Description Returns the infinity norm of the matrix M.
Arguments

M real or complex square matrix

nper Finance

Syntax nper(rate, pmt, pv, [[fv], [type]])

Description Returns the number of compounding periods for an investment or loan based on periodic, constant
payments, pmt, using a fixed interest rate, rate, and a specified present value, pv.

Arguments
rate real rate
pmt real payment

pv real present value
fv (optional) real future value, default is fv = 0

type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment
made at the beginning, default is type = 0

Comments If you know the annual interest rate, ann_rate, you must calculate the interest rate per period as
rate = ann_rate/nper.
Payments you make, such as deposits into a savings account or payments toward a loan, must be
entered as negative numbers. Cash you receive, such as dividend checks, must be entered as
positive numbers. Specific to nper, if pmt > 0, rate and pv must be opposite signs.

See also cnper, fv, pmt, pv, rate

npv Finance

Syntax npv(rate, v)

Description Returns the net present value of an investment given a discount rate, rate, and a series of cash
flows occurring at regular intervals, v.

Arguments
rate real rate

v real vector of cash flows
Comments npv assumes that the payment is made as the end of the period.

In v, payments must be entered as negative numbers and income must be entered as positive
numbers.
The npv investment begins one period before the date of the first cash flow and ends with the
last cash flow in the vector. If your first cash flow occurs at the beginning of the first period, the
first value must be added to the npv result, not included in the vector of cash flows.

See also irr, pv

326 / Chapter 16 Functions
num2str String

Syntax num2str(z)

Description Returns the string whose characters correspond to the decimal value of z.

Arguments
z real or complex number

See also str2num

numol Differential Equation Solving

Syntax numol(x_endpts, xpts, t_endpts, tpts, num_pde, num_pae, pfunc, pinit_func,
bc_func)

Description Solves a one-dimensional partial differential equation (PDE) or system of PDEs using the
numerical method of lines at equally spaced x and t values.

Arguments
x_endpts real column vector (x1 x2) giving the endpoints of the integration interval in x.

xpts integer xpts > 0 specifies the number of points between x_endpts at which the solution is to be
approximated; controls the number of rows in the matrix output

t_endpts real column vector (t1 t2) giving the endpoints of the integration interval in t.
tpts integer tpts > 0 specifies the number of points between t_endpts at which the solution is to be

approximated; controls the number of columns in the matrix output
num_pde integer > 0 specifies the number of first-order, one-dimensional partial differential equations to

solve
num_pae integer ≥ 0 specifies the number of one-dimensional partial algebraic equations to solve

pfunc real vector-valued function containing the right-hand-sides (rhs) of the PDEs and PAEs
• For single PDE, the vector degenerates to a scalar function

.

• For a system of PDEs, the vector contains the rhs of each PDE and PAE, cast in terms of
unknown so lution vectors u, ux, and uxx (note the combination of literal and vector subscripts
used here):

pinit_func real vector-valued function containing the initial condition functions of the PDEs
• For single PDE, the vector degenerates to a scalar function, .
• For a system of PDEs, the vector contains initial value functions for each equation, in terms

of x.

rhs x t u ux uxx, , , ,() au bux cuxx+ +=

pinit x() y x()=

Functions / 327
bc_func num_pde x 3 matrix of boundary condition functions. If the PDE for a row contains 2nd-order
spatial derivatives, specify the row
• (left_cond(t) right_cond(t) "D") (for Dirichlet), or
• (left_cond(t) right_cond(t) "N") (for Neumann).
If the PDE contains only first order spatial derivatives, use “NA” for either the right or
left boundary condition. If no spatial derivatives are present, use “NA” for both BCs
(the row will be ignored).

Comments numol can be used to solve one-dimensional hyperbolic and parabolic partial differential
equations, or systems of such equations. The left hand side is assumed to contain first order partial
derivatives of time only. For a more complete discussion and examples, see Chapter 9, “Solving
and Data Analysis.”
For a single PDE , the output of numol is a xpts by tpts matrix in which each column contains
the solution to the PDE at xpts for a single point in time. For a system of PDEs, numol returns
an xpts by tpts*(num_pde+num_pae) matrix, placing each subsequent solution un side-
by-side. The function numol the numerical method of lines, which allows it to solve hyperbolic
and parabolic PDEs.

Algorithm Numerical Method of Lines (Schittkowski, 2002)

See also Mathcad QuickSheets and Differential Equations tutorial; also Pdesolve, for a solve block
approach.

Odesolve Differential Equation Solving

Case of a Single Differential Equation

Syntax Odesolve(x, b, [nstep])

Description Solves a single ordinary differential equation, subject to either initial value or boundary value
constraints. The DE must be linear in the highest order derivative term, and the number of
conditions must be equal to the order of the DE. The output is a function of x, interpolated from
a table of values computed by fixed step, adaptive or stiff DE solvers.

Arguments

x variable of integration, real
b terminal point of integration interval, real

nstep (optional) integer number of steps, nstep 0>

328 / Chapter 16 Functions
Example

Comments There are three steps to solving a DE using Odesolve:
1. Type the word Given. This tells Mathcad that what follows is a DE, along with initial value

or boundary value constraints. You can type Given or given in any style. Just don't type it
while in a text region.

2. Type the DE and constraints in any order below the word Given. Use [Ctrl]= to type “=”
and [Ctrl]F7 to type a prime ‘. The DE can be written using the derivative operators d/dx,
d2/dx2, d3/dx3, ... or using prime notation y‘(x), y‘‘(x), y‘‘‘(x), Note that the independent
variable x must be explicitly indicated throughout. A typical initial value constraint might
be y(a)=c or y‘(a)=d; Mathcad does not allow more complicated constraints like
y(a)+y‘(a)=e.

3. Finally, type the Odesolve function. You can’t put a numerical value in place of x: for
example, Odesolve(2, 150) in the Example isn’t permitted. Like given, you can type
Odesolve or odesolve in any style.

The word Given, the equations that follow, and the Odesolve function form a solve block. This
is similar to the solve block described with the Find function, except here no guess values are
needed.
The following types of expressions and restrictions apply:
• Lower-order derivative terms can appear nonlinearly in the DE (e.g., they can be multiplied

together or raised to powers), but the highest-order derivative term must appear linearly. I
• Inequality constraints are not allowed.
• There must be n independent equality constraints for an nth order DE. For an initial value

problem, the values for y(x) and its first n−1 derivatives at a single initial point a are required.
For a boundary value problem, the n equality constraints should prescribe values for y(x) and

Functions / 329
certain derivatives at exactly two points a and b. Mathcad will check for the correct type and
number of conditions. Constraints on derivatives must be specified with prime [Ctrl-F7]
notation.

• Algebraic constraints are allowed, e.g. y(x) + z(x) = a.
For initial value problems, the default routine employed by Odesolve is rkfixed. Fixed, adaptive,
and stiff methods are available on the right click menu.
Internally, the output of each of these DE solvers is a table of values, which Mathcad interpolates
using lspline followed by interp. Note in the Example that, although y and f are defined to be
output of Odesolve (no independent variable is indicated), y(x) and f(t) are functions which can
be plotted, etc., like any other function.
The default value for nsteps is ten times the length of the interval [a, b] (truncated to an integer).

Case of a System of Differential Equations

Syntax Odesolve(vf, x, b, [nstep])

Description Solves a system of ordinary differential equations, subject to initial value constraints (boundary
values not allowed for systems). The DEs must each be linear in their highest order derivative
terms, and the number of conditions must be equal to the sum of the orders of the DEs. The output
is a vector of functions of x, interpolated from a table of values computed via either fixed step,
adaptive or stiff DE solvers.

Arguments

vf explicit vector of function names (with no variable names included) precisely as named in the
solve block, real

x variable of integration, real
b terminal point of integration interval, real

nstep (optional) integer number of steps,

The first argument vf is optional in the event of single ordinary differential equation (since
ordering of the function solutions is an issue only if the numbers of DEs exceeds 1). For example,
if the unknown functions are f, g, and h (as named in the solve block), then vf should be explicitly
given in the Odesolve call as the column vector:

 . Only the function names should appear; do not give the vector as: .

Array subscripts may not be used when naming functions, but literal subscripts are fine. The
comments for the single ODE case apply in the multiple ODEs case as well, suitably extended.

Odesolve can also solve differential algebraic equations (DAEs), for example, systems of ODEs
involving unknown functions f, g, and h with the additional algebraic constraint that
f(x)2+g(x)2=h(x) for all x.

nstep 0>

f
g
h

f x()
g x()
h x()

330 / Chapter 16 Functions
Example

See also rkfixed, Rkadapt, Radau, sbval, lspline, interp

pbeta Probability Distribution

Syntax pbeta(x, s1, s2)

Description Returns the cumulative beta distribution with shape parameters s1 and s2.

Arguments
x real number,

s1, s2 real shape parameters, s1 > 0, s2 > 0

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)

pbinom Probability Distribution

Syntax pbinom(k, n, p)

Description Returns Pr() when the random variable X has the binomial distribution with parameters n
and p.

Arguments
k, n integers,

p real numbers,

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)

pcauchy Probability Distribution

Syntax pcauchy(x, l, s)

Description Returns the cumulative Cauchy distribution.

Arguments

x real number
l real location parameter
s real scale parameter,

0 x 1< <

X k≤

0 k n≤ ≤
0 p 1≤≤

s 0>

Functions / 331
pchisq Probability Distribution

Syntax pchisq(x, d)

Description Returns the cumulative chi-squared distribution.

Arguments

x real number,
d integer degrees of freedom,

Algorithm Continued fraction and asymptotic expansions (Abramowitz and Stegun, 1972)

Pdesolve Differential Equation Solving

Case of a Single Partial Differential Equation

Syntax Pdesolve(u, x, xrange , t, trange, [xstep, tstep])

Description Solves a single 1-D hyperbolic or parabolic partial differential equation, or system of equations,
subject to initial value and either Dirichlet or Neumann boundary value constraints. The PDE
must be linear in the highest order derivative term, and the number of conditions must be equal
to the order of the PDE. The output is a function of x and t, interpolated from a table of values
computed by the method of lines.

Arguments

u function of x and t, as specified in the PDE solve block
x spatial variable of integration, real

xrange two-element, real-valued column vector specifying the endpoints of the spatial
integration range.

t temporal variable of integration, real

trange two-element, real-valued column vector specifying the endpoints of the temporal
integration range.

xstep, tstep (optional) integer number of steps over each integration range, greater than 0.

x 0≥

d 0>

Lstart
Lend

Tstart
Tend

332 / Chapter 16 Functions
Example

Using PDESolve for the 1-D heat equation with convection.

Comments There are three steps to solving a PDE using Pdesolve:
1. Type the word Given. This tells Mathcad that what follows is a DE solve block, along with

initial value or boundary value constraints. You must type Given as a math region, not a text
region.

2. Type the PDE and constraints in any order below the word Given. Use the bold/symbolic
equal sign [Ctrl] = for equality. Use subscript notation to indicate the partial derivative in
either x or t, and explicitly specify the independent variables throughout, that is, use y(x,t)
or yxx(x,t), not just y or yxx. Eeither Dirichlet (y(0,t) = a) or Neumann (yx(0,t) = a) boundary
conditions are accepted. Mathcad also allows algebraic constraints, such as y(x,t) + z(x,t) = 2.

3. Finally, type the Pdesolve function. The two-element column vectors xrange and trange,
ranges over x and t, respectively, must agree with values assigned in the boundary conditions.

The word Given, the equations that follow, and the Odesolve function form a solve block. The
following types of expressions and restrictions apply:
• Lower-order derivative terms can appear nonlinearly in the DE (e.g., they can be multiplied

together or raised to powers), but the highest-order derivative term must appear linearly. I
• Inequality constraints are not allowed.
• There must be n independent boundary conditions, either Dirichlet or Neumann, for an nth

order PDE, and there must always be an initial value value for u(x,t). Mathcad will check for
the correct type and number of conditions. Constraints on derivatives must be specified with
prime [Ctrl-F7] notation.

• Algebraic constraints are allowed, e.g. y(x,t) + z(x,t) = f(x,t).
Internally, the output of each of pdesolve is a table of values, which Mathcad interpolates using
lspline followed by interp. Note in the Example that, although u is defined to be the output of

Functions / 333
the call to Pdesolve (no independent variable is indicated), u(x, t) is a function which can be
plotted, etc., like any other function.
In the case of a system of PDEs, the first argument of Pdesolve, u, is now a vector of functions
used within the solve block, and will specify order of output, that is

 . Only the function names should appear; do not give the vector as: .

Array subscripts may not be used when naming functions, but literal subscripts are fine. Pdesolve
can solve partial differential algebraic equations (DAEs), for example, systems of PDEs
involving unknown functions u, v, and h with the additional algebraic constraint that
u(x,t)2+v(x,t)2=h(x) for all x.

Mathcad uses the numerical method of lines to compute PDEs. This method allows the solution
of parabolic (heat), hyperbolic (wave), and mixed parabolic-hyperbolic equations. It does not
accommodate elliptic equations, such as Poisson’s equation. To solve other types of PDEs, try
the relax function (page 356) and multigrid function (page 323).

See also numol, relax, multigrid

permut Number Theory/Combinatorics

Syntax permut(n, k)

Description Returns the number of ways of ordering n distinct objects taken k at a time.

Arguments
n, k integers,

Comments Each such ordered arrangement is known as a permutation. The number of permutations is

P

See also combin

pexp Probability Distribution

Syntax pexp(x, r)

Description Returns the cumulative exponential distribution.

Arguments
x real number,
r real rate,

pF Probability Distribution

Syntax pF(x, d1, d2)

Description Returns the cumulative F distribution.

Arguments
x real number,

d1, d2 integer degrees of freedom,

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)

u
v
w

u x()
v x()
w x()

0 k n≤ ≤

n
k

n!
n k–()!

------------------=

x 0≥

r 0>

x 0≥
d1 0> d2, 0>

334 / Chapter 16 Functions
pgamma Probability Distribution

Syntax pgamma(x, s)

Description Returns the cumulative gamma distribution.

Arguments
x real number,
s real shape parameter,

Algorithm Continued fraction and asymptotic expansion (Abramowitz and Stegun, 1972)

pgeom Probability Distribution

Syntax pgeom(k, p)

Description Returns Pr() when the random variable X has the geometric distribution with parameter p.

Arguments
k integer,
p real number,

phypergeom Probability Distribution

Syntax phypergeom(m, a, b, n)

Description Returns Pr() when the random variable X has the hypergeometric distribution with
parameters a, b and n.

Arguments
m, a, b, n integers, , ,

plnorm Probability Distribution

Syntax plnorm(x, µ, σ)

Description Returns the cumulative lognormal distribution.

Arguments

x real number,
µ real logmean
σ real logdeviation,

plogis Probability Distribution

Syntax plogis(x, l, s)

Description Returns the cumulative logistic distribution.

Arguments
x real number
l real location parameter
s real scale parameter,

x 0≥
s 0>

X k≤

k 0≥

0 p 1≤<

X m≤

0 m a≤ ≤ 0 n m b≤–≤ 0 n a b+≤ ≤

x 0≥

σ 0>

s 0>

Functions / 335
pmt Finance

Syntax pmt(rate, nper, pv, [[fv], [type]])

Description Returns the payment for an investment or loan based on periodic, constant payments over a given
number of compounding periods, nper, using a fixed interest rate, rate, and a specified present
value, pv.

Arguments
rate real rate
nper integer number of compounding periods, nper ≥ 1

pv real present value
fv (optional) real future value, default is fv = 0

type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment
made at the beginning, default is type = 0

Comments If you know the annual interest rate, ann_rate, you must calculate the interest rate per period as
rate = ann_rate/nper.
Payments you make, such as deposits into a savings account or payments toward a loan, must be
entered as negative numbers. Cash you receive, such as dividend checks, must be entered as
positive numbers.

See also cumint, cumprn, fv, ipmt, nper, ppmt, pv, rate

pnbinom Probability Distribution

Syntax pnbinom(k, n, p)

Description Returns the cumulative negative binomial distribution with parameters n and p.

Arguments
k, n integers, and

p real number,

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972)

pnorm Probability Distribution

Syntax pnorm(x, µ, σ)

Description Returns the cumulative normal distribution.

Arguments
x real number
µ real mean
σ real standard deviation,

Polyhedron Vector and Matrix

Syntax Polyhedron(S)

Description Generates the uniform polyhedron whose name, number code, or Wythoff symbol is S.

Arguments
S string expression containing the name of a polyhedron, its number code, or its Wythoff symbol

n 0> k 0≥

0 p 1≤<

σ 0>

336 / Chapter 16 Functions
Example

Comments The uniform polyhedron are regular polyhedra whose vertices are congruent. The Polyhedron
function can construct 80 examples of these, and is used with the 3D surface plot tool as
illustrated. Its argument is either a name (“cube”), the # symbol followed by a number (“#6”),
or a Wythoff symbol (“3|2 4”). To look up these items use PolyLookup.

To graph a uniform polyhedron:
1. Click in a blank spot of your worksheet. Choose

Graph⇒Surface Plot from the Insert menu.
2. In the placeholder, enter the Polyhedron function

with an appropriate string argument.
3. Click outside the plot or press [Enter].

PolyLookup Vector and Matrix

Syntax PolyLookup(n)

Description Returns a vector containing the name, the dual name, and the Wythoff symbol for the polyhedron
indicated by n.

Arguments
n integer, is the code for a polyhedron; alternatively, a string expression containing the

polyhedron’s number code, name, or Wythoff symbol

See also Polyhedron for example

Functions / 337
polyroots Solving

Syntax polyroots(v)

Description Returns the roots of an nth degree polynomial whose coefficients are in v. Output is a vector of
length n.

Arguments
v real or complex vector of length

Example

Comments To find the roots of an expression having the form:
you can use the polyroots function rather than the root function. Unlike root, polyroots does
not require a guess value. Moreover, polyroots returns all roots at once, whether real or complex.
The polyroots function can solve only one polynomial equation in one unknown. See root for
a more general equation solver. To solve several equations simultaneously, use solve blocks
(Find or Minerr). To solve an equation symbolically—that is, to find an exact numerical answer
in terms of elementary functions—choose Solve for Variable from the Symbolics menu or use
the solve keyword.

Algorithm Laguerre with deflation and polishing (Lorczak) is the default method; a companion matrix-based
method (using Mathcad’s eigenvals function) is available if you right click on the word
polyroots and change the selection on a popup menu.

See also See coeff keyword for a way to create the coefficient vector v immediately, given a polynomial.

pol2xy Vector and Matrix

Syntax pol2xy(r, θ) or pol2xy(v)

Description Converts the polar coordinates of a point in 2D space to rectangular coordinates.

Arguments
r, θ real numbers

Comments x = r cos(θ), y = r sin(θ),

See also xy2pol

n 1+

vnxn … v2x2 v1x v0+ + + +

v r
θ

=

338 / Chapter 16 Functions
ppmt Finance

Syntax ppmt(rate, per, nper, pv, [[fv], [type]])

Description Returns the payment on the principal, of an investment or loan, for a given period, per, based on
periodic, constant payments over a given number of compounding periods, nper, using a fixed
interest rate, rate, and a specified present value, pv.

Arguments
rate real rate
per integer period number, per ≥ 1

nper integer number of compounding periods, 1 ≤ per ≤ nper
pv real present value
fv (optional) real future value, default is fv = 0

type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment
made at the beginning, default is type = 0

Comments If you know the annual interest rate, ann_rate, you must calculate the interest rate per period as
rate = ann_rate/nper.
Payments you make, such as deposits into a savings account or payments toward a loan, must be
entered as negative numbers. Cash you receive, such as dividend checks, must be entered as
positive numbers.

See also cumprn, ipmt, pmt

ppois Probability Distribution

Syntax ppois(k, λ)

Description Returns the cumulative Poisson distribution.

Arguments

k integer,
λ real mean,

Algorithm Continued fraction and asymptotic expansions (Abramowitz and Stegun, 1972)

predict Interpolation and Prediction

Syntax predict(v, m, n)

Description Returns n predicted values based on m consecutive values from the data vector v. Elements in v
should represent samples taken at equal intervals.

Arguments
v real vector

m, n integers, m > 0, n > 0

k 0≥

λ 0>

Functions / 339
Example

Comments Interpolation functions such as cspline, lspline, or pspline, coupled with interp, allow you to
find data points lying between existing data points. However, you may need to find data points
that lie beyond your existing ones. Mathcad provides the function predict which uses some of
your existing data to predict data points lying beyond existing ones. This function uses a linear
prediction algorithm which is useful when your data is smooth and oscillatory, although not
necessarily periodic. This algorithm can be seen as a kind of extrapolation method but should
not be confused with linear or polynomial extrapolation.
The predict function uses the last m of the original data values to compute prediction coefficients.
After it has these coefficients, it uses the last m points to predict the coordinates of the (m+1)st
point, in effect creating a moving window that is m points wide.

Algorithm Burg’s method (Press et al., 1992)

pspline Interpolation and Prediction

One-dimensional Case

Syntax pspline(vx, vy)

Description Returns the vector of coefficients of a cubic spline with parabolic ends. This vector becomes the
first argument of the interp function.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

Two-dimensional Case

Syntax pspline(Mxy, Mz)

Description Returns the vector of coefficients of a two-dimensional cubic spline, constrained to be parabolic
at region boundaries spanned by Mxy. This vector becomes the first argument of the interp
function.

340 / Chapter 16 Functions
Arguments
Mxy matrix whose elements, and , specify the x- and y-coordinates along the

diagonal of a rectangular grid. This matrix plays exactly the same role as vx in the one-
dimensional case described earlier. Since these points describe a diagonal, the elements in each
column of Mxy must be in ascending order (whenever).

Mz matrix whose ijth element is the z-coordinate corresponding to the point
and . Mz plays exactly the same role as vy in the one-dimensional case above.

Algorithm Tridiagonal system solving (Press et al., 1992; Lorczak)

See also lspline for more details

pt Probability Distribution

Syntax pt(x, d)

Description Returns the cumulative Student's t distribution.

Arguments
x real number,
d integer degrees of freedom,

Algorithm Continued fraction expansion (Abramowitz and Stegun, 1972).

punif Probability Distribution

Syntax punif(x, a, b)

Description Returns the cumulative uniform distribution.

Arguments

x real number
a, b real numbers,

pv Finance

Syntax pv(rate, nper, pmt, [[fv], [type]])

Description Returns the present value of an investment or loan based on periodic, constant payments over a
given number of compounding periods, nper, using a fixed interest rate, rate, and a specified
payment, pmt.

Arguments
rate real rate
nper integer number of compounding periods, nper ≥ 1
pmt real payment

fv (optional) real future value, default is fv = 0
type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment

made at the beginning, default is type = 0

Comments If you know the annual interest rate, ann_rate, you must calculate the interest rate per period as
rate = ann_rate/nper.
Payments you make, such as deposits into a savings account or payments toward a loan, must be
entered as negative numbers. Cash you receive, such as dividend checks, must be entered as
positive numbers.

See also fv, nper, pmt, rate

n 2× Mxyi 0, Mxyi 1,

Mxyi k, Mxyj k,< i j<

n n× x Mxyi 0,=
y Mxyj 1,=

x 0≥

d 0>

a b<

Functions / 341
pweibull Probability Distribution

Syntax pweibull(x, s)

Description Returns the cumulative Weibull distribution.

Arguments

x real number,
s real shape parameter,

pwrfit Curve Fitting and Smoothing

Syntax pwrfit(vx, vy, vg)

Description Returns a vector containing the parameters (a, b, c) that make the function best
approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for (a, b, c)

Comments This is a special case of the genfit function. A vector of guess values is needed for initialization.
By decreasing the value of the built-in TOL variable, higher accuracy in pwrfit might be achieved.

See Also line, linfit, genfit, expfit, logfit, lnfit, lgsfit, sinfit, medfit

qbeta Probability Distribution

Syntax qbeta(p, s1, s2)

Description Returns the inverse beta distribution with shape parameters s1 and s2.

Arguments
p real number,

s1, s2 real shape parameters,

Algorithm Root finding (bisection and secant methods) (Press et al., 1992)

qbinom Probability Distribution

Syntax qbinom(p, n, q)

Description Returns the inverse binomial distribution function, that is, the smallest integer k so that
pbinom(k, n, q) ≥ p.

Arguments
n integer, n > 0

p, q real numbers, ,

Comments k is approximately the integer for which Pr() = p, when the random variable X has the
binomial distribution with parameters n and q. This is the meaning of “inverse” binomial
distribution function.

Algorithm Discrete bisection method (Press et al., 1992)

x 0≥

s 0>

a xb⋅ c+

0 p≤ 1≤

s1 0> s2, 0>

0 p 1≤≤ 0 q 1≤≤

X k≤

342 / Chapter 16 Functions
qcauchy Probability Distribution

Syntax qcauchy(p, l, s)

Description Returns the inverse Cauchy distribution function.

Arguments

p real number,
l real location parameter
s real scale parameter,

qchisq Probability Distribution

Syntax qchisq(p, d)

Description Returns the inverse chi-squared distribution.

Arguments
p real number,
d integer degrees of freedom,

Algorithm Root finding (bisection and secant methods) (Press et al., 1992)
Rational function approximations (Abramowitz and Stegun, 1972)

qexp Probability Distribution

Syntax qexp(p, r)

Description Returns the inverse exponential distribution.

Arguments
p real number,
r real rate,

qF Probability Distribution

Syntax qF(p, d1, d2)

Description Returns the inverse F distribution.

Arguments
p real number,

d1, d2 integer degrees of freedom, d1 > 0, d2 > 0

Algorithm Root finding (bisection and secant methods) (Press et al., 1992)

qgamma Probability Distribution

Syntax qgamma(p, s)

Description Returns the inverse gamma distribution.

Arguments
p real number,
s real shape parameter,

Algorithm Root finding (bisection and secant methods) (Press et al., 1992)
Rational function approximations (Abramowitz and Stegun, 1972)

0 p 1< <

s 0>

0 p 1<≤

d 0>

0 p 1<≤

r 0>

0 p 1<≤

0 p 1<≤

s 0>

Functions / 343
qgeom Probability Distribution

Syntax qgeom(p, q)

Description Returns the inverse geometric distribution, that is, the smallest integer k so that pgeom(k, q) ≥ p.

Arguments
p, q real numbers, ,

Comments k is approximately the integer for which Pr() = p, when the random variable X has the
geometric distribution with parameter q. This is the meaning of “inverse” geometric distribution
function.

qhypergeom Probability Distribution

Syntax qhypergeom(p, a, b, n)

Description Returns the inverse hypergeometric distribution, that is, the smallest integer k so that
phypergeom(k, a, b, n) ≥ p.

Arguments
p real number,

a, b, n integers, , ,

Comments k is approximately the integer for which Pr() = p, when the random variable X has the
hypergeometric distribution with parameters a, b and n. This is the meaning of “inverse”
hypergeometric distribution function.

Algorithm Discrete bisection method (Press et al., 1992)

qlnorm Probability Distribution

Syntax qlnorm(p, µ, σ)

Description Returns the inverse log normal distribution.

Arguments
p real number;
µ logmean
σ logdeviation;

Algorithm Root finding (bisection and secant methods) (Press et al., 1992)

qlogis Probability Distribution

Syntax qlogis(p, l, s)

Description Returns the inverse logistic distribution.

Arguments
p real number,
l real location parameter
s real scale parameter,

0 p 1< < 0 q 1< <

X k≤

0 p 1≤ ≤

0 a≤ 0 b≤ 0 n a b+≤ ≤

X k≤

0 p 1<≤

σ 0>

0 p 1<<

s 0>

344 / Chapter 16 Functions
qnbinom Probability Distribution

Syntax qnbinom(p, n, q)

Description Returns the inverse negative binomial distribution function, that is, the smallest integer k so that
pnbinom(k, n, q) ≥ p.

Arguments
n integer, n > 0

p, q real numbers, ,

Comments k is approximately the integer for which Pr() = p, when the random variable X has the
negative binomial distribution with parameters n and q. This is the meaning of “inverse” negative
binomial distribution function.

Algorithm Discrete bisection method (Press et al., 1992)

qnorm Probability Distribution

Syntax qnorm(p, µ, σ)

Description Returns the inverse normal distribution.

Arguments
p real number,
m real mean
s standard deviation,

Algorithm Root finding (bisection and secant methods) (Press et al., 1992)

qpois Probability Distribution

Syntax qpois(p, λ)

Description Returns the inverse Poisson distribution, that is, the smallest integer k so that ppois(k, λ) ≥ p.

Arguments

p real number,
λ real mean,

Comments k is approximately the integer for which Pr() = p, when the random variable X has the
Poisson distribution with parameter λ. This is the meaning of “inverse” Poisson distribution
function.

Algorithm Discrete bisection method (Press et al., 1992)

qr Vector and Matrix

Syntax qr(A)

Description Returns an matrix whose first m columns contain the orthonormal matrix Q,
and whose remaining n columns contain the upper triangular matrix R. These satisfy the
matrix equation .

Arguments
A real matrix

0 p 1<< 0 q 1<<

X k≤

0 p 1< <

σ 0>

λ 0>

X k≤

m m n+()× m m×
m n×

A Q R⋅=

m n×

Functions / 345
Example

qt Probability Distribution

Syntax qt(p, d)

Description Returns the inverse Student's t distribution.

Arguments
p real number,
d integer degrees of freedom,

Algorithm Root finding (bisection and secant methods) (Press et al., 1992).

qunif Probability Distribution

Syntax qunif(p, a, b)

Description Returns the inverse uniform distribution.

Arguments
p real number,

a, b real numbers,

qweibull Probability Distribution

Syntax qweibull(p, s)

Description Returns the inverse Weibull distribution.

Arguments
p real number,
s real shape parameter,

0 p 1< <

d 0>

0 p 1≤≤

a b<

s 0>

346 / Chapter 16 Functions
radau Differential Equation Solving

Syntax radau(y, x1, x2, acc, D, kmax, save)

Description Solves a differential equation using a stiff RADAU5 method. Provides DE solution estimate at x2.

Arguments Several arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval
acc real acc > 0 controls the accuracy of the solution; a small value of acc forces the algorithm to

take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values
of acc around 0.001 will generally yield accurate solutions.

D(x, y) real vector-valued function containing the derivatives of the unknown functions
kmax integer kmax > 0 specifies the maximum number of intermediate points at which the solution

will be approximated. The value of kmax places an upper bound on the number of rows of the
matrix returned by these functions.

save real save > 0 specifies the smallest allowable spacing between the values at which the solutions
are to be approximated. save places a lower bound on the difference between any two numbers
in the first column of the matrix returned by the function.

Comments The specialized DE solvers Bulstoer, Rkadapt, Radau, Stiffb, and Stiffr provide the solution
y(x) over a number of uniformly spaced x-values in the integration interval bounded by x1 and
x2. When you want the value of the solution at only the endpoint, y(x2), use bulstoer, rkadapt,
radau, stiffb, and stiffr instead.

Algorithm Implicit Runge-Kutta RADAU5 method (Hairer and Wanner, 1996)
See also rkfixed, a more general differential equation solver, for information on output and arguments;

Radau.

Functions / 347
Radau Differential Equation Solving

Syntax Radau(y, x1, x2, npts, D)

Description Solves a differential equation using a stiff RADAU5 method; provides DE solution at equally
spaced x values by repeated calls to radau.

Arguments All arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval
npts integer npts > 0 specifies the number of points beyond initial point at which the solution is to be

approximated; controls the number of rows in the matrix output
D(x, y) real vector-valued function containing the derivatives of the unknown functions

Comments Radau and radau are especially intended for stiff ODEs. They have one advantage over Stiffb,
Stiffr, stiffb and stiffr: the (symbolic) Jacobian matrix input J is not needed. (Of course, this is
a disadvantage if J is readily available, because having J will tend to increase accuracy.)
Radau takes the same arguments as rkfixed, and the matrix returned by Radau is identical in
form to that returned by rkfixed.

Algorithm Implicit Runge-Kutta RADAU5 method (Hairer and Wanner, 1996)

See also rkfixed, a more general differential equation solver, for information on output and arguments;
also Odesolve, for a solve block approach.

rank Vector and Matrix

Syntax rank(A)

Description Returns the rank of a matrix A, i.e., the maximum number of linearly independent columns in A.

Arguments
A real matrix

Algorithm Singular value computation (Wilkinson and Reinsch, 1971)

rate Finance

Syntax rate(nper, pmt, pv, [[fv], [type], [guess]])

Description Returns the interest rate per period of an investment or loan over a specified number of
compounding periods, nper, given a periodic, constant payment, pmt, and a specified present
value, pv.

Arguments
nper integer number of compounding periods, nper ≥ 1
pmt real payment

pv real present value
fv (optional) real future value, default is fv = 0

type (optional) indicator payment timing, 0 for payment made at the end of the period, 1 for payment
made at the beginning, default is type = 0

guess (optional) real guess, default is guess = 0.1 (10%)

m n×

348 / Chapter 16 Functions
Comments Payments made must be entered as negative numbers. Cash received must be entered as positive
numbers.
If rate cannot find a result that is accurate to within percent after 20 iterations, it returns
an error. In such a case, a different guess value should be tried, but it will not guarantee a solution.
In most cases rate converges if guess is between 0 and 1.

See also crate, fv, nper, pmt, pv

rbeta Random Numbers

Syntax rbeta(m, s1, s2)

Description Returns a vector of m random numbers having the beta distribution.

Arguments
m integer, m > 0

s1, s2 real shape parameters, s1 > 0, s2 > 0

Algorithm Best’s XG algorithm, Johnk’s generator (Devroye, 1986)

See also rnd

rbinom Random Numbers

Syntax rbinom(m, n, p)

Description Returns a vector of m random numbers having the binomial distribution.

Arguments
m, n integers, m > 0, n > 0

p real number,

Algorithm Waiting time and rejection algorithms (Devroye, 1986)

See also rnd

rcauchy Random Numbers

Syntax rcauchy(m, l, s)

Description Returns a vector of m random numbers having the Cauchy distribution.

Arguments

m integer, m > 0
l real location parameter
s real scale parameter,

Algorithm Inverse cumulative density method (Press et al., 1992)

See also rnd

1 10 7–⋅

0 p 1≤≤

s 0>

Functions / 349
rchisq Random Numbers

Syntax rchisq(m, d)

Description Returns a vector of m random numbers having the chi-squared distribution.

Arguments
m integer, m > 0
d integer degrees of freedom,

Algorithm Best’s XG algorithm, Johnk’s generator (Devroye, 1986)

See also rnd

Re Complex Numbers

Syntax Re(z)

Description Returns the real part of z.

Arguments
z real or complex number

See also Im

READBIN File Access

Syntax READBIN(file, type, [[endian], [cols], [skip], [maxrows]])

Description Reads a file of binary data and returns a matrix. Used as follows: A := READBIN(file, type).

Arguments
file String variable corresponding to the binary data filename, including path. If no path is provided,

the current working directory is assumed.
type String argument specifying the data type used in the file. Must be one of the following: double

(64 bit floating point), float (32 bit floating point), byte (8 bit unsigned integer), uint16 (16 bit
unsigned integer), uint32 (32 bit unsigned integer), int16 (16 bit signed integer), or int32 (32
bit signed integer).

endian (optional) Indicates whether data format is big-endian (high byte first) or little-endian (low byte
first). Big-endian is represented by a 1, and little-endian by 0. Defaults to 0.

cols (optional) Number of columns per row in the input file, cols ≥ 1. Defaults to 1.
skip (optional) Number of bytes to skip at the beginning of the file before reading data, skip ≥ 0.

Defaults to 0.
maxrows (optional) Number of rows to limit input to, maxrows ≥ 0. Defaults to 0.

See also WRITEBIN

READ_BLUE File Access

Syntax READ_BLUE(file)

Description Extracts only the blue component from file of a color image in BMP, JPG, GIF, TGA, and PCX
format. The result is a matrix with one-third as many columns as the matrix returned by
READRGB.

Arguments
file string variable corresponding to color image filename or path

d 0>

350 / Chapter 16 Functions
READBMP File Access

Syntax READBMP(file)

Description Creates a matrix containing a grayscale representation of the bitmap image in file. Each element
in the matrix corresponds to a pixel. The value of a matrix element determines the shade of gray
associated with the corresponding pixel. Each element is an integer between 0 (black) and 255
(white).

Arguments
file string variable corresponding to grayscale image BMP filename or path

Comments Picture viewer will display the matrix.
The function READ_IMAGE which reads not only BMP files but also JPG, GIF, TGA and PCX
files.

See also For color images, see READRGB.

READ_GREEN File Access

Syntax READ_GREEN(file)

Description Extracts only the green component from file of a color image in BMP, JPG, GIF, TGA, and PCX
format. The result is a matrix with one-third as many columns as the matrix returned by
READRGB.

Arguments
file string variable corresponding to color image filename or path

READ_HLS File Access

Syntax READ_HLS(file)

Description Creates a matrix in which the color information in file is represented by the appropriate values
of hue, lightness, and saturation. file is in BMP, JPG, GIF, TGA, or PCX format.

Arguments
file string variable corresponding to color image filename or path

See also See READRGB for an overview.

READ_HLS_HUE File Access

Syntax READ_HLS_HUE(file)

Description Extracts only the hue component from file of a color image in BMP, JPG, GIF, TGA, or PCX
format. The result is a matrix with one-third as many columns as the matrix returned by
READ_HLS.

Arguments
file string variable corresponding to color image filename or path

Functions / 351
READ_HLS_LIGHT File Access

Syntax READ_HLS_LIGHT(file)

Description Extracts only the lightness component from file of a color image in BMP, JPG, GIF, TGA, or
PCX format. The result is a matrix with one-third as many columns as the matrix returned by
READ_HLS.

Arguments
file string variable corresponding to color image filename or path

READ_HLS_SAT File Access

Syntax READ_HLS_SAT(file)

Description Extracts only the saturation component from file of a color image in BMP, JPG, GIF, TGA, or
PCX format. The result is a matrix with one-third as many columns as the matrix returned by
READ_HLS.

Arguments
file string variable corresponding to color image filename or path

READ_HSV File Access

Syntax READ_HSV(file)

Description Creates a matrix in which the color information in file is represented by the appropriate values
of hue, saturation and value. file is in BMP, JPG, GIF, TGA, or PCX format.

Arguments
file string variable corresponding to color image filename or path

See also See READRGB for an overview of reading color data files.

READ_HSV_HUE File Access

Syntax READ_HSV_HUE(file)

Description Extracts only the hue component from file of a color image in BMP, JPG, GIF, TGA, or PCX
format. The result is a matrix with one-third as many columns as the matrix returned by
READ_HSV.

Arguments
file string variable corresponding to color image filename or path

READ_HSV_SAT File Access

Syntax READ_HSV_SAT(file)

Description Extracts only the saturation component from file of a color image in BMP, JPG, GIF, TGA, or
PCX format. The result is a matrix with one-third as many columns as the matrix returned by
READ_HSV.

Arguments
file string variable corresponding to color image filename or path

352 / Chapter 16 Functions
READ_HSV_VALUE File Access

Syntax READ_HSV_VALUE(file)

Description Extracts only the value component from file of a color image in BMP, JPG, GIF, TGA, or PCX
format. The result is a matrix with one-third as many columns as the matrix returned by
READ_HSV.

Arguments
file string variable corresponding to color image filename or path

READ_IMAGE File Access

Syntax READ_IMAGE(file)

Description Creates a matrix containing a grayscale representation of the image in file. Each element in the
matrix corresponds to a pixel. The value of a matrix element determines the shade of gray
associated with the corresponding pixel. Each element is an integer between 0 (black) and 255
(white). file is in BMP, JPG, GIF, TGA, or PCX format.

Arguments
file string variable corresponding to grayscale image filename or path

See also For color images, see READRGB.

READPRN File Access

Syntax READPRN(file)

Description Reads a structured ASCII data file and returns a matrix. Each line in the data file becomes a row
in the matrix. The number of elements in each row must be the same. Used as follows:
A := READPRN(file).

Arguments
file string variable corresponding to structured ASCII data filename or path

Comments The READPRN function reads an entire data file, determines the number of rows and columns,
and creates a matrix out of the data.
When Mathcad reads data with the READPRN function:
• Each instance of the READPRN function reads an entire data file.
• All lines in the data file must have the same number of values. (Mathcad ignores lines with

no values.) If the lines in the file have differing numbers of values, Mathcad marks the
READPRN equation with an error message. Use a text editor to replace the missing values
with zeros before you use READPRN.

• The READPRN function ignores text in the data file.
• The result of reading the data file is an m-by-n matrix A, where m is the number of lines

containing data in the file and n is the number of values per line.
WRITEPRN and READPRN allow you to write out and read in nested arrays created in Mathcad.

Functions / 353
READ_RED File Access

Syntax READ_RED(file)

Description Extracts only the red component from file of a color image in BMP, JPG, GIF, TGA, or PCX
format.The result is a matrix with one-third as many columns as the matrix returned by
READRGB.

Arguments
file string variable corresponding to color image filename or path

READRGB File Access

Syntax READRGB(file)
Description Creates a matrix in which the color information in the BMP file file is represented by the

appropriate values of red, green, and blue. This matrix consists of three submatrices, each with
the same number of columns and rows. Three matrix elements, rather than one, correspond to
each pixel. Each element is an integer between 0 and 255. The three corresponding elements,
when taken together, establish the color of the pixel.

Arguments
file string variable corresponding to color image filename or path

Example

Comments To partition the matrix for a color image into its red, green, and blue components, use the
submatrix function formulas shown in the example above. In this example, the color bitmap file
monalisa.bmp is read into a grayscale matrix gray, as well as the packed RGB matrix
packed, and then converted into three submatrices called red, green, and blue.
Picture viewer will display the matrix.
Mathcad includes several specialized functions for reading color images or image components,
including functions for reading images in GIF, JPG, TGA and PCX formats.
Consult the following table to decide which function to use:

To separate a file into these
components: Use these functions:

red, green, and blue (RGB) READ_RED, READ_GREEN, READ_BLUE

hue, lightness, and saturation (HLS) READ_HLS, READ_HLS_HUE,
READ_HLS_LIGHT, READ_HLS_SAT,

hue, saturation, and value (HSV) READ_HSV, READ_HSV_HUE,
READ_HSV_SAT, READ_HSV_VAL

354 / Chapter 16 Functions
Note READ_HLS and READ_HSV work in exactly the same way as READRGB. All the others work
in exactly the same way as READBMP.

See also For grayscale images, see READBMP.

READWAV File Access

Syntax READWAV(file)

Description Creates a matrix containing signal amplitudes in file. Each column represents a separate channel
of data. Each row corresponds to a moment in time.

Arguments
file string variable corresponding to pulse code modulated (PCM) Microsoft WAV filename or path

Comments Data from a WAV file is not scaled.

See also WRITEWAV and GETWAVINFO

regress Curve Fitting and Smoothing

One-dimensional Case

Syntax regress(vx, vy, n)

Description Returns the vector required by the interp function to find the nth order polynomial that best fits
data arrays vx and vy.

Arguments
vx, vy real vectors of the same size

n integer, n > 0

Example

Functions / 355
Comments The regression functions regress and loess are useful when you have a set of measured y values
corresponding to x values and you want to fit a polynomial of degree n through those y values.
(For a simple linear fit, that is, n=1, you may as well use the line function.)
Use regress when you want to use a single polynomial to fit all your data values. The regress
function lets you fit a polynomial of any order. However as a practical matter, you would rarely
need to go beyond .
Since regress tries to accommodate all your data points using a single polynomial, it will not
work well when your data does not behave like a single polynomial. For example, suppose you
expect your to be linear from to and to behave like a cubic equation from to

. If you use regress with (a cubic), you may get a good fit for the second half but a
poor fit for the first half.
The loess function alleviates these kinds of problems by performing a more localized regression.
For regress, the first three components of the output vector are vr0=3
(a code telling interp that vr is the output of regress as opposed to a spline function or loess),
vr1=3 (the index within vr where the polynomial coefficients begin), and vr2=n (the order of the
fit). The remaining n + 1 components are the coefficients of the fitting polynomial from the lowest
degree term to the highest degree term.

Two-dimensional Case

Syntax regress(Mxy, vz, n)

Description Returns the vector required by the interp function to find the nth order polynomial that best fits
data arrays Mxy and vz. Mxy is an matrix containing x-y coordinates. vz is an m-element
vector containing the z coordinates corresponding to the m points specified in Mxy.

Arguments
Mxy real matrix containing x-y coordinates of the m data points

vz real m-element vector containing the z coordinates corresponding to the points specified in Mxy
n integer, n > 0

Comments Assume, for example, that you have a set of measured z values corresponding to x and y values
and you want to fit a polynomial surface through those z values. The meanings of the input
arguments are more general than in the one-dimensional case:
• The argument vx, which was an m-element vector of x values, becomes an matrix,

Mxy. Each row of Mxy contains an x in the first column and a corresponding y value in the
second column.

• The argument x for the interp function becomes a 2-element vector v whose elements are
the x and y values at which you want to evaluate the polynomial surface representing the best
fit to the data points in Mxy and vz.

This discussion can be extended naturally to higher dimensional cases. You can add independent
variables by simply adding columns to the Mxy array. You would then add a corresponding
number of rows to the vector v that you pass to the interp function. The regress function can
have as many independent variables as you want. However, regress will calculate more slowly
and require more memory when the number of independent variables and the degree are greater
than four. The loess function is restricted to at most four independent variables.
Keep in mind that for regress, the number of data values, m must satisfy ,

n 6=

yi x1 x10 x11
x20 n 3=

vr regress vx vy n, ,():=

m 2×

m 2×

m 2×

m n k 1–+
n

 n k+
k

------------⋅>

356 / Chapter 16 Functions
where k is the number of independent variables (hence the number of columns in Mxy), n is the
degree of the desired polynomial, and m is the number of data values (hence the number of rows
in vz). For example, if you have five explanatory variables and a fourth degree polynomial, you
will need more than 126 observations.
The loess function works better than regress when your data does not behave like a single
polynomial.

Algorithm Normal equation solution through Gauss-Jordan elimination (Press et al., 1992)

relax Differential Equation Solving

Syntax relax(A, B, C, D, E, F, U, rjac)

Description Returns a matrix of solution values for a Poisson partial differential equation over a planar square
region. More general than multigrid, which is faster.

Arguments
A, B, C, D, E real square matrices all of the same size containing coefficients of the discretized Laplacian (for

example, the left-hand side of equations below).
F real square matrix containing the source term at each point in the region in which the solution is

sought (for example, the right-hand side of equations below).
U real square matrix containing boundary values along the edges of the region and initial guesses

for the solution inside the region.
rjac spectral radius of the Jacobi iteration, , which controls the convergence of the

relaxation algorithm. Its optimal value depends on the details of your problem.

Example

Comments Two partial differential equations that arise often in the analysis of physical systems are Poisson's
equation:

 and its homogeneous form, Laplace's equation.
Mathcad has two functions for solving these equations over a square region, assuming the values
taken by the unknown function on all four sides of the boundary are known. The most
general solver is the relax function. In the special case when u(x, y) is known to be zero on all

0 rjac 1<<

x2

2

∂
∂ u

y2

2

∂
∂ u+ ρ x y,()=

u x y,()

Functions / 357
four sides of the boundary, you can use the multigrid function instead. This function will often
solve the problem faster than relax. If the boundary condition is the same on all four sides, you
can simply transform the equation to an equivalent one in which the value is zero on all four sides.
The relax function returns a square matrix in which:
• an element's location in the matrix corresponds to its location within the square region, and
• its value approximates the value of the solution at that point.
This function uses the relaxation method to converge to the solution. Poisson's equation on a
square domain is represented by:

.

Algorithm Gauss-Seidel with successive overrelaxation (Press et al., 1992)

See also multigrid

reverse Sorting

One-dimensional Case

Syntax reverse(v)

Description Reverses the order of the elements of vector v.

Arguments
v vector

Two-dimensional Case

Syntax reverse(A)

Description Reverses the order of the rows of matrix A.

Arguments
A matrix

See also See sort for sample application.

rexp Random Numbers

Syntax rexp(m, r)
Description Returns a vector of m random numbers having the exponential distribution.

Arguments
m integer, m > 0
r real rate,

See also rnd

Algorithm Inverse cumulative density method (Press et al., 1992)

rF Random Numbers

Syntax rF(m, d1, d2)

Description Returns a vector of m random numbers having the F distribution.
Arguments

m integer, m > 0
d1, d2 integer degrees of freedom, d1 > 0, d2 > 0

Algorithm Best’s XG algorithm, Johnk’s generator (Devroye, 1986)

See also rnd

aj k, uj 1+ k, bj k, uj 1– k, cj k, uj k 1+, dj k, uj k 1–, ej k, uj k,+ + + + fj k,=

r 0>

358 / Chapter 16 Functions
rgamma Random Numbers

Syntax rgamma(m, s)

Description Returns a vector of m random numbers having the gamma distribution.

Arguments
m integer, m > 0
s real shape parameter, s > 0

Algorithm Best’s XG algorithm, Johnk’s generator (Devroye, 1986)

See also rnd

rgeom Random Numbers

Syntax rgeom(m, p)

Description Returns a vector of m random numbers having the geometric distribution.

Arguments
m integer, m > 0
p real number,

Algorithm Inverse cumulative density method (Press et al., 1992)

See also rnd

rhypergeom Random Numbers

Syntax rhypergeom(m, a, b, n)

Description Returns a vector of m random numbers having the hypergeometric distribution.

Arguments
m integer, m > 0

a, b, n integers, , ,

Algorithm Uniform sampling methods (Devroye, 1986)

See also rnd

rkadapt Differential Equation Solving

Syntax rkadapt(y, x1, x2, acc, D, kmax, save)

Description Solves a differential equation using a slowly varying Runge-Kutta method. Provides DE solution
estimate at x2.

Arguments Several arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval
acc real acc > 0 controls the accuracy of the solution; a small value of acc forces the algorithm to

take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values
of acc around 0.001 will generally yield accurate solutions.

D(x, y) real vector-valued function containing the derivatives of the unknown functions

0 p 1< <

0 a≤ 0 b≤ 0 n a b+≤ ≤

Functions / 359
kmax integer kmax > 0 specifies the maximum number of intermediate points at which the solution
will be approximated. The value of kmax places an upper bound on the number of rows of the
matrix returned by these functions.

save real save > 0 specifies the smallest allowable spacing between the values at which the solutions
are to be approximated. save places a lower bound on the difference between any two numbers
in the first column of the matrix returned by the function.

Comments The specialized DE solvers Bulstoer, Rkadapt, Radau, Stiffb, and Stiffr provide the solution
y(x) over a number of uniformly spaced x-values in the integration interval bounded by x1 and
x2. When you want the value of the solution at only the endpoint, y(x2), use bulstoer, rkadapt,
radau, stiffb, and stiffr instead.

Algorithm Adaptive step 5th order Runge-Kutta method (Press et al., 1992)
See also rkfixed, a more general differential equation solver, for information on output and arguments;

Rkadapt.

Rkadapt Differential Equation Solving

Syntax Rkadapt(y, x1, x2, npts, D)

Description Solves a differential equation using a slowly varying Runge-Kutta method; provides DE solution
at equally spaced x values by repeated calls to rkadapt.

Arguments All arguments for this function are the same as described for rkfixed.
y real vector of initial values

x1, x2 real endpoints of the solution interval
npts integer npts > 0 specifies the number of points beyond initial point at which the solution is to be

approximated; controls the number of rows in the matrix output
D(x, y) real vector-valued function containing the derivatives of the unknown functions

Comments Given a fixed number of points, you can approximate a function more accurately if you evaluate
it frequently wherever it's changing fast, and infrequently wherever it's changing more slowly.
If you know that the solution has this property, you may be better off using Rkadapt. Unlike
rkfixed which evaluates a solution at equally spaced intervals, Rkadapt examines how fast the
solution is changing and adapts its step size accordingly. This “adaptive step size control” enables
Rkadapt to focus on those parts of the integration domain where the function is rapidly changing
rather than wasting time on the parts where change is minimal.
Although Rkadapt will use nonuniform step sizes internally when it solves the differential
equation, it will nevertheless return the solution at equally spaced points.
Rkadapt takes the same arguments as rkfixed, and the matrix returned by Rkadapt is identical
in form to that returned by rkfixed.

Algorithm Fixed step Runge-Kutta method with adaptive intermediate steps (5th order) (Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and arguments;
also Odesolve, for a solve block approach.

360 / Chapter 16 Functions
rkfixed Differential Equation Solving

Syntax rkfixed(y0, x1, x2, npts, D)

Description Solves a differential equation using a standard Runge-Kutta method. Provides DE solution at
equally spaced x values.

Arguments
y0 real vector of initial values whose length depends on the order of the DE or the size of the system

of DEs.
• For a first order DE, the vector degenerates to one point, .
• For higher order DEs, the vector has n elements for specifying initial conditions of y,

.
• For a first order system, the vector contains initial values for each unknown function.
• For higher order systems, the vector contains initial values for the derivatives of each

unknown function in addition to initial values for the functions themselves.
x1, x2 real endpoints of the interval on which the solution to the DEs will be evaluated; initial values

in y are the values at x1
npts integer npts > 0 specifies the number of points between the endpoints at which the solution is to

be approximated; controls the number of rows in the matrix output
D(x, y) real vector-valued function containing derivatives of the unknown functions.

• For a first order DE, the vector degenerates to a scalar
function.

• For higher order DEs, the vector has n elements. .
• For a first order system, the vector contains the

first derivatives of each unknown function.
• For higher order systems, the vector contains

expressions for the derivatives of each
unknown function in addition to nth derivatives.

y0 y x1()=

y′ y″ … y n 1–(), , ,

n 1–

D t y,()

y′ t()
y″ t()

.

.

.
y n() t()

=

n 1–

Functions / 361
Examples rkfixed can be used to solve linear, nonlinear, higher-order, and systems of equations. A few
samples are shown here, but for a more complete discussion, see Chapter 9, “Solving and Data
Analysis.”

Example 1: Solving a second order differential equation.

Example 2: Solving a system of first order linear equations.

Comments For a first order DE , the output of rkfixed is a two-column matrix in which:
• The left-hand column contains the points at which the solution to the DE is evaluated.
• The right-hand column contains the corresponding values of the solution.
For higher order DEs, the output matrix contains n columns: the left-hand one for the t values
and the remaining columns for values of y(t), . y′ t() y″ t() … y n 1–() t(), , ,

362 / Chapter 16 Functions
For a first order system, the first column of the output matrix contains the points at which the
solutions are evaluated and the remaining columns contain corresponding values of the solutions.
For higher order systems:
• The first column contains the values at which the solutions and their derivatives are evaluated.
• The remaining columns contain corresponding values of the solutions and their derivatives.

The order in which the solutions and their derivatives appear matches the order in which you
put them into the vector of initial conditions.

The function rkfixed uses a fourth order Runge-Kutta method. Although it is not always the
fastest method, the Runge-Kutta method nearly always succeeds. There are certain cases in which
you may want to use one of Mathcad's more specialized DE solvers:
• Your system of DEs may have certain properties which are best exploited by functions other

than rkfixed. The system may be stiff (Radau, Stiffb, Stiffr), smooth (Bulstoer), or slowly
varying (Rkadapt).

• You may have a boundary value rather than an initial value problem (sbval and bvalfit).
• You may be interested in evaluating the solution only at one point (bulstoer, rkadapt,

radau, stiffb and stiffr).
You may also want to try several methods on the same DE to see which one works the best.

Algorithm Fixed step 4th order Runge-Kutta method (Press et al., 1992)

See also QuickSheets; Odesolve, for a solve block approach; “Differential Equation Solvers” on page
133; and the Differential Equation Solve Blocks E-book posted in the library on Mathcad.com

rlnorm Random Numbers

Syntax rlnorm(m, µ, σ)

Description Returns a vector of m random numbers having the lognormal distribution.

Arguments
m integer, m > 0
µ real logmean
σ real logdeviation,

Algorithm Ratio-of-uniforms method (Devroye, 1986)

See also rnd

rlogis Random Numbers

Syntax rlogis(m, l, s)

Description Returns a vector of m random numbers having the logistic distribution.

Arguments
m integer, m > 0
l real location parameter
s real scale parameter,

Algorithm Inverse cumulative density method (Press et al., 1992)

See also rnd

σ 0>

s 0>

Functions / 363
rnbinom Random Numbers

Syntax rnbinom(m, n, p)

Description Returns a vector of m random numbers having the negative binomial distribution.

Arguments
m, n integers, m > 0, n> 0

p real number,

Algorithm Based on rpois and rgamma (Devroye, 1986)

See also rnd

rnd Random Numbers

Syntax rnd(x)

Description Returns a random number between 0 and x. Identical to runif(1, 0, x) if .

Arguments
x real number

Example

Note: You won’t be able to recreate this example exactly because the random
number generator gives different numbers every time.

Comments Each time you recalculate an equation containing rnd or some other random variate built-in
function, Mathcad generates new random numbers. Recalculation is performed by clicking on
the equation and choosing Calculate from the Worksheet Menu.
These functions have a “seed value” associated with them. Each time you reset the seed, Mathcad
generates new random numbers based on that seed. A given seed value will always generate the
same sequence of random numbers. Choosing Calculate from the Worksheet Menu advances
Mathcad along this random number sequence. Changing the seed value, however, advances
Mathcad along a different random number sequence.
To change the seed value, choose Options from the Worksheet Menu and change the value of
“seed” on the Built-In Variables tab, or use the Seed function. Be sure to supply an integer.
To reset Mathcad's random number generator without changing the seed value, choose Options
from the Worksheet menu, click on the Built-In Variables tab, and click “OK” to accept the

0 p 1≤<

x 0>

364 / Chapter 16 Functions
current seed. Then click on the equation containing the random number generating function and
choose Calculate from the Worksheet menu. Since the randomizer has been reset, Mathcad
generates the same random numbers it would generate if you restarted Mathcad.
There are many other random variate generators in Mathcad.

Algorithm Linear congruence method (Knuth, 1997)

rnorm Random Numbers

Syntax rnorm(m, µ, σ)

Description Returns a vector of m random numbers having the normal distribution.

Arguments
m integer, m > 0
µ real mean
σ real standard deviation,

Example

Note: You won’t be able to recreate this example exactly because the random
number generator gives different numbers every time.

Algorithm Ratio-of-uniforms method (Devroye, 1986)

See also rnd

root Solving

Unbracketed Version

Syntax root(f(var), var)

Description Returns a value of var at which the expression f(var) or function f is equal to 0.

Arguments
var real or complex scalar; var must be assigned a guess value before using this version of root.

f real or complex-valued function.

σ 0>

Functions / 365
Example

Comments For expressions with several roots, your guess value determines which root Mathcad returns. The
example shows a situation in which the root function returns several different values, each of
which depends on the initial guess value.
You can’t put numerical values in the list of unknowns; for example, root(f(x), -2) or
root(14, −2) is not permitted in the example above.
Mathcad solves for complex roots as well as real roots. To find a complex root, you must start
with a complex value for the initial guess.
See also polyroots for an efficient means to compute all roots of a polynomial at once. To change
the accuracy of the root function, change the value of the built-in variable TOL.

Algorithm Secant and Mueller methods (Press et al., 1992; Lorczak)

Bracketed Version

Syntax root(f(var), var, a, b)

Description Returns a value of var lying between a and b at which the expression f(var) or function f is equal
to 0.

Arguments
var real scalar

f real-valued function
a, b real numbers, a < b,

Comments For expressions with several roots, your choice of interval endpoints a and b determines which
root Mathcad returns. f(a) and f(b) must be of opposite signs. Observe that an initial guess for
var is not required for the bracketed version of root to work.
If the optional arguments a and b are not included, then the unbracketed version of root is used.
Note the restriction to real expressions and real variables in the bracketed case.
Mathcad evaluates the bracketed version of the root function using the Ridder method. If that
method fails to find a root, then the Brent method is used.
The above comments concerning convergence and accuracy for the unbracketed version of root
also apply to the bracketed version.

Algorithm Ridder and Brent methods (Press et al., 1992; Lorczak)

366 / Chapter 16 Functions
round Truncation and Round-off

One-argument Version

Syntax round(z)

Description Rounds the real number z to the nearest integer. Same as round(x, 0).

Arguments
z complex number

Two-argument Version

Syntax round(x, n)

Description Rounds the real number x to n decimal places. If n < 0, x is rounded to the left of the decimal point.

Arguments
x real number
n integer

Comments round no longer takes arguments with units. Round(x, y) Rounds x to the closest multiple of y.
y must be real and nonzero. Round takes a second threshold argument, scales by the threshold
before performing the truncation, then rescales after truncation.

See also ceil, floor, trunc

rows Vector and Matrix

Syntax rows(A)

Description Returns the number of rows in array A.

Arguments
A matrix or vector

See also cols for example

rpois Random Numbers

Syntax rpois(m, λ)

Description Returns a vector of m random numbers having the Poisson distribution.

Arguments

m integer, m > 0
λ real mean,

Algorithm Devroye, 1986

See also rnd

rref Vector and Matrix

Syntax rref(A)

Description Returns a matrix representing the row-reduced echelon form of A.

Arguments

A real matrix

Algorithm Elementary row reduction (Anton)

λ 0>

m n×

Functions / 367
rsort Sorting

Syntax rsort(A, i)

Description Sorts the columns of the matrix A by placing the elements in row i in ascending order. The result
is the same size as A.

Arguments

A matrix or vector
i integer,

Algorithm Heap sort (Press et al., 1992)

See also sort for more details, csort

rt Random Numbers

Syntax rt(m, d)

Description Returns a vector of m random numbers having Student’s t distribution.

Arguments

m integer, m > 0
d integer degrees of freedom,

Algorithm Best’s XG algorithm, Johnk’s generator (Devroye, 1986)

See also rnd

runif Random Numbers

Syntax runif(m, a, b)

Description Returns a vector of m random numbers having the uniform distribution

Arguments

m integer, m > 0
a, b real numbers,

Algorithm Linear congruence method (Knuth, 1997)

See also rnd

rweibull Random Numbers

Syntax rweibull(m, s)

Description Returns a vector of m random numbers having the Weibull distribution.

Arguments

m integer, m > 0
s real shape parameter,

Algorithm Inverse cumulative density method (Press et al., 1992)

See also rnd

m n×

0 i m 1–≤ ≤

d 0>

a b<

s 0>

368 / Chapter 16 Functions
SaveColormap File Access

Syntax SaveColormap(file, M)

Description Creates a colormap file containing the values in the matrix M. Returns the number of rows written
to file.

Arguments
file string variable corresponding to CMP filename
M integer matrix with three columns and whose elements Mi, j all satisfy .

Comments The file file is the name of a colormap located in the CMAPS subdirectory of your Mathcad
directory. After you use SaveColormap, the colormap is available on the Advanced tab in the
3D Plot Format dialog box. See online Help for more information.

See also LoadColormap

sbval Differential Equation Solving

Syntax sbval(v, x1, x2, D, load, score)

Description Converts a boundary value differential equation to an initial value problem. Useful when
derivatives are continuous throughout.

Arguments
v real vector containing guesses for missing initial values

x1, x2 real endpoints of the interval on which the solution to the DEs will be evaluated
D(x, y) real n-element vector-valued function containing the derivatives of the unknown functions

load(x1, v) real vector-valued function whose n elements correspond to the values of the n unknown functions
at x1. Some of these values will be constants specified by your initial conditions. If a value is
unknown, you should use the corresponding guess value from v.

score(x2, y) real n-element vector-valued function which measures solution discrepancy at x2

Example

0 M≤ i j, 255≤

Functions / 369
Comments Initial value DE solvers like rkfixed assume that you know the value of the solution and its first
 derivatives at the beginning of the interval of integration. Two-point boundary value DE

solvers, like sbval and bvalfit, may be used if you lack this information about the solution at
the beginning of the interval of integration, but you do know something about the solution
elsewhere in the interval. In particular:
• You have an nth order differential equation.
• You know some but not all of the values of the solution and its first derivatives at the

beginning of the interval of integration, x1.
• You know some but not all of the values of the solution and its first derivatives at the

end of the interval of integration, x2.
• Between what you know about the solution at x1 and what you know about it at x2, you have

n known values.
If there is a discontinuity at a point intermediate to x1 and x2, you should use bvalfit. If continuity
holds throughout, then use sbval to evaluate those initial values left unspecified at x1. sbval does
not actually return a solution to a differential equation; it merely computes the initial values the
solution must have in order for the solution to match the final values you specify. You must then
take the initial values returned by sbval and solve the resulting initial value problem using
rkfixed or any of the other more specialized DE solvers.

Algorithm Shooting method with 4th order Runge-Kutta method (Press et al., 1992)

See also rkfixed for more details; also Odesolve, for a solve block approach.

search String

Syntax search(S, SubS, m)

Description Returns the starting position of the substring SubS in S beginning from position m. Returns –1 if
the substring is not found.

Arguments
S string expression; Mathcad assumes that the first character in S is at position 0

SubS substring expression
m integer,

sec Trigonometric

Syntax sec(z), for z in radians;
sec(z·deg), for z in degrees

Description Returns the secant of z.

Arguments
z real or complex number; z is not an odd multiple of π/2

sech Hyperbolic

Syntax sech(z)

Description Returns the hyperbolic secant of z.

Arguments
z real or complex number

n 1–

n 1–

n 1–

m 0≥

370 / Chapter 16 Functions
Seed Random Numbers

Syntax Seed(x)

Description Resets the seed for random number generation. Returns the value of the previous seed.

Arguments
x an integer

Comments This function can be used instead of the Worksheet Options... dialog under Tools to set the
value for the random number generator seed dynamically within a Mathcad worksheet. It may
be used iteratively in programs. This function can also be used to check the current value of seed
after a random number generation function has been called a number of times.

See Also rnd

sign Piecewise Continuous

Syntax sign(x)

Description Returns 0 if x=0, 1 if x > 0, and −1 otherwise.

Arguments
x real number

See also csgn, signum

signum Complex Numbers

Syntax signum(z)

Description Returns 1 if z=0 and otherwise.

Arguments
z real or complex number

See also csgn, sign

sin Trigonometric

Syntax sin(z), for z in radians;
sin(z·deg), for z in degrees

Description Returns the sine of z.

Arguments
z real or complex number

Comments sin(z)/z will behave correctly in the limit as z approaches 0 (that is, sin(z)/z = 1) for the case
where z is a number. Abstracted cases, such as f(z)/g(z), where f(z) = sin(z), and g(z):= z,
following Mathcad rules for the fraction 0/0.

See also sinc

z z⁄

Functions / 371
sinc Trigonometric

Syntax sinc(z), for z in radians;
sinc(z·deg), for z in degrees

Description Returns the sine of z divided by z.

Arguments
z real or complex number

Comments
returns the value 1in the case that z is 0.

See also sin

sinfit Curve Fitting and Smoothing

Syntax sinfit(vx, vy, vg)

Description Returns a vector containing the parameters (a, b, c) that make the function
best approximate the data in vx and vy.

Arguments
vx, vy real vectors of the same size

vg real vector of guess values for (a, b, c)

Comments This is a special case of the genfit function. A vector of guess values is needed for initialization.
By decreasing the value of the built-in TOL variable, higher accuracy in sinfit might be achieved.

See Also line, linfit, genfit, expfit, logfit, lnfit, pwrfit, lgsfit, medfit

sinh Hyperbolic

Syntax sinh(z)

Description Returns the hyperbolic sine of z.

Arguments
z real or complex number

skew Statistics

Syntax skew(A)

Description Returns the skewness of the elements of A:

Arguments
A real or complex matrix or vector,

Comments skew(A, B, C, ...) is also permissible and returns the skewness of the elements of A, B, C,

slope Curve Fitting and Smoothing

Syntax slope(vx, vy)

Description Returns the slope of the least-squares regression line.

Arguments
vx, vy real vector arguments of the same size

a x b+()sin⋅ c+

skew A() mn
mn 1–() mn 2–()

Ai j, mean A()–

Stdev A()
--

3

j 0=

n 1–

∑
i 0=

m 1–

∑=

m n× m n 3≥⋅

372 / Chapter 16 Functions
Example

Comments The functions intercept and slope return the intercept and slope of the line which best fits the
data in a least-squares sense: . Alternatively, you
may use the line function which returns both parameter estimates via one function call.
Be sure that every element in the vx and vy arrays contains a data value. Since every element in
an array must have a value, Mathcad assigns 0 to any elements not explicitly assigned.
These functions are useful not only when the data is inherently linear, but also when it is
exponential. If x and y are related by , you can apply these functions to the logarithm
of the data values and make use of the fact that , hence

.
The resulting fit weighs the errors differently from a least-squares exponential fit (which the
function expfit provides) but is usually a good approximation.

See also intercept, line, stderr, medfit

sort Sorting

Syntax sort(v)

Description Returns the elements of vector v sorted in ascending order.

Arguments
v vector

y intercept vx vy,() slope vx vy,() x⋅+=

y Aekx=
y()ln A()ln kx+=

A intercept vx vy()ln,()() and exp= k slope vx vy()ln,()=

Functions / 373
Example

Comments All of Mathcad’s sorting functions accept matrices and vectors with complex elements. However
in sorting them, Mathcad ignores the imaginary part.
To sort a vector or matrix in descending order, first sort in ascending order, then use reverse.
For example, reverse(sort(v)) returns the elements of v sorted in descending order.
Unless you change the value of ORIGIN, matrices are numbered starting with row zero and
column zero. If you forget this, it’s easy to make the error of sorting a matrix on the wrong row
or column by specifying an incorrect n argument for rsort and csort. To sort on the first column
of a matrix, for example, you must use csort(A, 0).

Algorithm Heap sort (Press et al., 1992)

sph2xyz Vector and Matrix

Syntax sph2xyz(r, θ, φ) or sph2xyz(v)

Description Converts the spherical coordinates of a point in 3D space to rectangular coordinates.

Arguments
r, θ, φ real numbers

Comments x = r sin(φ) cos(θ), y = r sin(φ) sin(θ), z = r cos(φ),

See also xyz2sph

stack Vector and Matrix

Syntax stack(A, B, C, ...)

Description Returns a matrix formed by placing the matrices A, B, C, ... top to bottom.

Arguments
A, B, C, ... at least two matrices or vectors; A, B, C, ... must have the same number of columns

See also augment for example

v
r
θ
φ

=

374 / Chapter 16 Functions
stderr Curve Fitting and Smoothing

Syntax stderr(vx, vy)

Description Returns the standard error associated with simple linear regression, measuring how closely data
points are spread about the regression line.

.

Arguments
vx, vy real vector arguments of the same size

See also slope, intercept

stdev Statistics

Syntax stdev(A)

Description Returns the standard deviation of the elements of A, where mn (the sample size) is used in the
denominator: .

Arguments
A real or complex matrix or vector

Comments stdev(A, B, C, ...) is also permissible and returns the standard deviation of the elements of A,
B, C,

See also Stdev, var, Var

Stdev Statistics

Syntax Stdev(A)

Description Returns the standard deviation of the elements of A, where mn − 1 (the sample size less one) is
used in the denominator: .

Arguments
A real or complex matrix or vector

Comments Stdev(A, B, C, ...) is also permissible and returns the standard deviation of the elements of A,
B, C,

See also stdev, var, Var

stiffb Differential Equation Solving

Syntax stiffb(y, x1, x2, acc, D, J, kmax, save)

Description Solves a differential equation using the stiff Bulirsch-Stoer method. Provides DE solution
estimate at x2.

Arguments Several arguments for this function are the same as described for rkfixed.
y real vector of initial values.

x1, x2 real endpoints of the solution interval.
D(x, y) real vector-valued function containing the derivatives of the unknown functions.

stderr vx vy,() 1
n 2–
------------ vyi intercept vx vy,() slope vx vy,() vxi⋅+()–()2

i 0=

n 1–

∑=

stdev A() var A()=

m n×

Stdev A() Var A()=

m n×

Functions / 375
acc real acc > 0 controls the accuracy of the solution; a small value of acc forces the algorithm to
take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values
of acc around 0.001 will generally yield accurate solutions.

J(x, y) real vector-valued function which returns the matrix whose first column contains the
derivatives and whose remaining columns form the Jacobian matrix () for the
system of DEs.

kmax integer kmax > 0 specifies maximum number of intermediate points at which the solution will
be approximated; places an upper bound on the number of rows of the matrix returned by these
functions.

save real save > 0 specifies the smallest allowable spacing between values at which the solutions are
to be approximated; places a lower bound on the difference between any two numbers in the first
column of the matrix returned by the function.

Comments The specialized DE solvers Bulstoer, Rkadapt, Radau, Stiffb, and Stiffr provide the solution
y(x) over a number of uniformly spaced x-values in the integration interval bounded by x1 and
x2. When you want the value of the solution at only the endpoint, y(x2), use bulstoer, rkadapt,
radau, stiffb, and stiffr instead.

Algorithm Bulirsch-Stoer method with adaptive step size for stiff systems (Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and arguments;
Stiffb.

Stiffb Differential Equation Solving

Syntax Stiffb(y, x1, x2, npts, D, J)

Description Solves a differential equation using the stiff Bulirsch-Stoer method. Provides DE solution at
equally spaced x values by repeated calls to stiffb.

Arguments Several arguments for this function are the same as described for rkfixed.
y real vector of initial values.

x1, x2 real endpoints of the solution interval.
D(x, y) real vector-valued function containing the derivatives of the unknown functions.

npts integer npts > 0 specifies the number of points beyond initial point at which the solution is to be
approximated; controls the number of rows in the matrix output.

J(x, y) real vector-valued function which returns the matrix whose first column contains
the derivatives and whose remaining columns form the Jacobian matrix () for
the system of DEs. For example, if:

Comments A system of DEs expressed in the form is a stiff system if the matrix A is nearly
singular. Under these conditions, the solution returned by rkfixed may oscillate or be unstable.
When solving a stiff system, you should use one of the two DE solvers specifically designed for
stiff systems: Stiffb and Stiffr. These use the Bulirsch-Stoer method and the Rosenbrock method,
respectively, for stiff systems.
The form of the matrix returned by these functions is identical to that returned by rkfixed.
However, Stiffb and Stiffr require an extra argument J(x, y).

n n 1+()×
D∂ x∂⁄ D∂ yk∂⁄

n n 1+()×
D∂ x∂⁄ D∂ yk∂⁄

D x y,()
x y1⋅

2– y1 y0⋅ ⋅
 then = J x y,()

y1 0 x

0 2– y1⋅ 2– y0⋅
=

y A x⋅=

376 / Chapter 16 Functions
Algorithm Fixed-step Bulirsch-Stoer method with adaptive intermediate step size for stiff systems
(Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and arguments.

stiffr Differential Equation Solving

Syntax stiffr(y, x1, x2, acc, D, J, kmax, save)

Description Solves a differential equation using the stiff Rosenbrock method. Provides DE solution estimate
at x2.

Arguments Several arguments for this function the same as described for rkfixed.

y real vector of initial values.
x1, x2 real endpoints of the solution interval.

D(x, y) real vector-valued function containing the derivatives of the unknown functions.
acc real acc > 0 controls the accuracy of the solution; a small value of acc forces the algorithm to

take smaller steps along the trajectory, thereby increasing the accuracy of the solution. Values
of acc around 0.001 will generally yield accurate solutions.

J(x, y) real vector-valued function that returns the matrix whose first column contains the
the derivatives and whose remaining columns form the Jacobian matrix () for
the system of DEs.

kmax integer kmax > 0 specifies maximum number of intermediate points at which the solution will
be approximated; places an upper bound on the number of rows of the matrix returned by these
functions.

save real save > 0 specifies the smallest allowable spacing between values at which the solutions are
to be approximated; places a lower bound on the difference between any two numbers in the first
column of the matrix returned by the function.

Comments The specialized DE solvers Bulstoer, Rkadapt, Radau, Stiffb, and Stiffr provide the solution
y(x) over a number of uniformly spaced x-values in the integration interval bounded by x1 and
x2. When you want the value of the solution at only the endpoint, y(x2), use bulstoer, rkadapt,
radau, stiffb, and stiffr instead.

Algorithm 4th order Rosenbrock method with adaptive intermediate step size for stiff systems
(Press et al., 1992)

See also rkfixed, a more general differential equation solver for information on output and arguments,
and Stiffr

Stiffr Differential Equation Solving

Syntax Stiffb(y, x1, x2, npts, D, J)

Description Solves a differential equation using the stiff Rosenbrock method. Provides DE solution at equally
spaced x values by repeated calls to stiffr.

Arguments Several arguments for this function are the same as described for rkfixed.

y real vector of initial values.
x1, x2 real endpoints of the solution interval.

D(x, y) real vector-valued function containing the derivatives of the unknown functions.
npts integer npts > 0 specifies the number of points beyond initial point at which the solution is to be

approximated; controls the number of rows in the matrix output.

n n 1+()×
D∂ x∂⁄ D∂ yk∂⁄

Functions / 377
J(x, y) real vector-valued function which returns the matrix whose first column contains
the derivatives and whose remaining columns form the Jacobian matrix () for
the system of DEs. For example, if:

Comments A system of DEs expressed in the form is a stiff system if the matrix A is nearly
singular. Under these conditions, the solution returned by rkfixed may oscillate or be unstable.
When solving a stiff system, you should use one of the two DE solvers specifically designed for
stiff systems: Stiffb and Stiffr. These use the Bulirsch-Stoer method and the Rosenbrock method,
respectively, for stiff systems.
The form of the matrix returned by these functions is identical to that returned by rkfixed.
However, Stiffb and Stiffr require an extra argument J(x, y).

Algorithm Fixed-step 4th order Rosenbrock method with adaptive intermediate step size for stiff systems
(Press et al., 1992)

See also rkfixed, a more general differential equation solver, for information on output and arguments.

str2num String

Syntax str2num(S)

Description Returns the constant formed by converting the characters in S into a number. Characters in S
must constitute an integer such as 17, a real floating-point number such as −16.5, a complex
floating-point number such as 2.1+6i or 3.241 − 9.234j, or an e-format number such as 4.51e-3
(for). Mathcad ignores any spaces in the string.

Arguments
S string expression

See also num2str

str2vec String

Syntax str2vec(S)

Description Returns the vector of ASCII codes corresponding to the characters in string S. For a list of ASCII
codes, see the Appendix. For example, the ASCII code for letter “a” is 97, that for letter “b” is
98, and that for letter “c” is 99.

Arguments
S string expression

See also vec2str

strlen String

Syntax strlen(S)

Description Returns the number of characters in S.

Arguments
S string expression

n n 1+()×
D∂ x∂⁄ D∂ yk∂⁄

D x y,()
x y1⋅

2– y1 y0⋅ ⋅
 then = J x y,()

y1 0 x

0 2– y1⋅ 2– y0⋅
=

y A x⋅=

4.51 10 3–⋅

378 / Chapter 16 Functions
submatrix Vector and Matrix

Syntax submatrix(A, ir, jr, ic, jc)

Description Returns a submatrix of A consisting of all elements common to rows ir through jr and columns
ic through jc. Make certain that and , otherwise the order of rows and/or columns
will be reversed.

Arguments
A matrix or vector

ir, jr integers,
ic, jc integers,

Example

substr String

Syntax substr(S, m, n)

Description Returns a substring of S beginning with the character in the mth position and having at most n
characters.

Arguments
S string expression. Mathcad assumes that the first character in S is at position 0.

m, n integers,

supsmooth Curve Fitting and Smoothing

Syntax supsmooth(vx, vy)

Description Creates a new vector, of the same size as vy, by piecewise use of a symmetric k-nearest neighbor
linear least square fitting procedure in which k is adaptively chosen.

Arguments
vx, vy real vectors of the same size; elements of vx must be in ascending order

ir jr≤ ic jc≤

m n×

0 ir jr m≤ ≤ ≤

0 ic jc n≤ ≤ ≤

m 0≥ n 0≥,

Functions / 379
Example

Comments The supsmooth function uses a symmetric k nearest neighbor linear least-squares fitting
procedure to make a series of line segments through the data. Unlike ksmooth which uses a fixed
bandwidth for all the data, supsmooth will adaptively choose different bandwidths for different
portions of the data.

Algorithm Variable span super-smoothing method (Friedman)

See also medsmooth and ksmooth

svd Vector and Matrix

Syntax svd(A)

Description Returns an matrix whose first m rows contain the orthonormal matrix U, and
whose remaining n rows contain the orthonormal matrix V. Matrices U and V satisfy the
equation , where s is the vector returned by svds(A).

Arguments
A real matrix, where

m n+() n× m n×
n n×

A U diag s() VT⋅ ⋅=

m n× m n≥

380 / Chapter 16 Functions
Example

Algorithm Householder reduction with QR transformation (Wilkinson and Reinsch, 1971)

See also svds

svds Vector and Matrix

Syntax svds(A)

Description Returns a vector containing the singular values of A.

Arguments
A real matrix, where

Algorithm Householder reduction with QR transformation (Wilkinson and Reinsch, 1971)

See also svd

tan Trigonometric
Syntax tan(z) for z in radians;

tan(z·deg), for z in degrees

Description Returns the tangent of z.

Arguments
z real or complex number

tanh Hyperbolic

Syntax tanh(z)
Description Returns the hyperbolic tangent of z.

Arguments
z real or complex number

m n× m n≥

Functions / 381
Tcheb Special

Syntax Tcheb(n, x)

Description Returns the value of the Chebyshev polynomial of degree n of the first kind.

Arguments
n integer,
x real number

Comments Solution of the differential equation .

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)
See also Ucheb

tr Vector and Matrix

Syntax tr(M)

Description Returns the trace of M, the sum of diagonal elements.
Arguments

M real or complex square matrix

trunc Truncation and Round-off

Syntax trunc(z)
Description Returns the integer part of z. Same as floor(z) for z > 0 and ceil(z) for z < 0.
Arguments

z complex number

Comments trunc no longer takes arguments with units.
Trunc(x, y) Returns the value of trunc(x/y)*y. y must be real and nonzero. Round takes a second
threshold argument, scales by the threshold before performing the truncation, then rescales after
truncation.

See also ceil, floor, round

Ucheb Special

Syntax Ucheb(n, x)

Description Returns the value of the Chebyshev polynomial of degree n of the second kind.

Arguments
n integer,
x real number

Comments Solution of the differential equation .

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)
See also Tcheb

n 0≥

1 x2–()
x2

2

d
d y⋅ x d

dx
------y⋅– n2 y⋅+ 0=

n 0≥

1 x2–()
x2

2

d
d y⋅ 3 x d

dx
------y⋅ ⋅– n n 2+() y⋅ ⋅+ 0=

382 / Chapter 16 Functions
UnitsOf Expression Type

Syntax UnitsOf(x)

Description Returns the units of x. Returns 1 if x has no units.

Arguments
x arbitrary real or complex number, or array

Comments You can divide a value by the UnitsOf function to make it unitless. For example, some built-in
functions, such as ln, require their arguments to be unitless. If an argument to ln has units, you
can divide the argument by UnitsOf to remove them.

var Statistics

Syntax var(A)

Description Returns the variance of the elements of A: .

This expression is normalized by the sample size mn.

Arguments
A real or complex matrix or array

Comments var(A, B, C, ...) is also permissible and returns the variance of the elements of A, B, C,

See also stdev, Stdev, Var

Var Statistics

Syntax Var(A)

Description Returns the variance of the elements of A: .

This expression is normalized by the sample size less one, mn − 1.

Arguments
A real or complex matrix or array

Comments Var(A, B, C, ...) is also permissible and returns the variance of the elements of A, B, C,

See also stdev, Stdev, var

vec2str String

Syntax vec2str(v)

Description Returns the string formed by converting a vector v of ASCII codes to characters. The elements
of v must be integers between 0 and 255.

Arguments
v vector of ASCII codes

See also str2vec

var A() 1
mn
------- Ai j, mean A()– 2

j 0=

n 1–

∑
i 0=

m 1–

∑=

m n×

var A() 1
mn 1–
---------------- Ai j, mean A()– 2

j 0=

n 1–

∑
i 0=

m 1–

∑=

m n×

Functions / 383
vlookup Vector and Matrix

Syntax vlookup(z, A, c)

Description Looks in the first column of a matrix, A, for a given value, z, and returns the value(s) in the same
row(s) in the column specified, c. When multiple values are returned, they appear in a vector.

Arguments
z real or complex number, or string

A real, complex or string matrix
c integer,

Comments The degree of precision to which the comparison adheres is determined by the TOL setting of
the worksheet.

See Also lookup, hlookup, match

wave Wavelet Transform

Syntax wave(v)

Description Returns the discrete wavelet transform of real data using Daubechies four-coefficient wavelet
filter.

Arguments
v real vector of elements, where n > 0 is an integer

Example

Comments When you define a vector v for use with Fourier or wavelet transforms, be sure to start with
(or change the value of ORIGIN). If you do not define , Mathcad automatically sets it to zero.
This can distort the results of the transform functions.

Algorithm Pyramidal Daubechies 4-coefficient wavelet filter (Press et al., 1992)

See also iwave

m n×

ORIGIN c ORIGIN n 1–+≤ ≤

2n

v0
v0

384 / Chapter 16 Functions
WRITEBIN File Access

Syntax WRITEBIN(file, type)

Description Writes out a matrix as a file of binary data. Used as follows: WRITEBIN(file, type) := A.

Arguments
file String variable corresponding to the binary data filename, including path

type String argument specifying the data type used in the file. Must be one of the following: double
(64 bit floating point), float (32 bit floating point), byte (8 bit unsigned integer), uint16 (16 bit
unsigned integer), uint32 (32 bit unsigned integer), int16 (16 bit signed integer), or int32 (32
bit signed integer).

See also READBIN

WRITEBMP File Access

Syntax WRITEBMP(file)
Description Creates a grayscale BMP image file file out of a matrix.

Used as follows: WRITEBMP(file) := M. The function must appear alone on the left side of a
definition.

Arguments
file string variable corresponding to BMP filename or path
M integer matrix, each element satisfying

WRITE_HLS File Access

Syntax WRITE_HLS(file)

Description Creates a color BMP image file file out of a matrix formed by juxtaposing the three matrices
giving the hue, lightness, and saturation components of an image.

Arguments
file string variable corresponding to BMP filename or path
M integer matrix, each element satisfying

See also See WRITERGB for an overview of creating color data files.

WRITE_HSV File Access

Syntax WRITE_HSV(file)

Description Creates a color BMP image file file out of a matrix formed by juxtaposing the three matrices
giving the hue, saturation, and value components of an image.

Arguments
file string variable corresponding to BMP filename or path
M integer matrix, each element satisfying

See also See WRITERGB for overview.

0 Mi j, 255≤ ≤

0 Mi j, 255≤ ≤

0 Mi j, 255≤ ≤

Functions / 385
WRITEPRN File Access

Syntax WRITEPRN(file) := A

Description Writes a matrix A into a structured ASCII data file file. Each row becomes a line in the file. The
function must appear alone on the left side of a definition.

Arguments
file string variable corresponding to structured ASCII data filename or path

A matrix or vector

Comments The WRITEPRN and APPENDPRN functions write out data values neatly lined up in rows and
columns. When you use these functions:
• Equations using WRITEPRN or APPENDPRN must be in a specified form. On the left should

be WRITEPRN(file) or APPENDPRN(file). This is followed by a definition symbol (:=) and
a matrix expression. Do not use range variables or subscripts on the matrix expression.

• Each new equation involving WRITEPRN writes a new file; if two equations write to the
same file, the data written by the second equation will overwrite the data written by the first.
Use APPENDPRN if you want to append values to a file rather than overwrite the file.

• The built-in variables PRNCOLWIDTH and PRNPRECISION determine the format of the
data file that Mathcad creates. The value of PRNCOLWIDTH specifies the width of the
columns (in characters). The value of PRNPRECISION specifies the number of significant
digits used. By default, PRNCOLWIDTH=8 and PRNPRECISION=4. To change these
values, choose Options from the Worksheet Menu and edit the numbers on the Built-In
Variables tab, or enter definitions for these variables in your Mathcad document above the
WRITEPRN function.

WRITEPRN and READPRN allow you to write out and read in nested arrays created in Mathcad.
If the array you are writing is either a nested array (an array whose elements are themselves
arrays) or a complex array (an array whose elements are complex), then WRITEPRN will not
create a simple ASCII file. Instead, WRITEPRN creates a file using a special format unlikely to
be readable by other applications. This file can, however, be read by Mathcad's READPRN
function.
By using the augment function, you can concatenate several variables and write them all using
WRITEPRN to a data file.

See also APPENDPRN

WRITERGB File Access

Syntax WRITERGB(file)

Description Creates a color BMP image file file out of a single matrix formed by juxtaposing the three matrices
giving the red, green, and blue values of an image. Used as follows: WRITERGB(file) := M. The
function must appear alone on the left side of a definition.

Arguments
file string variable corresponding to BMP filename or path
M integer matrix, each element satisfying

Comments The function augment is helpful for combining submatrices prior to using WRITERGB.
Mathcad has functions for creating color BMP files out of matrices in which the image is stored
in HLS or HSV format. These work in exactly the same way as WRITERGB.

See also WRITE_HLS and WRITE_HSV

0 Mi j, 255≤ ≤

386 / Chapter 16 Functions
WRITEWAV File Access

Syntax WRITEWAV(file, s, b)

Description Creates a WAVsignal file file out of a matrix.
Used as follows: WRITEWAV(file, s, b) := M. The function must appear alone on the left side
of a definition.

Arguments
file string variable corresponding to pulse code modulated (PCM) Microsoft WAV filename or path

s integer sample rate
b bit resolution

M integer matrix

Comments If the specified bit resolution is 1 − 8, the data is written to file as unsigned byte data. The limits
on unsigned byte data are 0 to 256. If the bit resolution is 9 − 16, word data (two bytes) is written
to file. The limits on word data are –32768 to 32767.

See also GETWAVINFO and READWAV

xyz2cyl Vector and Matrix

Syntax xyz2cyl(x, y, z) or xyz2cyl(v)
Description Converts the rectangular coordinates of a point in 3D space to cylindrical coordinates.

Arguments
x, y, z real numbers

Comments x = r cos(θ), y = r sin(θ), z = z,

See also cyl2xyz

xy2pol Vector and Matrix

Syntax xy2pol(x, y) or xy2pol(v)

Description Converts the rectangular coordinates of a point in 2D space to polar coordinates.

Arguments
x, y real numbers

Comments x = r cos(θ), y = r sin(θ),

See also pol2xy

xyz2sph Vector and Matrix

Syntax xyz2sph(x, y, z) or xyz2sph(v)

Description Converts the rectangular coordinates of a point in 3D space to spherical coordinates.

Arguments
x, y, z real numbers

Comments x = r sin(φ) cos(θ), y = r sin(φ) sin(θ), z = r cos(φ),

See also sph2xyz

v
x
y
z

=

v x
y

=

v
x
y
z

=

Functions / 387
Y0 Bessel

Syntax Y0(z)

Description Returns the value of the Bessel function of the second kind. Same as Yn(0, z).

Arguments
z real or complex number

Comments Y0.sc(z),where sc means scaled and is a literal subscript, gives Y0(z) multiplied by
exp(-|Im(z)|). Scaled functions are useful for calculating large arguments without overflow.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

Y1 Bessel
Syntax Y1(z)

Description Returns the value of the Bessel function of the second kind. Same as Yn(1, z).

Arguments
z real or complex number

Comments Y1.sc(z),where sc means scaled and is a literal subscript, gives Y1(z) multiplied by
exp(-|Im(z)|). Scaled functions are useful for calculating large arguments without overflow.

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

Yn Bessel

Syntax Yn(m, z)

Description Returns the value of the Bessel function of the second kind.

Arguments
m real number
z real or complex number

Comments Solution of the differential equation .
Y1.sc(m, z),where sc means scaled and is a literal subscript, gives Yn(m, z) multiplied by
exp(-|Im(z)|). Scaled functions are useful for calculating large arguments without overflow

Algorithm AMOSLIB; ACM TOMS 12 (1986) 265-273.

See also Jn

ys Bessel

Syntax ys(n, z)

Description Returns the value of the spherical Bessel function of the second kind, of order n, at x.

Arguments
z real or complex number
n real number

Comments Solution of the differential equation: .

Algorithm Recurrence relation (Abramowitz and Stegun, 1972)

See also js

Y0 z()

Y1 z()

Ym z()

x2
x2

2

d
d y⋅ x d

dx
------y⋅ x2 m2–() y⋅+ + 0=

x2

x2

2

d
d y 2 x d

dx
------y x2 n n 1+()⋅–()y 0=+⋅ ⋅+⋅

388 / Chapter 16 Functions
δ Piecewise Continuous

Syntax δ(m, n)

Description Returns the value of the Kronecker delta function. Output is 1 if m=n and 0 otherwise.
(To type δ, press d[Ctrl]G).

Arguments
m, n integers

ε Piecewise Continuous

Syntax ε(i, j, k)

Description Returns the value of a completely antisymmetric tensor of rank three. Output is 0 if any two
arguments are the same, 1 if the three arguments are an even permutation of (0 1 2), and –1 if
the arguments are an odd permutation of (0 1 2). (To type ε, press e[Ctrl]g).

Arguments
i, j, k integers between 0 and 2 inclusive (or between ORIGIN and ORIGIN+2 inclusive if ORIGIN≠0)

Γ Special

Classical Definition

Syntax Γ(z)

Description Returns the value of the classical Euler gamma function. (To type Γ, press G[Ctrl]g).

Arguments
z real or complex number; undefined for

Description For Re(z) > 0, .
For Re(z) < 0, function values analytically continue the above formula. Because ,
the gamma function extends the factorial function (traditionally defined only for positive
integers).

Extended Definition

Syntax Γ(x, y)

Description Returns the value of the extended Euler gamma function. (To type Γ, press G[Ctrl]g).

Arguments
x, y real numbers,

Description Although restricted to real arguments, the function

extends the classical gamma function in the sense that the lower limit of integration y is free to
vary. In the special case when y=0, the classical formulation applies and the first argument may
assume complex values.

z 0 1– 2– …, , ,=

Γ z() tz 1– e t– td
0

∞

∫=
Γ z 1+() z!=

x 0> y 0≥,

Γ x y,() tx 1– e t– td
y

∞

∫=

Functions / 389
Φ Piecewise Continuous
Syntax Φ(x)

Description Returns the value of the Heaviside step function. Output is 1 if x ≥ 0 and 0 otherwise.
(To type Φ, press F[Ctrl]g).

Arguments
x real number

Example

Chapter 17
Operators

This chapter lists and describes Mathcad’s built-in operators. The operators are listed
according to the toolbar: Calculator, Graph, Matrix, Evaluation, Calculus, Boolean,
Programming, Greek, Symbolic, and Modifier on which they appear.

Changing the Display of an Operator
When you insert an operator into a worksheet, it has a certain default appearance. For

example, when you type a colon : or click on the Calculator toolbar, Mathcad
shows the colon as the definition symbol :=. This Mathcad symbol indicates a variable
or function definition.
There may be times when you want to customize the appearance of operators. For
example you may want the definition symbol to look like an ordinary equal sign. To
change the way an operator is displayed throughout a worksheet:
1. Choose Worksheet Options from

the Tools menu.
2. Click the Display tab.
3. Use the drop-down options next to

each operator to select a display
option.

To find the options available for each
operator, click the Help button at the
bottom of the Display tab.
To change the appearance of an
operator in an individual expression,
click on it with the right mouse button
and use the popup menu. For example,
to change the multiplication in an
expression from a dot to an x:
1. Click on the multiplication with the right

mouse button.

2. Choose View Multiplication As… ⇒ X
from the popup menu.
391

392 / Chapter 17
Defining a Custom Operator
You define a custom operator just as you define a function:
1. Type the operator name followed by a pair of parentheses. Enter the operands (two

at the most) between the parentheses.
2. Enter the definition symbol := by pressing the colon key.
3. Type an expression describing what you want the operator to do with its operands

on the other side of the definition symbol.

Tip Mathcad provides a collection of math symbols to define custom operators. To access these
symbols, open the QuickSheets from the Help menu and then choose “Extra Math Symbols.”
You can drag any of these symbols to your worksheet for use in creating a new operator name.

For example, suppose you want to define a new union operator using the symbol “ ”.
1. Drag the symbol into your worksheet from the “Extra Math

Symbols” QuickSheet.
2. Type a left parenthesis followed by two names separated by a

comma. Complete this argument list by typing a right parenthesis.
3. Press the colon (:) key. You see the definition symbol followed

by a placeholder.

4. Type the function definition in the placeholder.

At this point, you’ve defined a function which behaves in every
way like the user-defined functions described in Chapter 8, “Calculating in Mathcad.”
You could, if you wanted to, type “ ” in your worksheet and see the result,
a vector with the elements 1 and 2, on the other side of the equal sign.

Tip Once you’ve defined the new operator you can paste the definition into the QuickSheet. Choose
Annotate Book from the Book menu, then Save Section. When you need to use this operator
again, just open the QuickSheet and drag it into a new worksheet.

Using a Custom Operator
Once you’ve defined a new operator, you can use it in your calculations just as you
would use any of Mathcad’s built-in operators. The procedure for using a custom
operator depends on whether the operator has one operand (like “ ” or “5!”) or two
(like “ ”).

To use an operator having two operands:
1. Define any variables you want to use as arguments.

2. Click on the Evaluation toolbar. You’ll see three empty
placeholders.

3. In the middle placeholder, insert the name of the operator. Or copy
the name from the operator definition and paste it into the placeholder.

 ∪ 1 2,() =

1–
1 2÷

 / 393
4. In the remaining two placeholders, enter the two operands.

5. Press = to get the result.

Tip Another way to display an operator having two operands is to click on the Evaluation
toolbar. If you follow the preceding steps using this operator, you’ll see a tree-shaped display.

To insert an operator having only one operand, decide first whether you want the
operator to appear before the operand, as in “ ,” or after the operand as in “5!.” The
former is called a prefix operator; the latter is a postfix operator. The example below
shows how to use a postfix operator. The steps for creating a prefix operator are almost
identical.
The following example shows how to define and use a new logical Not
operator. First define an operator “ ′(x)”. To do so, follow the steps for
defining ∪(x, y) in the previous section, substituting the symbol “ ′ ” for “∪” and using
only one argument instead of two.
Then, to evaluate with the new operator:

1. Click on the Evaluation toolbar to make a postfix operator.

Otherwise, click . In either case, you see two empty placeholders.

2. If you clicked , put the operator name in the second placeholder.
Otherwise put it in the first placeholder. In either case, you may find
it more convenient to copy the name from the operator definition and paste it into
the placeholder.

3. In the remaining placeholder, place the operand.

4. Press = to see the result.

Tip Just as Mathcad can display a custom operator as if it were a function, you can conversely
display a function as if it were an operator.

1–

394 / Chapter 17
Arithmetic Operators

Parentheses

Keystroke '

Description Groups parts of an expression.

Addition

Keystroke +
Description If X and Y are real or complex numbers, adds X and Y.

If X and Y are real or complex vectors or matrices of the same size, adds elements of X to
corresponding elements of Y.
If X is a real or complex array and Y is a real or complex number, adds Y to each element of X.

Addition with line break

Keystroke [Ctrl][↵]

Description Adds in the same manner as Addition, but inserts a line break for cosmetic formatting reasons.

Comments This formatting feature cannot be used for multiplication or division. It can be used with
subtraction if X − Y is written instead as X + (− Y).

To use an arithmetic operator either type its keystroke
or choose the operator from the Calculator toolbar:

 X ()

X Y+

X…
Y+

Arithmetic Operators / 395
Subtraction and Negation ,

Keystroke -

Subtraction

Description If X and Y are real or complex numbers, subtracts Y from X.
If X and Y are real or complex vectors or matrices of the same size, subtracts elements of Y from
corresponding elements of X.

If X is an real or complex array and Y is a real or complex number, subtracts Y from each element
of X.

Negation

Description If X is a real or complex number, reverses the sign of X.
If X is a real or complex array, reverses the sign of each element of X.

Multiplication

Keystroke *

Description If X and Y are real or complex numbers, multiplies Y by X.
If Y is a real or complex array and X is a real or complex number, multiplies each element
of Y by X.
If X and Y are real or complex vectors of the same size, returns the dot product (inner product).
If X and Y are real or complex conformable matrices, performs matrix multiplication.

To change the appearance of multiplication from a dot to a cross, choose Worksheet Options
from the Tools menu, click the Display tab and use drop-down options to make the selection.

Division

Keystroke /

Description If X and z are real or complex numbers and z is nonzero, divides X by z.
If X is a real or complex array and z is a nonzero real or complex number, divides each element
of X by z.

Inline Division

Keystroke [Ctrl]/

Description If X and z are real or complex numbers and z is nonzero, divides X by z.
If X is an real or complex array and z is a nonzero real or complex number, divides each element
of X by z.

Factorial
Keystroke !

Description Returns if n is an integer and ; 1 if n = 0.

X Y– X–

X Y⋅

X
z

X z÷

n!

n n 1–() n 2–()…2 1⋅⋅ ⋅ n 1≥

396 / Chapter 17
Complex conjugate

Keystroke ”

Description If X is a complex number, reverses the sign of the imaginary part of X.

Absolute value

Keystroke |

Description If z is a real or complex number, |z| returns the absolute value (or modulus or magnitude)

 of z.

If v is real or complex vector, |v| returns the magnitude (or Euclidean norm or length) of
v. If all elements in v are real, this definition is equivalent to .

If M is a real or complex square matrix, |M| returns the determinant of M.

Square root

Keystroke \

Description Returns the positive square root for positive z; principal value for negative or complex z.

nth root

Keystroke [Ctrl]\

Description Returns the positive nth root for positive z; negative nth root for negative z and odd n; principal
value otherwise. n must be an integer, .

See also Exponentiation, Square root

Comments This operator gives the same values as the Exponentiation operator except when z < 0 and n is
an odd integer and (by special convention).

Reciprocal

Keystroke / 1
Scalar Case

Description Returns the reciprocal (multiplicative inverse) of z, where z is a real or complex number.

Matrix Case

Description If M is a real or complex square matrix, the reciprocal of M is the same as the inverse matrix
 (assuming that M is nonsingular).

See also Exponentiation

Algorithm LU decomposition used for matrix inversion (Press et al., 1992)

X

x

Re z()2 Im z()2+

v v⋅
v v⋅

z

zn

n 1≥

n 3≥

1
z

M 1–

Arithmetic Operators / 397
Exponentiation

Keystroke ^
Scalar Case

Description Returns the principal value of z raised to the power w, where z and w are real or complex numbers.

See also nth root

Comments The principal value is given by the formula . In the special case z < 0 and
w = 1/n, where n is an odd integer and , the principal value has a nonzero imaginary part.
Hence, in this special case, Exponentiation does not give the same value as the nth root operator
(by convention).

Matrix Case

Description If M is a real or complex square matrix and is an integer, returns the nth power of
M (using iterated matrix multiplication). Under the same conditions, is the inverse of
(assuming additionally that M is nonsingular).

Algorithm LU decomposition used for matrix inversion (Press et al., 1992)

Equals c =

Keystroke =
Description Returns numerical value of c if c is: a variable previously defined in the worksheet; a built-in

variable; a globally-defined variable; or a function of several such variables. Appears as an
ordinary = on the screen. Not used for symbolic evaluation.

Definition z : = c , f(x,y,z,...) : = expr

Keystroke :

Description Gives z the numerical value c from that point onward throughout the worksheet. Gives a function
f(x,y,z,...) the meaning prescribed by the expression expr from that point onward throughout the
worksheet. expr need not involve x, y, z, ... but it usually does; it may involve other built-in or
user-defined functions.

See also Definition (under Evaluation Operators) for example.

Mixed number

Keystroke [Ctrl][Shift]+

Description If k, m and n are integers, returns the value of k + m/n.

Comments To display a numerical result as a mixed number, double-click on the result to bring up the Result
Format dialog box. Choose Fraction for the result format on the Number Format tab. Click the
box next to “Use mixed numbers” so that it is checked.

zw

z w π i w⋅ ⋅()exp⋅
n 3≥

n 0≥ Mn

M n– Mn

km
n

398 / Chapter 17
Vector and Matrix Operators

You can also use the vectorize operator (click on the Matrix toolbar) to perform
any scalar operation or function element by element on a vector or matrix. See
“Performing Calculations in Parallel” on page 61. Figure 17-1 shows some ways to use
vector and matrix operators.

Tip Operators and functions that expect vectors always expect column vectors. They do not apply to
row vectors. To change a row vector into a column vector, use the transpose operator by clicking

 on the Matrix toolbar.

Most of the operators on the Calculator toolbar also have
meaning for vectors and matrices. When you use the addition
operator to add two arrays of the same size, Mathcad performs
the standard element-by-element addition. Mathcad also uses
the conventional arithmetic operators for matrix subtraction,
matrix multiplication, integer powers, and determinants.
The multiplication symbol means dot product when applied to
vectors and matrix multiplication when applied to matrices.

Figure 17-1: Vector and matrix operations.

Vector and Matrix Operators / 399
Insert matrix

Keystroke [Ctrl]M

Description Creates a vector or matrix of specified dimensions.

Vector and matrix subscript ,

Keystroke [

Description If v is a vector, vn returns the nth element of v.
If M is a matrix, Mi, j returns the element in row i and column j of M.

Range variable

Keystroke ;

Description Specifies that a variable assume a range of values (for the sake of repeated or iterative
calculations).

Dot product

Keystroke *

Description Returns the dot product (scalar or inner product) of two n-dimensional real or complex vectors
u and v.

Cross product

Keystroke [Ctrl]8

Description Returns the cross product (vector product) of two 3-dimensional real or complex vectors u and v.

Vector sum

Keystroke [Ctrl]4

Description Returns the sum (a scalar) of all elements of a real or complex vector v. (No range variable or
vector subscripts are needed.)

Matrix Inverse

Keystroke ^-1

Description Returns the multiplicative inverse of a real or complex nonsingular square matrix M.

Algorithm LU decomposition used for matrix inversion (Press et al., 1992)

vn Mi j,

u v⋅

u v×

Σv

400 / Chapter 17
Magnitude and Determinant

Keystroke |

Description If z is a real or complex number, |z| returns the absolute value (or modulus or magnitude)

 of z.

If v is real or complex vector, returns the magnitude (or Euclidean norm or length) of v.
If all elements in v are real, this definition is equivalent to .

If M is a real or complex square matrix, returns the determinant of M.

Algorithm LU decomposition (Press et al., 1992)

Matrix superscript

Keystroke [Ctrl]6

Description Extracts column n (a vector) from matrix M.

Matrix transpose

Keystroke [Ctrl]1

Description If M is a vector or matrix, returns a matrix whose rows are the columns of M and whose columns
are the rows of M.

Vectorize

Keystroke [Ctrl]-

Description Forces operations in expression X to take place
element by element. All vectors or matrices in X
must be the same size.

Comments Mathcad’s vectorize operator allows parallel
operations to be performed efficiently on each
element of a vector or matrix. For example, to
define a matrix P by multiplying corresponding elements of the matrices M and N, you could
write where i and j are range variables. (This is not matrix multiplication,
but rather multiplication element by element.) It’s faster, however, to define P using vectorize:

• Select the whole expression by clicking inside and pressing [Space] until the right-hand side
is held between the editing lines.

• Press [Ctrl]– to apply the vectorize operator. Mathcad puts an arrow over the top of the
selected expression.

Extending ordinary scalar multiplication to matrices in this fashion, element by element, is
referred to as “vectorizing” an expression.

x

Re z()2 Im z()2+

v v⋅
v v⋅

M n〈 〉

MT

X

Pi j, Mi j, Ni j,⋅=

Vector and Matrix Operators / 401
Here are some properties of the vectorize operator:

• The vectorize operator changes the meaning of functions and operators but not constants or
variables.

• Operations between an array and a scalar are performed by applying the scalar to each
element of the array. For example, if v is a vector and n is a scalar, applying the vectorize
operator to returns a vector whose elements are the nth powers of the elements of v.

• You cannot use any of the following matrix operations under a vectorize operator: dot
product, matrix multiplication, matrix powers, matrix inverse, determinant, or magnitude of
a vector. The vectorize operator will transform these operations into element-by-element
scalar multiplication, exponentiation, or absolute value, as appropriate.

• The vectorize operator has no affect on operators and functions that require vectors or
matrices: transpose, cross product, sum of vector elements, and functions like mean. These
operators and functions have no scalar meaning.

Picture

Keystroke [Ctrl]T

Description Displays a matrix, M, or an image file, S, as a grayscale image, by default. Each element of M
corresponds to a pixel. The value of an element determines the shade of gray associated with the
corresponding pixel. Each element of M is an integer between 0 (black) and 255 (white). When
the argument is a string that indicates the path to an image file, the picture is also displayed as a
grayscale image. See “Inserting Pictures” on page 151.

vn

402 / Chapter 17
Calculus Operators

Summation

Keystroke [Ctrl][Shift]4
Description Performs iterated addition of X over . X can be any expression; it need not

involve i but it usually does. m and n must be integers. If or , the evaluation
must be performed symbolically.

Example

See also Range sum

 Comments The summation operator has four placeholders:

1. The placeholder to the left of the equal sign holds a variable that is the index of
summation. It is defined only within the summation operator and therefore has
no affect on, and is not influenced by, variable definitions outside the summation
operator.

2. Integers, or any expressions that evaluate to integers, go in the placeholders to
the right of the equal sign and above the sigma.

To access a calculus operator either type its keystroke, or
choose the operator from the Calculus toolbar:

X
i m=

n
∑

i m m 1 … n, ,+,=
m ∞–= n ∞=

Calculus Operators / 403
3. The remaining placeholder holds the expression you want to sum. Usually, this
expression involves the index of summation. If this expression has several terms,
first type an apostrophe (') to create parentheses around the placeholder.

4. To evaluate multiple summations, place another summation in the final
placeholder of the first summation and use two range variables, as illustrated in the example
above.

This use of summation must be carried out over subsequent integers and in steps of one. Use the
Range Sum operator to use any range variable you define.

Tip The operation of summing the elements of a vector is so common that Mathcad provides a
special operator for it. The vector sum operator (click on the Matrix toolbar) sums the
elements of a vector without needing a range variable.

Product

Keystroke [Ctrl][Shift]3
Description Performs iterated multiplication of X over . X can be any expression; it need

not involve i but it usually does. If or , the evaluation must be performed
symbolically. Works similar to Summation.

See also Range product. See Summation for an example.

Range sum

Keystroke $

Description Performs iterated addition of X over the range variable i. X can be any expression; it need not
involve i but it usually does.

Example

X
i m=

n
∏

i m m 1 … n, ,+,=
m ∞–= n ∞=

X
i

∑

404 / Chapter 17
See also Summation

Comments This operator can use any range variable you define as an index of summation:

1. Define a range variable. For example, type i:1,2;10.

2. Click in a blank space. Then click on the Calculus toolbar. A
summation sign with two placeholders appears.

3. Click on the bottom placeholder and type the name of a range variable.

4. Click on the placeholder to the right of the summation sign and type
an expression involving the range variable. If this expression has
several terms, first type an apostrophe (') to create parentheses around
the placeholder.

5. Press = to get a result.

Tip To enter the expression in the example above using fewer keystrokes, type
i$i^2.

The Range sum operator, unlike the Summation operator, cannot stand alone. It requires
the existence of a range variable. However, a single range variable can be used with any number
of these operators.

Variable Upper Limit of Summation

Mathcad’s range summation operator runs through each value of the range variable you place in
the bottom placeholder. It is possible, by using Boolean expressions, to sum only up to a particular
value. In Figure 17-2, the term returns the value 1 whenever it is true and 0 whenever it is
false. Although the summation operator still sums over each value of the index of summation,
those terms for which are multiplied by 0 and hence do not contribute to the summation.

Figure 17-2: A variable upper limit of summation.

i x≤

i x>

Calculus Operators / 405
Range product

Keystroke #

Description Performs iterated multiplication of X over the range variable i. X can be any expression; it need
not involve i but it usually does. Works similar to Range sum.

See also Product. See Range sum for an example.

Definite integral

Keystroke &

Description Returns the definite integral of f(t) over the interval . a and b must be real scalars. All
variables in the expression f(t), except the variable of integration t, must be defined. The
integrand, f(t), cannot return an array. , , or both are permitted.

Examples

As an example, here’s how to evaluate the definite integral of from 0 to :

1. Click on the Calculus toolbar. An integral symbol appears,
with placeholders for the integrand, limits of integration, and
variable of integration.

2. Type your upper and lower limits of integration in the top and
bottom placeholders.

3. Type the expression to be integrated in the placeholder between
the integral sign and the “d.”

Figure 17-3: Variable limits of integration

X
i

∏

f t() td
a
b

∫

a b,[]

a ∞–= b ∞=

sin2 x() π 4⁄

406 / Chapter 17
4. Type the variable of integration in the remaining placeholder.
Press = for the result.

Comments Here are some important things to remember about integration in Mathcad:

• The limits of integration must be real, but the expression to be integrated can be either real
or complex, except for integrals being evaluated with the Infinite Limit algorithm.

• Except for the integrating variable, all variables in the integrand must have been defined
elsewhere in the worksheet.

• The integrating variable must be a single variable name.
• If the integrating variable involves units, the upper and lower limits of integration must have

the same units.

Note Like all numerical methods, Mathcad's integration algorithm can have difficulty with ill-
behaved integrands. If the expression to be integrated has singularities, discontinuities, or large
and rapid fluctuations, Mathcad's solution may be inaccurate.

In some cases, you may be able to find an exact expression for your definite integral or even the
indefinite integral (antiderivative) by using Mathcad symbolics.

Variable Limits of Integration

Although the result of an integration is a single number, you can always use an integral with a
range variable to obtain results for many numbers at once (as illustrated in Figure 17-3). Such
repeated evaluations may take considerable time depending on the complexity of the integrals,
the length of the interval, and the value of TOL.

Tolerance for Integrals

Mathcad’s numerical integration algorithm makes successive estimates of the value of the
integral and returns a value when the two most recent estimates differ by less than the value of
the built-in variable TOL. Figure 17-4 below shows how changing TOL affects the accuracy of
integral calculations (not to be confused with the mere formatting issue of how many digits to
display).

Figure 17-4: How changing TOL affects the accuracy of integral calculations.

Calculus Operators / 407
You can change the value of the tolerance by including definitions for TOL directly in your
worksheet as shown. To see the effect of changing the tolerance, press [Ctrl][F9] to recalculate
all the equations in the worksheet.

If Mathcad's approximations to an integral fail to converge to an answer, Mathcad marks the
integral with an appropriate error message.

When you change the tolerance, keep in mind the trade-off between accuracy and computation
time. If you decrease (tighten) the tolerance, Mathcad will compute integrals more accurately.
However, Mathcad will take longer to return a result. Conversely, if you increase (loosen) the
tolerance, Mathcad will compute more quickly, but the answers will be less accurate.

Multiple Integrals

You can also use Mathcad to evaluate double or multiple integrals. To set up a double integral,
press the ampersand key, [&], twice. Fill in the integrand, the limits, and the integrating variable
for each integral. Keep in mind that double integrals take much longer to converge to an answer
than single integrals. Wherever possible, use an equivalent single integral in place of a double
integral.

Because certain numerical integration methods work best on certain kinds of integrals, Mathcad
has an AutoSelect feature for integration. Depending on the kind of integral you are evaluating,
Mathcad automatically chooses the most appropriate integration method to use. Using
AutoSelect, Mathcad examines the integral and evaluates it using one of the following methods:

• Romberg: Romberg trapezoidal approximation with Richard extrapolation—divides the
interval into equally spaced intervals.

• Adaptive: if the values of f(x) vary significantly over the interval, divides the interval into
unequally spaced intervals.

• Infinite Limit: Integrates using an algorithm appropriate for integrals where one of both of
the limits are infinite. The function being integrated must be real.

• Singular Endpoint: if f(a) and/or f(b) is undefined.

If you want to evaluate an integral using a method other than the one chosen during the AutoSelect
process, turn off AutoSelect and choose another method. To do so:
1. Type the integral and allow AutoSelect to return a result.
2. Right click on the integral.
3. Click on the method you want to use.
The integral is recalculated using the method you clicked.

Algorithm Romberg, Kahan transform, QAGS, Clenshaw-Curtis, Gauss-Kronrod formulas (Piessens 1983,
Lorczak)

Indefinite integral

Keystroke [Ctrl]i

Description Returns the indefinite integral (that is, an antiderivative) of f(t). Must be performed symbolically.
The integrand, f(t), cannot return an array.

f t() td∫

408 / Chapter 17
Derivative

Keystroke ?

Description Returns the derivative of f(t) evaluated at t. All variables in the expression f(t) must be defined.
The variable t must be a scalar value. The function f(t) must return a scalar.

Examples

Here’s how to evaluate the first derivative of with respect to x at the point :

1. First define the point at which you want to evaluate the derivative. As
a shortcut, type x:2 .

2. Click below the definition of x. Then click on the Calculus toolbar.
A derivative operator appears with two placeholders.

3. Type x in the bottom placeholder. You are differentiating with respect

to this variable. In the placeholder to the right of the , enter x^3.

This is the expression to be differentiated.

4. Press = to get the result.

Comments With Mathcad’s derivative algorithm, you can expect the first derivative to
be accurate to within 7 or 8 significant digits, provided that the value at which you evaluate the
derivative is not too close to a singularity of the function. The accuracy of this algorithm tends
to decrease by one significant digit for each increase in the order of the derivative (see nth
derivative operator).

The result of differentiating is not a function, but a single number: the computed derivative at
the indicated value of the differentiation variable. In the previous example, the derivative of
is not the expression but evaluated at . If you want the expression , you
will need to use menu symbolics.

td
d f t()

x3 x 2=

xd
d

x3

3x2 3x2 x 2= 3x2

Calculus Operators / 409
Although differentiation returns just one number, you can still define one function as the

derivative of another. For example: .

Evaluating f(x) will return the numerically computed derivative of g(x) at x. You can use this
technique to evaluate the derivative of a function at many points via range variables.

To change the appearance of the derivative symbol to a partial derivative symbol, choose
Worksheet Options from the Tools menu, click the Display tab and use the drop-down options
to make the selection.

There are some important things to remember about differentiation in Mathcad:

• The expression to be differentiated can be either real or complex.
• The differentiation variable must be a single variable name. If you want to evaluate the

derivative at several different values stored in a vector, you must evaluate the derivative at
each individual vector element (see Figure 17-5).

Algorithm Modified Ridder’s method (Press et al., 1992; Lorczak)

nth derivative

Keystroke [Ctrl]?

Description Returns the nth derivative of f(t) evaluated at t. All variables in f(t) must be defined. The variable
t must be a scalar value. The function f(t) must return a scalar. n must be an integer between 0
and 5 for numerical evaluation or a positive integer for symbolic evaluation.

Figure 17-5: Evaluating the derivative of a function at several points.

f x()
xd

d g x():=

tn

n

d
d f t()

410 / Chapter 17
Comments For , this operator gives the same answer as the Derivative operator. For , it simply
returns the value of the function itself.

Algorithm Modified Ridder’s method (Press et al., 1992; Lorczak)

Limit

Keystroke [Ctrl]L

Description Returns the two-sided limit of f(t). Must be evaluated symbolically.

Algorithm Series expansion (Geddes and Gonnet, 1989)

Right-Hand Limit

Keystroke [Ctrl][Shift]A

Description Returns the right-hand limit of f(t). Must be evaluated symbolically.

Algorithm Series expansion (Geddes and Gonnet, 1989)

Left-Hand Limit

Keystroke [Ctrl][Shift]B

Description Returns the left-hand limit of f(t). Must be evaluated symbolically.

Algorithm Series expansion (Geddes and Gonnet, 1989)

n 1= n 0=

f t()
t a→
lim

f t()
t a+→

lim

f t()
t a-→

lim

Evaluation Operators / 411
Evaluation Operators

Equals c =

Keystroke =
Description Returns numerical value of c if c is: a variable previously defined in the worksheet; a built-in

variable; a globally-defined variable; or a function of several such variables. Appears as an
ordinary = on the screen. Not used for symbolic evaluation.

Definition z : = c , f(x,y,z,...) : = expr

Keystroke :
Description Gives z the numerical value c from that point onward throughout the worksheet. Gives a function

f(x,y,z,...) the meaning prescribed by the expression expr from that point onward throughout the
worksheet. expr need not involve x, y, z, ... but it usually does; it may involve other built-in or
user-defined functions.

Examples

Comments You can define arrays in the same way as scalars, with the array name A on the left side of a :=,
and a corresponding array of values to the right.

You can likewise use arrays to define several variables at once, as the previous example shows.
The left side of a simultaneous definition is an array whose elements are either names or
subscripted variable names. The right side must be an array of values having the same number
of rows and columns as the left side. Mathcad defines each variable on the left side with the value
of the array in the corresponding position on the right side. Elements on the right side are all

To access an Evaluation operator either type its keystroke,
or choose the operator from the Evaluation toolbar:

Figure 17-6: Example 1.

412 / Chapter 17
evaluated before assigning any of them to the left side. Because of this, nothing on the right side
of an expression can depend on what is on the left side. You also cannot have a variable appear
more than once on the left side.

When you define a function, Mathcad does not try to evaluate it until you use it later on in the
worksheet. If there is an error, the use of the function is marked in error, even though the real
problem may be in the definition of the function itself. For example, if f(x) := 1/x and you attempt
to evaluate f(0), the error flag occurs not at the definition of f(x) but when Mathcad encounters
f(0) for the first time.

Global Definition z : = c , f(x,y,z,...) : = expr

Keystroke ~

Description Gives z the numerical value c throughout the worksheet regardless of where the global definition
is positioned. Likewise, gives a function f(x,y,z,...) the meaning prescribed by the expression expr
throughout the worksheet. expr need not involve x, y, z, ... but it usually does; it may involve
other built-in or user-defined functions.

Comments You can globally define arrays in the same way as scalars, with the array name A on the left side
of a ≡, and a corresponding array of values to the right.

This is the algorithm that Mathcad uses to evaluate all definitions, global and otherwise:

• First, Mathcad takes one pass through the entire worksheet from top to bottom. During this
first pass, Mathcad evaluates global definitions only.

• Mathcad then makes a second pass through the worksheet from top to bottom. This time,
Mathcad evaluates all definitions made with := as well as all equations containing ≡.

Although global definitions are evaluated before any local definitions, Mathcad
evaluates global definitions the same way it evaluates local definitions: top to bottom
and left to right. This means that whenever you use a variable to the right of a ≡:
• that variable must also have been defined with a ≡, and
• the variable must have been defined above the place where you are trying to use it.
Otherwise, the variable is marked in red to indicate that it is undefined.

Figure 17-7: Example 2.

Evaluation Operators / 413
It is good practice to allow only one definition for each global variable. Although you can define
a variable with two different global definitions or with one global and one local definition, this
usually makes your worksheet difficult to understand.

Symbolic Equals

Keystroke [Ctrl].

Description Returns live symbolic “value” of c if c is a variable previously defined in the worksheet, is a
built-in variable, is a globally-defined variable, or is a function of several such variables.

Comments The live symbolic equals sign is analogous to the numerical equals sign “=”. You can use it to
symbolically simplify or factor algebraic expressions, or to symbolically evaluate derivatives,
integrals and limits. Note that “→” applies only to an entire expression (unlike menu symbolics).

Prefix f x

Keystroke NONE

Description Using the prefix custom operator, f x returns the value f(x), where f is either a built-in or user-
defined function and x is a real or complex number.

Examples

Comments In Figure 17-8, the symbol “ ° ” comes from the Symbol font. First define a function “°(x)” as
illustrated, then click the Postfix button on the Evaluation toolbar to use postfix notation. For
postfix notation, type the name of the operator in the right placeholder and the operand in the left
placeholder.

Figure 17-8: Example 1: Defining your own operators.

Figure 17-9: Example 2: Displaying an operator as a function and a function
as an operator.

c →

414 / Chapter 17
Many publishers prefer to omit parentheses around the arguments to certain functions (sin x rather
than). You can do the same thing by treating the sin function as an operator with one
operand, as in Figure 17-9.

Postfix x f
Keystroke NONE

Description Using the postfix custom operator, x f returns the value f(x), where f is either a built-in or user-
defined function and x is a real or complex number.

Comments In Figure 17-8, on page 413, the symbol “°” comes from the Symbol font. First define a function
“°(x)” as illustrated, then click the postfix button on the Evaluation toolbar to use postfix notation.
For postfix notation, type the name of the operator in the right placeholder and the operand in
the left placeholder.

Infix x f y
Keystroke NONE

Description Using the infix custom operator, x f y returns the value f(x,y), where f is either a built-in or user-
defined function and x, y are real or complex numbers.

Comments In Figure 17-8, on page 413, the symbol “≈” comes from the Symbol font. First define a binary
function “≈(x,y)” as illustrated, then click the infix button on the Evaluation toolbar to use infix
notation. For infix notation, type the name of the operator in the middle placeholder and the
operands in the left and right placeholders.

Likewise, in Figure 17-9, on page 413, the binary function “÷(x,y)” is defined and then displayed
in the more conventional manner: “x÷y”. Functions and operators are fundamentally the same.
Although notation like “÷(x,y)” is unconventional, use it if you prefer.

Treefix x f y

Keystroke NONE

Description Using the treefix custom operator, x f y returns the value f(x,y), where f is either a built-in or user-
defined function and x, y are real or complex numbers.

Comments In Figure 17-8, on page 413, the symbol “÷” comes from the Symbol font. First define a binary
function “÷(x,y)” as illustrated, then click the treefix button on the Evaluation toolbar to use
treefix notation. For treefix notation, type the name of the operator in the middle placeholder and
the operands in the left and right placeholders.

x()sin

Boolean Operators / 415
Boolean Operators

Greater than ,

Keystroke >
Description For real scalars x and y, returns 1 if , 0 otherwise.

For string expressions S1 and S2, returns 1 if S1 strictly follows S2 in ASCII order, 0 otherwise.

Less than ,

Keystroke <

Description For real scalars x and y, returns 1 if , 0 otherwise.
For string expressions S1 and S2, returns 1 if S1 strictly precedes S2 in ASCII order, 0 otherwise.

Greater than or equal to ,

Keystroke [Ctrl])

Description For real scalars x and y, returns 1 if , 0 otherwise.
For string expressions S1 and S2, returns 1 if S1 follows S2 in ASCII order, 0 otherwise.

Less than or equal to ,

Keystroke [Ctrl](

Description For real scalars x and y, returns 1 if , 0 otherwise.
For string expressions S1 and S2, returns 1 if S1 precedes S2 in ASCII order, 0 otherwise.

Not equal to ,

Keystroke [Ctrl]3

Description For scalars z and w, returns 1 if , 0 otherwise.
For string expressions S1 and S2, returns 1 if S1 is not character by character identical to S2, 0
otherwise.

Bold Equals z = w

Keystroke [Ctrl]=

Description Returns 1 if , 0 otherwise (also known as Boolean equals). Appears as a bold = on the
screen. Also used when typing constraint equations within solve blocks or when typing equations
to be solved symbolically.

To access a Boolean operator either type its keystroke, or
choose the operator from the Boolean toolbar:

x y> S1 S2>

x y>

x y< S1 S2<

x y<

x y≥ S1 S2≥

x y≥

x y≤ S1 S2≤

x y≤

z w≠ S1 S2≠

z w≠

z w=

416 / Chapter 17
and x ∧ y
Keystroke [Ctrl][Shift]7

Description x ∧ y returns the value 1 if both x and y are nonzero, and 0 if at least one of x or y is zero.

Comments The value 0 is regarded as FALSE; any nonzero value (including 1) is regarded as TRUE. The
Boolean and operator evaluates the right argument if and only if the left argument is TRUE.
x ∧ y is also known as the logical conjunction of x and y.

or x ∨ y
Keystroke [Ctrl][Shift]6

Description x ∨ y returns the value 1 if at least one of x or y is nonzero, and 0 if both x and y are zero.

Comments The value 0 is regarded as FALSE; any nonzero value (including 1) is regarded as TRUE. The
Boolean or operator evaluates the right argument if and only if the left argument is FALSE.
x ∨ y is also known as the logical (inclusive) disjunction of x and y.

xor x ⊕ y
Keystroke [Ctrl][Shift]1

Description x ⊕ y returns the value 1 if precisely one of x or y is nonzero, and 0 if both x and y are zero or
both are nonzero.

Comments The value 0 is regarded as FALSE; any nonzero value (including 1) is regarded as TRUE.
x ⊕ y is the same as (x ∨ y) ∧ ¬ (x ∧ y) and is also known as the logical exclusive disjunction
of x and y.

not ¬ x
Keystroke [Ctrl][Shift]5

Description ¬x returns the value 0 if x is nonzero and 0 if x is zero.

Comments The value 0 is regarded as FALSE; any nonzero value (including 1) is regarded as TRUE.
¬x is also known as the logical negation of x.

Programming Operators / 417
Programming Operators

Local Definition

Keystroke {

Description Gives w the numerical value of the function f(a,b,c,...) within a program.
Outside the program, w remains undefined.

Add Line
Keystroke]

Description Inserts a line in a program. When you insert the Add Line operator the first time, a program is
created (a vertical bar with two placeholders). If you select either of these placeholders and insert
the Add Line operator again, more placeholders are created.

Conditional Statement

Keystroke }

Description Within a program, permits evaluation of a statement only when a specified condition is met. You
must insert this operator using its toolbar button or equivalent keystroke. Conditional if is not
the same as the built-in if function. Do not just type the word “if.”

Otherwise

Keystroke [Ctrl][Shift]}

Description Within a program, used in conjunction with the if operator to exhaust possibilities not yet covered.
You must insert this operator using its toolbar button or equivalent keystroke. Do not just type
the word “otherwise.”

To access a Programming operator either type its
keystroke, or choose the operator from the
Programming toolbar:
Special Note: these operators are valid only within a
Mathcad programming structure.

w f a b c …, , ,()←

418 / Chapter 17
For Loop

Keystroke [Ctrl][Shift]”

Description Within a program, permits evaluation of a sequence of statements a specified number of times.
The right-hand placeholder usually contains a range variable. You must insert this operator using
its toolbar button or equivalent keystroke. Do not just type the word “for.”

While Loop

Keystroke [Ctrl]]

Description Within a program, permits evaluation of a sequence of statements until a specified condition is
met. The right-hand placeholder usually contains a Boolean expression. You must insert this
operator using its toolbar button or equivalent keystroke. Do not just type the word “while.”

Break

Keystroke [Ctrl][Shift]{

Description Within a for or while loop, halts loop execution. Usually used in conjunction with an if statement,
that is, halting occurs if a specified condition occurs. Execution moves to the next statement
outside the loop. You must insert this operator using its toolbar button or equivalent keystroke.
Do not just type the word “break.”

See also continue and return

Continue

Keystroke [Ctrl][

Description Within a for or while loop, halts loop execution, skips remaining steps, and continues at the
beginning of the next iteration of the next loop. Usually used in conjunction with an if statement,
that is, halting occurs if a specified condition occurs. You must insert this operator using its
toolbar button or equivalent keystroke. Do not just type the word “continue.”

See also break and return

Return

Keystroke [Ctrl][Shift]|

Description Within a program, halts program execution. Usually used in conjunction with an if statement,
that is, halting occurs if a specified condition occurs. Also, within a for or while loop, halts loop
execution. You must insert this operator using its toolbar button or equivalent keystroke. Do not
just type the word “return.”

See also break and continue

Programming Operators / 419
On Error

Keystroke [Ctrl]’

Description Within a program, permits computation of an alternative expression when an arbitrary numerical
error flag is raised. You must insert this operator using its toolbar button or equivalent keystroke.
Do not just type the phrase “on error.”

Comments on error executes the right-hand argument first. If no error occurs, it returns the result of the
right argument. If an error occurs, then the error is cleared and the left argument is returned.

on error is a general purpose error trap. It is more powerful than using the return statement,
coupled with some specific test, to deal with inputs that give rise to numerical error.

Chapter 18
Symbolic Keywords

This chapter lists and describes Mathcad’s symbolic keywords. The keywords are listed
alphabetically.

Accessing Symbolic Keywords
You can access symbolic keywords in two ways:
• Simply type in the keyword as shown for that keyword, or
• Select the keyword from the Symbolic toolbar.

The Modifiers toolbar corresponds to symbolic modifiers.

The modifier assume is discussed on page 422. The other three modifiers, real,
RealRange and trig, are used in some cases with the simplify keyword; refer to simplify
on page 428 to find out how to use these modifiers.
421

422 / Chapter 18
Most of the keywords have equivalent menu choices on the Symbolics menu.

Finding More Information
Refer to the QuickSheets under the Help menu for examples involving keywords.

Keywords

assume
Syntax assume, constraint

Description Imposes constraints on one or more variables according to the expression constraint. A typical
constraint might be that var < 10.
assume can also constrain a variable to be real or to fall within a certain range of real values.
Use the following modifiers:

var=real evaluates the expression on the assumption that the variable var is real;
var=RealRange(a,b) evaluates on the assumption that var is real and lies between
a and b, where a and b are real numbers or infinity (type [Ctrl][Shift]z to display ∞).

Example

Keywords / 423
coeffs
Syntax coeffs, var

Description Finds coefficients of a polynomial when it is written in terms of ascending powers of the variable
or subexpression var. Mathcad returns a vector containing the coefficients. The first element of
the vector is the constant term and the last element is the coefficient of the highest order term in
the polynomial.

See also convert, parfrac for example

Comments Another way to find the coefficients of a polynomial is to enclose the variable or subexpression
var between the two editing lines and choose Polynomial Coefficients from the Symbolics
menu.

collect
Syntax collect, var1, var2, ... , varn

Description Collects terms containing like powers of the variables var1 through varn.
See also expand for example

Comments Another way to collect terms is to enclose the expression between the editing lines and choose
Collect from the Symbolics menu

complex
Syntax complex

Description Carries out symbolic evaluation in the complex domain. Result is usually of the form .

See also assume for example

Comments Another way to evaluate an expression in the complex domain is to enclose the expression
between the editing lines and choose Evaluate⇒Complex from the Symbolics menu.

convert, parfrac
Syntax convert, parfrac, var

Description Converts an expression to a partial fraction expansion in the variable var.

Example

a i b⋅+

424 / Chapter 18
Comments The symbolic processor tries to factor the denominator of the expression into linear or quadratic
factors having integer coefficients. If it succeeds, it expands the expression into a sum of fractions
with these factors as denominators. All constants in the selected expression must be integers or
fractions; Mathcad does not expand an expression that contains decimal points.
Another way to convert an expression to a partial fraction is to click on the variable var anywhere
in the expression. Then choose Variable⇒Convert to Partial Fraction from the Symbolics
menu.

expand
Syntax expand, expr

Description Expands all powers and products of sums in an expression except for the subexpression expr.
The argument expr is optional. The entire expression is expanded if the argument expr is omitted.

Example

Comments Another way to expand an expression is to enclose the expression between the editing lines and
choose Expand from the Symbolics menu.

factor
Syntax factor, expr

Description Factors an expression into a product, if the entire expression can be written as a product.
If the expression is a single integer, Mathcad factors it into powers of primes.
If the expression is a polynomial or rational function, Mathcad factors it into powers of lower-
order polynomials or rational functions. The argument expr is optional.

See also expand for example

Comments If you want to factor an expression over certain radicals, follow the factor keyword with a comma
and the radicals.
You may be able to simplify an expression by factoring subexpressions, even if the expression
taken as a whole can't be factored. To do so, enclose a subexpression between the editing lines
and choose Factor from the Symbolics menu. You can also use the Factor menu command to
factor an entire expression, but the Symbolics menu commands do not use any previous
definitions in your worksheet and do not automatically update.

Keywords / 425
float
Syntax float, m

Description Displays a floating point value with m places of precision whenever possible. If the argument m,
an integer, is omitted, the default precision is 20.

See also assume for example

Comments Another way to perform floating point evaluation on an expression is to enclose the expression
between the editing lines and choose Evaluate⇒Floating Point from the Symbolics menu.
In the Floating Point dialog box, specify the number of digits to the right of the decimal point.

fourier
Syntax fourier, var

Description Evaluates the Fourier transform of an expression with respect to the variable var.

Example

Comments Mathcad returns a function of ω given by: where f(t) is the expression to be
transformed.

Mathcad returns a function in the variable ω when you perform a Fourier transform because this
is a commonly used variable name in this context. If the expression you are transforming already
contains an ω, Mathcad avoids ambiguity by returning a function of the variable ωω instead.
Another way to evaluate the Fourier transform of an expression is to enter the expression and
click on the transform variable. Then choose Transform⇒Fourier from the Symbolics menu.

invfourier
Syntax invfourier, var

Description Evaluates the inverse Fourier transform of an expression with respect to the variable var.

See also fourier for example

Comments Mathcad returns a function of t given by: where F(ω) is the expression
to be transformed.

Mathcad returns a function in the variable t when you perform an inverse Fourier transform
because this is a commonly used variable name in this context. If the expression you are

f t()e i– ωt td
∞–

 ∞+
∫

1
2π
------ F ω()eiωt ωd

∞–

 ∞+
∫

426 / Chapter 18
transforming already contains a t, Mathcad avoids ambiguity by returning a function of the
variable tt instead.
Another way to evaluate the inverse Fourier transform of an expression is to enter the expression
and click on the transform variable. Then choose Transform⇒Inverse Fourier from the
Symbolics menu.

invlaplace
Syntax invlaplace, var

Description Evaluates the inverse Laplace transform of an expression with respect to the variable var.

See also fourier for example

Comments Mathcad returns a function of t given by: where F(s) is the expression to

be transformed and all singularities of F(s) are to the left of the line .

Mathcad returns a function in the variable t when you perform an inverse Laplace transform
because this is a commonly used variable name in this context. If the expression you are
transforming already contains a t, Mathcad avoids ambiguity by returning a function of the
variable tt instead.
Another way to evaluate the inverse Laplace transform of an expression is to enter the expression
and click on the transform variable. Then choose Transform⇒Inverse Laplace from the
Symbolics menu.

invztrans
Syntax invztrans, var

Description Evaluates the inverse z-transform of an expression with respect to the variable var.

See also fourier for example

Comments Mathcad returns a function of n given by a contour integral around the origin:

where F(z) is the expression to be transformed and C is a contour enclosing all singularities of
the integrand.
Mathcad returns a function in the variable n when you perform an inverse z-transform since this
is a commonly used variable name in this context. If the expression you are transforming already
contains an n, Mathcad avoids ambiguity by returning a function of the variable nn instead.
Another way to evaluate the inverse z-transform of an expression is to enter the expression and
click on the transform variable. Then choose Transform⇒Inverse Z from the Symbolics menu.

laplace
Syntax laplace, var

Description Evaluates the Laplace transform of an expression with respect to the variable var.

See also fourier for example

Comments Mathcad returns a function of s given by: , where f(t) is the expression to be
transformed.

1
2πi
-------- F s()est td

σ i∞–

σ i∞+
∫

Re s() σ=

1
2πi
-------- F z()zn 1– zd

C

∫

f t()e st– td
0

 ∞+
∫

Keywords / 427
Mathcad returns a function in the variable s when you perform a Laplace transform since this is
a commonly used variable name in this context. If the expression you are transforming already
contains an s, Mathcad avoids ambiguity by returning a function of the variable ss instead.
Another way to evaluate the Laplace transform of an expression is to enter the expression and
click on the transform variable. Then choose Transform⇒Laplace from the Symbolics menu.

series
Syntax series, var=z, m

Description Expands an expression in one or more variables, var, around the point z. The order of expansion
is m. Arguments z and m are optional. By default, the expansion is taken around zero and is a
polynomial of order six.

Example

Comments Mathcad finds Taylor series (series in nonnegative powers of the variable) for functions that are
analytic at 0, and Laurent series for functions that have a pole of finite order at 0. To develop a
series with a center other than 0, the argument to the series keyword should be of the form var=z,
where z is any real or complex number. For example, series, x=1 expands around the point x=1.
Press [Ctrl] = for the equal sign.

To expand a series around more than one variable, separate the variables by commas. The last
line in the example above shows an expression expanded around x and y.

Another way to generate a series expansion is to enter the expression and click on a variable for
which you want to find a series expansion. Then choose Variable⇒Expand to Series from the
Symbolics menu. A dialog box will prompt you for the order of the series. This command is
limited to a series in a single variable; any other variables in the expression will be treated as
constants. The results also contain the error term using the O notation. Before you use the series
for further calculations, you will need to delete this error term.

When using the approximations you get from the symbolic processor, keep in mind that the Taylor
series for a function may converge only in some small interval around the center. Furthermore,
functions like sin or exp have series with infinitely many terms, while the polynomials returned
by Mathcad have only a few terms (how many depends on the order you select). Thus, when you
approximate a function by the polynomial returned by Mathcad, the approximation will be
reasonably accurate close to the center, but may be quite inaccurate for values far from the center.

428 / Chapter 18
simplify
Syntax simplify

Description Simplifies an expression by performing arithmetic, canceling common factors, and using basic
trigonometric and inverse function identities.
To control the simplification, use the following modifiers:

assume=real simplifies on the assumption that all the indeterminates in the expression are real;

assume=RealRange(a,b) simplifies on the assumption that all the indeterminates are real and
are between a and b, where a and b are real numbers or infinity ([Ctrl]Z);

trig, simplifies a trigonometric expression by applying only the following identities:

 ,
but does not simplify the expression by simplifying logarithms, powers, or radicals.

Example

Comments You can also simplify an expression by placing it between the two editing lines and choosing
Simplify from the Symbolics menu. This method is useful when you want to simplify parts of
an expression. Mathcad may sometimes be able to simplify parts of an expression even when it
cannot simplify the entire expression. If simplifying the entire expression doesn't give the answer
you want, try selecting subexpressions and choosing Simplify from the Symbolics menu. If
Mathcad can't simplify an expression any further, you'll just get the original expression back as
the answer.

In general, when you simplify an expression, the simplified result will have the same numerical
behavior as the original expression. However, when the expression includes functions with more
than one branch, such as square root or the inverse trigonometric functions, the symbolic answer
may differ from a numerical answer. For example, simplifying yields θ, but this
equation holds true numerically in Mathcad only when θ is a number between −π/2 and π/2.

x()sin 2 x()cos 2+ 1= x()cosh 2 x()sinh 2– 1=

θ()sin()asin

Keywords / 429
solve
Syntax solve, var

Description Solves an equation for the variable var or solves a system of equations for the variables in a
vector var.

Examples

Figure 18-1: Solving equations, solving inequalities, and finding roots.

Figure 18-2: Solving a system of equations symbolically.

Comments Solving equations symbolically is far more difficult than solving them numerically. The symbolic
solver sometimes does not give a solution. Many problems can only be solved via numerical
approach and many more yield symbolic solutions too lengthy to be useful.

430 / Chapter 18
Another way to solve for a variable is to enter the equation, click on the variable you want to
solve for in an equation, and choose Variable⇒Solve from the Symbolics menu.

You can use either the symbolic solve keyword or a solve block, as illustrated above, to solve a
system of equations symbolically. No initial guess values are necessary for symbolic schemes.

substitute
Syntax substitute, var1= var2

Description Replaces all occurrences of a variable var1 with an expression or variable var2.
Press [Ctrl] = for the equal sign.

Example

Comments Mathcad does not substitute a variable for an entire vector or a matrix. You can, however,
substitute a scalar expression for a variable that occurs in a matrix.
To do so, follow these steps:

1. Select the expression that will replace the variable and choose Copy from the Edit menu.
2. Click on an occurrence of the variable you want to replace and choose Variable⇒Substitute

from the Symbolics menu. You can also use this menu command to perform a substitution
in any expression.

ztrans
Syntax ztrans, var

Description Evaluates the z-transform of an expression with respect to the variable var.

See also fourier for example

Comments Mathcad returns a function of z given by: , where f(n) is the expression to be
transformed.

Mathcad returns a function in the variable z when you perform a z-transform since this is a
commonly used variable name in this context. If the expression you are transforming already
contains a z, Mathcad avoids ambiguity by returning a function of the variable zz instead.

Another way to evaluate the z-transform of an expression is to enter the expression and click on
the transform variable. Then choose Transform⇒Z from the Symbolics menu.

f n()z n–

n 0=

 ∞+

∑

Appendices
! Appendix A: Special Functions

! Appendix B: SI Units

! Appendix C: CGS units

! Appendix D: U.S. Customary Units

! Appendix E: MKS Units

! Appendix F: Predefined Variables

! Appendix G: Suffixes for Numbers

! Appendix H: Greek Letters

! Appendix I: Arrow and Movement Keys

! Appendix J: Function Keys

! Appendix K: ASCII codes

! Appendix L: References
431

432 / Appendices
Appendix A: Special Functions

Mathcad sometimes returns a symbolic expression in terms of a function that isn't one of Mathcad's built-
in functions.
You can define many of these functions in Mathcad. See the “Other Special Functions” topic in the
QuickSheets under the Help menu for examples.
The list below gives definitions for these functions. Except for Ei, erf, and Zeta, all of which involve
infinite sums, and also W, you can use such definitions to calculate numerical values in Mathcad.

Function Definitions
Name Definition

Euler’s constant

Hyperbolic cosine integral

Cosine integral

Dilogarithm function

Dirac delta (unit impulse) function if x is not zero.

Exponential integral (x > 0)

Complex error function (for complex z)

Fresnel cosine integral

Fresnel sine integral

Incomplete elliptic integral of
the second kind

Complete elliptic integral
of the second kind

Associated complete elliptic integral
of the second kind

γ 1
k

k 1=

n

∑ n()ln–

n ∞→
lim 0.57721566…= =

Chi x() γ x()ln t()cosh 1–
t

--------------------------- td
0

x

∫+ +=

Ci x() γ x()ln t()cos 1–
t

------------------------ td
0

x

∫+ +=

di x()log t()ln
1 t–
------------ td

1

x

∫=

Dirac x() 0=

Dirac x() xd
∞–

∞

∫ 1=

Ei x() γ x()ln xn

n n!⋅

n 1=

∞

∑+ +=

erf z() 2
π

------- 1–()nz2n 1+

n! 2n 1+()

n 0=

∞

∑=

FresnelC x() π
2
---t2

 cos td

0

x

∫=

FresnelS x() π
2
---t2

 sin td

0

x

∫=

LegendreE x k,() 1 k2 t2⋅–
1 t2–

 1 2/

td
0

x

∫=

LegendreEc k() LegendreE 1 k,()=

LegendreEc1 k() LegendreEc 1 k2–()=

Appendices / 433
Incomplete elliptic integral of
the first kind

Complete elliptic integral of
the first kind

Associated complete elliptic integral
of the first kind

Incomplete elliptic integral
of the third kind

Complete elliptic integral
of the third kind

Associated complete elliptic
integral of the third kind

Digamma function

Polygamma function

Hyperbolic sine integral

Sine integral

Lambert W function is the principal branch of a function
satisfying .

 is the nth branch of .

Riemann Zeta function (x > 1)

Comments
The Psi function and Γ appear frequently in the results of indefinite sums and products. If you use a single
variable name rather than a full range in the index placeholder of a summation or product, and you choose
Evaluate Symbolically or another symbolic evaluation command, Mathcad will attempt to calculate an
indefinite sum or product of the expression in the main placeholder. The indefinite sum of f(i) is an
expression S(i) for which .

The indefinite product of f(i) is an expression P(i) for which .

LegendreF x k,() 1

1 t2–() 1 k2 t2⋅–()
-- td

0

x

∫=

LegendreKc k() LegendreF 1 k,()=

LegendreKc1 k() LegendreKc 1 k2–()=

LegendrePi x n k, ,() 1

1 n2 t2⋅–() 1 t2–() 1 k2 t2⋅–()
--- td

0

x

∫=

LegendrePic n k,() LegendrePi 1 n k, ,()=

LegendrePic1 k() LegendrePic n 1 k2–,()=

Psi x()
xd

d Γ x()()ln=

Psi n k,()
xn

n

d
d Psi x()=

Shi x() t()sinh
t

----------------- td
0

x

∫=

Si x() t()sin
t

-------------- td
0

x

∫=

W x()
W x() W x()()exp⋅ x=

W n x,() W x()

Zeta x() 1
nx

n 1=

∞

∑=

S i 1+() S i()– f i()=
P i 1+()

P i()
------------------- f i()=

434 / Appendices
Appendix B: SI Units

Base Units

Angular Measure

Length

Mass

Time

Area, Volume

Velocity, Acceleration

Force, Energy, Power

Pressure, Viscosity

m (meter), length kg (kilogram), mass s (second), time
A (ampere), current K (kelvin), temperature cd (candela), luminosity
mole or mol, substance

rad 1= deg π
180
--------- rad⋅= sr 1 sr⋅=

cm 0.01· m⋅= km 1000 m⋅= mm 0.001 m⋅=

ft 0.3048 m⋅= in 2.54 cm⋅= yd 3 ft⋅=
mi 5280 ft⋅=

gm 10 3– kg⋅= tonne 1000 kg⋅= lb 453.59237 gm⋅=

mg 10 3– gm⋅= ton 2000 lb⋅= slug 32.174 lb⋅=

oz lb
16
------=

min 60 s⋅= hr 3600 s⋅= day 24 hr ⋅=
yr 365.2422 day ⋅=

hectare 104 m2⋅= acre 4840 yd2⋅= L 0.001 m3⋅=

mL 10 3– L⋅= fl_oz 29.57353 cm3⋅= gal 128 fl_oz⋅=

mph mi
hr
------= kph km

hr
--------= g 9.80665 m

s2
----⋅=

N kg m
s2
----⋅= dyne 10 5– N⋅= lbf g lb⋅=

kgf g kg⋅= J N m⋅= erg 10 7– J⋅=
cal 4.1868 J⋅= kcal 1000 cal⋅= BTU 1.05506 103 J⋅ ⋅=

W J
s
--= kW 1000 W⋅= hp 550 ft lbf⋅

s
---------------⋅=

Pa N
m2
-------= psi lbf

in2
-------= atm 1.01325 105 Pa⋅ ⋅=

Appendices / 435
Electrical

Frequency, Activity

Temperature

Dose

Luminous Flux, Illuminance

in_Hg 3.37686 103 Pa⋅ ⋅= torr 1.33322 102 Pa⋅ ⋅= stokes 10 4– m2

s
-------⋅=

poise 0.1 Pa s⋅ ⋅=

C A s⋅= V J
C
----= mV 10 3– V⋅=

kV 103 V⋅= Ω V
A
----= kΩ 103 Ω⋅=

MΩ 106 Ω⋅= S 1
Ω
----= mho 1

Ω
----=

H V
A
---- s⋅= µH 10 6– H⋅= mH 10 3– H⋅=

µA 10 6– A⋅= mA 10 3– A⋅= kA 103 A⋅=

F C
V
----= pF 10 12– F⋅= nF 10 9– F⋅=

µF 10 6– F⋅= Wb V s⋅=

Oe 1000
4 π⋅
------------ A

m
----⋅= T Wb

m2
---------= gauss 10 4– T⋅=

Hz 1
s
---= kHz 103 Hz⋅= MHz 106 Hz⋅=

GHz 109 Hz⋅= Bq 1
s
---= Hza 2 π Hz⋅ ⋅=

R 0.556 K⋅=

Gy J
kg
------= Sv J

kg
------=

lm cd sr⋅= lx cd st⋅
m2

--------------=

436 / Appendices
Appendix C: CGS units

Base Units

Angular Measure

Length

Mass

Time

Area, Volume

Velocity, Acceleration

Force, Energy, Power

cm (centimeter), length gm (gram), mass sec (second), time
coul (coulomb), charge K (kelvin), temperature

rad 1= deg π
180
--------- rad⋅=

m 100 cm⋅= km 1000 m⋅= mm 0.1 cm⋅=

ft 30.48 cm⋅= in 2.54 cm⋅= yd 3 ft⋅=

mi 5280 ft⋅=

kg 1000 gm⋅= tonne 1000 kg⋅= lb 453.59237 gm⋅=

mg 10 3– gm⋅= ton 2000 lb⋅= slug 32.174 lb⋅=

oz lb
16
------=

min 60 sec⋅= hr 3600 sec⋅= day 24 hr ⋅=

yr 365.2422 day ⋅=

hectare 108 cm2⋅= acre 4840 yd2⋅= liter 1000 cm3⋅=

mL cm3= fl_oz 29.57353 cm3⋅= gal 128 fl_oz⋅=

mph mi
hr
------= kph km

hr
--------= g 980.665 cm

 2sec
------------⋅=

c 2.997925 1010 cm
sec
---------⋅ ⋅= c_ c sec

m
-------⋅=

dyne gm cm
sec2
----------⋅= newton 105 dyne⋅= lbf g lb⋅=

kgf g kg⋅= erg dyne cm⋅= joule 107 erg⋅=

cal 4.1868 107 erg⋅ ⋅= BTU 1.05506 1010 erg⋅ ⋅= kcal 1000 cal⋅=

watt joule
sec

-------------= kW 1000 watt⋅= hp 550 ft lbf⋅
sec

---------------⋅=

Appendices / 437
Pressure, Viscosity

Electrical

These are CGS-esu units, based only on mass, length, and time. The “stat” units are defined in
terms of dyne, cm, and sec.

Frequency

Temperature

Conversions to SI Units

Pa 10 dyne
cm2
------------⋅= psi lbf

in2
-------= atm 1.01325 105 Pa⋅ ⋅=

in_Hg 3.38638 103 Pa⋅ ⋅= torr 1.33322 102 Pa⋅ ⋅= stokes cm2

sec
----------=

poise 0.1 Pa sec⋅ ⋅=

statamp dyne0.5 cm sec 1–⋅ ⋅= statcoul dyne0.5 cm⋅= statvolt dyne0.5=

statohm sec cm 1–⋅= statsiemens cm sec 1–⋅= statfarad cm=

statweber dyne0.5 cm⋅= stathenry sec2 cm 1–⋅= stattesla dyne0.5 cm sec 2–⋅ ⋅=

Hz 1
sec
-------= kHz 103 Hz⋅= MHz 106 Hz⋅=

GHz 109 Hz⋅= Hza 2 π Hz⋅ ⋅=

R 0.556 K⋅=

amp c_
10
------ statamp⋅= volt watt

amp
-----------= ohm volt

amp
-----------=

coul amp sec⋅= farad coul
volt
-----------= henry volt sec

amp
-----------⋅=

438 / Appendices
Appendix D: U.S. Customary Units

Base Units

Angular Measure

Length

Mass

Time

Area, Volume

Velocity, Acceleration

Force, Energy, Power

ft (foot), length lb (pound), mass sec (second), time
coul (coulomb), charge K (kelvin), temperature

rad 1= deg π
180
--------- rad⋅=

in ft
12
------= m ft

0.3048
----------------= yd 3 ft⋅=

cm 0.01 m⋅= mi 5280 ft⋅= km 1000 m⋅=

mm 0.001 m⋅=

slug 32.174 lb⋅= oz lb
16
------= ton 2000 lb⋅=

kg lb
0.45359237
----------------------------= tonne 1000 kg⋅= gm 10 3– kg⋅=

mg 10 3– gm⋅=

min 60 sec⋅= hr 3600 sec⋅= day 24 hr ⋅=

yr 365.2422 day ⋅=

acre 4840 yd2⋅= hectare 104 m2⋅= fl_oz 29.57353 cm3⋅=

liter 0.035 ft3⋅= mL 10 3– liter⋅= gal 128 fl_oz⋅=

mph mi
hr
------= kph km

hr
--------= g 32.174 ft

 2sec
------------⋅=

lbf g lb⋅= newton kg m
sec2
----------⋅= dyne 10 5– newton⋅=

kgf g kg⋅= joule newton m⋅= erg 10 7– joule⋅=
cal 4.1868 joule⋅= kcal 1000 cal⋅= BTU 1.05506 103 joule⋅ ⋅=

watt joule
sec

-------------= hp 550 ft lbf⋅
sec

---------------⋅= kW 1000 watt⋅=

Appendices / 439
Pressure, Viscosity

Electrical

Frequency

Temperature

psi lbf
in2
-------= Pa newton

m2
-------------------= atm 1.01325 105 Pa⋅ ⋅=

in_Hg 3.386 103 Pa⋅ ⋅= torr 1.333 102 Pa⋅ ⋅= stokes cm2

sec
----------=

poise 0.1 Pa sec⋅ ⋅=

volt watt
amp
-----------= mV 10 3– volt⋅= KV 103 volt⋅=

ohm volt
amp
-----------= mho 1

ohm
-----------= siemens 1

ohm
-----------=

Ω ohm= KΩ 103 ohm⋅= MΩ 106 ohm⋅=

henry weber
amp

----------------= µH 10 6– henry⋅= mH 10 3– henry⋅=

amp coul
sec

-----------= µA 10 6– amp⋅= mA 10 3– amp⋅=

KA 103 amp⋅= farad coul
volt
-----------= pF 10 12– farad⋅=

nF 10 9– farad⋅= µF 10 6– farad⋅= weber volt sec⋅=

oersted 1000
4 π⋅
------------ amp

m
-----------⋅= tesla weber

m2
----------------= gauss 10 4– tesla⋅=

Hz 1
sec
-------= kHz 103 Hz⋅= MHz 106 Hz⋅=

GHz 109 Hz⋅= Hza 2 π Hz⋅ ⋅=

R 0.556 K⋅=

440 / Appendices
Appendix E: MKS Units

Base Units

Angular Measure

Length

Mass

Time

Area, Volume

Velocity, Acceleration

Force, Energy, Power

m (meter), length kg (kilogram), mass sec (second), time
coul (coulomb), charge K (kelvin), temperature

rad 1= deg π
180
--------- rad⋅=

cm 0.01 m⋅= km 1000 m⋅= mm 0.001 m⋅=

ft 0.3048 m⋅= in 2.54 cm⋅= yd 3 ft⋅=

mi 5280 ft⋅=

gm 10 3– kg⋅= tonne 1000 kg⋅= lb 453.59237 gm⋅=

mg 10 3– gm⋅= ton 2000 lb⋅= slug 32.174 lb⋅=

oz lb
16
------=

min 60 sec⋅= hr 3600 sec⋅= day 24 hr ⋅=

yr 365.2422 day ⋅=

hectare 104 m2⋅= acre 4840 yd2⋅= liter 0.1 m⋅()3=

mL 10 3– liter⋅= fl_oz 29.57353 cm3⋅= gal 128 fl_oz⋅=

mph mi
hr
------= kph km

hr
--------= g 9.80665 m

 2sec
------------⋅=

newton kg m
sec2
----------⋅= dyne 10 5– newton⋅= lbf g lb⋅=

kgf g kg⋅= joule newton m⋅= erg 10 7– joule⋅=
cal 4.1868 joule⋅= kcal 1000 cal⋅= BTU 1.05506 103 joule⋅ ⋅=

watt joule
sec

-------------= kW 1000 watt⋅= hp 550 ft lbf⋅
sec

---------------⋅=

Appendices / 441
Pressure, Viscosity

Electrical

Frequency

Temperature

Pa newton
m2

-------------------= psi lbf
in2
-------= atm 1.01325 105 Pa⋅ ⋅=

in_Hg 3.38638 103 Pa⋅ ⋅= torr 1.33322 102 Pa⋅ ⋅= stokes 10 4– m2

sec
-------⋅=

poise 0.1 Pa sec⋅ ⋅=

volt watt
amp
-----------= mV 10 3– volt⋅= kV 103 volt⋅=

ohm volt
amp
-----------= mho 1

ohm
-----------= siemens 1

ohm
-----------=

Ω ohm= kΩ 103 ohm⋅= MΩ 106 ohm⋅=

henry weber
amp

----------------= µH 10 6– henry⋅= mH 10 3– henry⋅=

amp coul
sec

-----------= µA 10 6– amp⋅= mA 10 3– amp⋅=

kA 103 amp⋅= farad coul
volt
-----------= pF 10 12– farad⋅=

nF 10 9– farad⋅= µF 10 6– farad⋅= weber volt sec⋅=

oersted 1000
4 π⋅
------------ amp

m
-----------⋅= tesla weber

m2
----------------= gauss 10 4– tesla⋅=

Hz 1
sec
-------= kHz 103 Hz⋅= MHz 106 Hz⋅=

GHz 109 Hz⋅= Hza 2 π Hz⋅ ⋅=

R 0.556 K⋅=

442 / Appendices
Appendix F: Predefined Variables

Mathcad’s predefined variables are listed here with their default starting values.

Constant=Value Meaning

π = 3.14159... Pi. Mathcad uses the value of π to 15 digits. To type π, press
[Ctrl][Shift]p.

e = 2.71828... The base of natural logarithms. Mathcad uses the value of e to 15
digits.

∞ = Infinity. This symbol represents values larger than the largest real
number representable in Mathcad (about). To type ∞, press
[Ctrl][Shift]Z.

% = 0.01 Percent. Use in expressions like 10*% (appears as) or as a
scaling unit at the end of an equation with an equal sign.

CTOL = Constraint tolerance used in solving and optimization functions:
how closely a constraint must be met for a solution to be considered
acceptable.

CWD = “[system path]” String corresponding to the working folder of the worksheet.
FRAME = 0 Counter for creating animation clips.
inn = 0 Input variables (in0, in1, etc.) in a Mathcad component in a

MathConnex system. See the MathConnex User’s Guide for details.
ORIGIN = 0 Array origin. Specifies the index of the first element in arrays.
PRNCOLWIDTH = 8 Column width used in writing files with WRITEPRN function.

PRNPRECISION = 4 Number of significant digits used when writing files with the
WRITEPRN function.

TOL = Tolerance used in numerical approximation algorithms (integrals,
equation solving, etc.): how close successive approximations must
be for a solution to be returned. For more information, see the
sections on the specific operation in question.

10307

10307

10 %⋅

10 3–

10 3–

Appendices / 443
Appendix G: Suffixes for Numbers

The table below shows how Mathcad interprets numbers (sequences of alpha-numerics
beginning with a number and ending with a letter).

Radix

Units and other

Note Because Mathcad by default treats most expressions involving a number followed immediately
by a letter to mean implied multiplication of a number by a variable name, you will need to
backspace over the implied multiplication operator to create expressions like 4.5M.

Suffix Example Meaning

b, B 100001b Binary
h, H 8BCh Hexadecimal
o, O 1007o Octal

Suffix Example Meaning

i or j 4i, 1j, Imaginary

K –273K Standard absolute temperature unit
L –2.54L Standard length unit
M 2.2M Standard mass unit
Q –100Q Standard charge unit
S 6.97S Standard substance unit in SI unit system
T 3600T Standard time unit
C 125C Standard luminosity unit in SI unit system

3 1.5j+

444 / Appendices
Appendix H: Greek Letters

To type a Greek letter into an equation or into text, press the Roman equivalent from
the table below, followed by [Ctrl]G. Alternatively, use the Greek toolbar.

Note The Greek letter π is so commonly used that it has its own keyboard shortcut: [Ctrl][Shift]P.

Name Uppercase Lowercase Roman equivalent

alpha Α α A
beta Β β B
chi Χ χ C
delta ∆ δ D
epsilon Ε ε E
eta Η η H
gamma Γ γ G
iota Ι ι I
kappa Κ κ K
lambda Λ λ L
mu Μ µ M
nu Ν ν N
omega Ω ω W
omicron Ο ο O
phi Φ φ F
phi (alternate) ϕ J
pi Π π P
psi Ψ ψ Y
rho Ρ ρ R
sigma Σ σ S
tau Τ τ T
theta Θ θ Q
theta (alternate) ϑ J
upsilon Υ υ U
xi Ξ ξ X
zeta Ζ ζ Z

Appendices / 445
Appendix I: Arrow and Movement Keys

Keys Actions

[↑] Move crosshair up. In math: move editing lines up. In text: move
insertion point up to previous line.

[↓] Move crosshair down. In math: move editing lines down. In text:
move insertion point down to next line.

[←] Move crosshair left. In math: select left operand. In text: move
insertion point one character to the left.

[→] Move crosshair right. In math: select right operand. In text: move
insertion point one character to the right.

[PgUp] Scroll up about one-fourth the height of the window.

[PgDn] Scroll down about one-fourth the height of the window.

[Shift][↑] In math: move crosshair outside and above expression. In text:
highlight from insertion point up to previous line.

[Shift][↓] In math: move crosshair outside and below expression. In text:
highlight from insertion point down to next line.

[Shift][←] In math: highlight parts of an expression to the left of the insertion
point. In text: highlight to left of insertion point, character by
character.

[Shift][→] In math: highlight parts of an expression to the right. In text: highlight
to right of insertion point, character by character.

[Ctrl][↑] In text: move insertion point to the beginning of a line.

[Ctrl][↓] In text: move insertion point to the end of a line.

[Ctrl][←] In text: move insertion point left to the beginning of a word.

[Ctrl][→] In text: move insertion point to the beginning of next word.

[Ctrl][↵] Insert a hard page break. In math: insert addition with line break
operator. In text: set the width of the text region.

[Ctrl][Shift][↑] In text: highlight from insertion point up to the beginning of a line.

[Ctrl][Shift][↓] In text: highlight from insertion point to end of the current line.

[Ctrl][Shift][←] In text: highlight left from insertion point to the beginning of a word.

[Ctrl][Shift][→] In text: highlight from insertion point to beginning of the next word.

[Space] In math: cycles through different states of the editing lines.

[Tab] In text: moves the insertion point to the next tab stop. In math or plot:
move to next placeholder.

[Shift][Tab] In math or plot: move to previous placeholder.

[Shift][PgUp] Move up to previous pagebreak.

[Shift][PgDn] Move down to next pagebreak.

[Home] Move to beginning of previous region. In text, move to beginning of
current line.

[End] Move to next region. In text, move to end of current line.

446 / Appendices
Appendix J: Function Keys

Note These function keys are provided mainly for compatibility with earlier Mathcad versions.
Mathcad also supports standard Windows keystrokes for operations such as file opening,
[Ctrl]O], and saving, [Ctrl]S], copying, [Ctrl]C], and pasting, [Ctrl]V]. Choose
Preferences from the Tools menu and check “Use standard Windows shortcut keys” on the
General tab to enable all Windows shortcuts.

[Ctrl][Home] Scroll to beginning of worksheet. In text, move insertion point to
beginning of text region or paragraph.

[Ctrl][End] Scroll to end of worksheet. In text, move insertion point to end of text
region or paragraph.

[↵] In text: start new line. In equation or plot: move crosshair below
region, even with left edge of region.

Keys Actions

[F1] Help.

[Shift][F1] Context sensitive help.

[F2] Copy selected region to clipboard.

[F3] Cut selected region to clipboard.

[F4] Paste contents of clipboard.

[Ctrl][F4] Close worksheet or template.

[Alt][F4] Close Mathcad.

[F5] Open a worksheet or template.

[Ctrl][F5] Search for text or math characters.

[Shift][F5] Replace text or math characters.

[F6] Save current worksheet.

[Ctrl][F6] Make next window active.

[Ctrl][F7] Inserts the prime symbol (‘).

[F7] Open a new worksheet.

[F9] Recalculate a selected region.

[Ctrl][F9] Recalculate worksheet

Appendices / 447
Appendix K: ASCII codes

Decimal ASCII codes from 32 to 255. Nonprinting characters are indicated by “npc.”
Code Character Code Character Code Character Code Character Code Character
32 [space] 80 P 130 ‚ 182 ¶ 230 æ
33 ! 81 Q 131 ƒ 183 · 231 ç
34 " 82 R 132 „ 184 ¸ 232 è
35 # 83 S 133 ... 185 ¹ 233 é
36 $ 84 T 134 † 186 º 234 ê
37 % 85 U 135 ‡ 187 » 235 ë
38 & 86 V 136 ˆ 188 ¼ 236 ì
39 ' 87 W 137 ‰ 189 ½ 237 í
40 (88 X 138 Š 190 ¾ 238 î
41) 89 Y 139 ‹ 191 ¿ 239 ï
42 * 90 Z 140 Œ 192 À 240 ð
43 + 91 [141–4 npc 193 Á 241 ñ
44 , 92 \ 145 ‘ 194 Â 242 ò
45 - 93] 146 ’ 195 Ã 243 ó
46 . 94 ^ 147 “ 196 Ä 244 ô
47 / 95 _ 148 ” 197 Å 245 õ
48 0 96 ` 149 • 198 Æ 246 ö
49 1 97 a 150 – 199 Ç 247 ÷
50 2 98 b 151 — 200 È 248 ø
51 3 99 c 152 ˜ 201 É 249 ù
52 4 100 d 153 ™ 202 Ê 250 ú
53 5 101 e 154 š 203 Ë 251 û
54 6 102 f 155 › 204 Ì 252 ü
55 7 103 g 156 œ 205 Í 253 ý
56 8 104 h 157–8 npc 206 Î 254 þ
57 9 105 i 159 Ÿ 207 Ï 255 ÿ
58 : 106 j 160 npc 208 Ð
59 ; 107 k 161 ¡ 209 Ñ
60 < 108 l 162 ¢ 210 Ò
61 = 109 m 163 £ 211 Ó
62 > 110 n 164 ¤ 212 Ô
63 ? 111 o 165 ¥ 213 Õ
64 @ 112 p 166 ¦ 214 Ö
65 A 113 q 167 § 215 ×
66 B 114 r 168 ¨ 216 Ø
67 C 115 s 169 © 217 Ù
68 D 116 t 170 ª 218 Ú
69 E 117 u 171 « 219 Û
70 F 118 v 172 ¬ 220 Ü
71 G 119 w 173 - 221 Ý
72 H 120 x 174 ® 222 Þ
73 I 121 y 175 ¯ 223 ß
74 J 122 z 176 ° 224 à
75 K 123 { 177 ± 225 á
76 L 124 | 178 ² 226 â
77 M 125 } 179 ³ 227 ã
78 N 126 ~ 180 ´ 228 ä
79 O 127–9 npc 181 µ 229 å

448 / Appendices
Appendix L: References

Abramowitz, M., and I. Stegun. Handbook of Mathematical Functions. New York:
Dover, 1972.

Devroye, L. Non-uniform Random Variate Distribution. New York: Springer-Verlag,
1986.

Friedman, J. H. “A Variable Span Smoother.” Tech Report No. 5. Laboratory for
Computational Statistics. Palo Alto: Stanford University.

Geddes, K. and G. Gonnet. “A New Algorithm for Computing Symbolic Limits Using
Generalized Hierarchical Series.” Symbolic and Algebraic Computation (Proceedings
of ISSAC '88). Edited by P. Gianni. From the series Lecture Notes in Computer Science.
Berlin: Springer-Verlag, 1989.

Golub, G. and C. Van Loan. Matrix Computations. Baltimore: John Hopkins
University Press, 1989.

Hairer, E. and G. Wanner. Solving Ordinary Differential Equations II: Stiff and
Differential-Algebraic Problems. Berlin: Springer-Verlag, 2nd rev. ed., 1996.

Knuth, D. The Art of Computer Programming: Seminumerical Algorithms. Reading:
Addison-Wesley, 1997.

Lorczak, P. The Mathcad Treasury. A Mathsoft E-book. Cambridge:
Mathsoft, Inc.

Nash, J.C. Compact Numerical Methods For Computers. Bristol: Adam Hilger
Ltd., 1979.

Niven, I. and H. Zuckerman. An Introduction to the Theory of Numbers. New York:
John Wiley & Sons, 1972.

Piessens, R., E. de Doncker-Kapenga, C. W. Überhuber and D. K. Kahaner, QUAD-
PACK, A Subroutine Package for Automatic Integration, Springer-Verlag, 1983.

Press, W.H., W.T. Flannery, S.A.Teukolsky, and B.P.Vetterling. Numerical Recipes in
C. Cambridge University Press, New York, 1992.

Polak, E. Optimization – Algorithms and Consistent Approximations. New York:
Springer-Verlag, 1997.

Singleton, R. Communications of ACM. Vol. 11, no. 11. November, 1986.

Wilkinson, J.H. and C. Reinsch. Handbook for Automatic Computation. Vol. II, Linear
Algebra. New York: Springer-Verlag, 1971.

Winston, W. Operations Research: Applications and Algorithms. Belmont:
Wadsworth, 1994.

Index
↵ (Enter key) 1
→ (symbolic equal sign) 196
→ (vectorize operator) 61
 94–95, 245
% 442
() (parentheses) 46
, 317, 371
:= (definition) 17, 99
= (evaluating expression) 17, 101
∞ (infinity) 442
2D plots, creating 21
3D Plot Format dialog box 184
absolute value 396
accessing Mathcad from other applications 248
accessing other applications from Mathcad 216
acos function 260
acosh function 260
acot function 260
acoth function 261
acsc function 261
acsch function 261
activation 8
ActiveX 243, 248
adaptive smoothing of data 149
add line 417
addition 394

with line break 394
Ai function 261
Airy functions 261, 264
aligning

output tables 59
regions 80
text 70

and function 416
angle function 262
Animate command 121
animation

compressing AVI files 121
creating 121
playback 122
saving 121
speed 121–122

antisymmetric tensor function 388
APPENDPRN function 262
application component

SmartSketch 226
application components

Axum/S-PLUS 224
Data Acquisition control (DAC) 229

Excel 222
MATLAB 226

approximations
root of expression 125

arccosecant 261
arccosine 260
arccotangent 260
arcsecant 262
arcsine 263
arctangent 263
area

collapsing 86
deleting 87
expanding 86
inserting 85
locking and unlocking 86
naming 86
password protecting 85–86

arg function 262
arguments

of functions 106
arithmetic mean 317
arithmetic operators

absolute value 396
addition 394
addition with line break 394
complex conjugate 396
division 395
exponentiation 396–397
factorial 395
multiplication 395
negation 395
nth root 396
parentheses 394
range variable 399
square root 396
subtraction 395

arrays
calculations by element 61
copying and pasting 59
creating 53
defining with range variables 54
displaying in results 58
extracting a row or column 57
graphical display of 62
importing data into 220
nested 63, 113
operators for 398
ORIGIN used with 57

arrow keys, for editing 13, 445
ASCII codes
449

450 / Index
entering in strings 35
table 447

ASCII data
importing and exporting 215

asec function 262
asech function 262
asin function 263
asinh function 263
assume keyword 422
atan function 263
atan2 function 263
atanh function 263
augment function 258, 263
Author’s Reference 23, 29, 93
Auto (on status bar) 118
automatic calculation mode 118
automating

Mathcad from other applications 243
autoscaling of axis limits 169
AutoSelect

in solving 132
overriding 132

AVI files
compression 121
creating 121
hyperlinking from worksheet 122
playback 122

Axum/S-PLUS component 224
background color 83
bar plots (3D)

formatting 184
base of results (decimal/octal/binary) 113
base units 115
bei function 264
ber function 264
Bessel functions

Ai function 261
bei function 264
ber function 264
Bi function 264
I0 function 294
I1 function 295
In function 298
J0 function 300
J1 function 301
Jn function 291–292, 301
js function 302
K0 function 302
K1 function 302
Kn function 302
updates 5

Y0 function 387
Y1 function 387
Yn function 387
ys function 387

beta distribution 276, 330, 341, 348
Bi function 264
binary data

importing and exporting 215
binary numbers 34, 113
binomial distribution 277, 330, 341, 348
bitmaps

color palettes 155
copying from the Clipboard 153
creating pictures from 152

blank lines, inserting or deleting 82
blank pages in printouts 92
blank space between regions 13
BMP files 85, 152
bold equals 415
bookmarks 27
Boolean comparison

strict 5
Boolean operators 130

and function 416
bold equals 415
greater than 415
greater than or equal to 415
less than 415
less than or equal to 415
not equal to 415
not function 416
or function 416
xor function 416

border around a region 13
boundary value 266, 323, 356, 368
boundary value problems 142
break statement 237, 418
breaking equations 202
bspline function 265
B-splines 146
built-in functions

listed by type 249
built-in variables 100
bulleted paragraphs 70
Bulstoer function 140
Bulstoer function 266
bulstoer function 265
bvalfit function 144, 266
C_DILLA folder, activation 9
CAD drawings 226
Calc on message line 119

Index / 451
calculation 17
controlling 118
disabling for individual equation 120
equations 17, 100
locking area 85
order in worksheets 101
result format 112
units in 115

calculator, using Mathcad as 16
calculus operators

definite integral 405
derivative 408
indefinite integral 407
left-hand limit 410
limit 410
nth derivative 409
product 403
range product 405
range sum 403
right-hand limit 410
summation 402

calling Mathcad from other applications 248
Cauchy distribution 277, 330, 342, 348
ceil function 267
Celsius 111, 117
CFFT function 269
cfft function 268
CGS units 116, 436
characters, deleting or inserting in math 42
Chebyshev polynomials 381
Check In 96
Check Out 96
Chi function 432
chi-squared distribution 277, 331, 342, 349
cholesky function 269
Ci function 432
Clipboard 48, 202
closing a worksheet 22
closing Mathcad

See exiting Mathcad
cnorm function 254
cnper function 270
coeffs keyword 423
Collaboratory 29
collapsing an area 86
collect keyword 423
colon (:) as definition symbol 17, 99
color

Electronic Book annotation 26
equation highlight 83
in equations 51

in text 69
of worksheet background 83

color images
displaying 151

color palettes for bitmaps 155
colormap 308, 368
colormap files 186
cols function 270
column 34
column vectors

See vectors
combin function 270
combinatorics functions

combin function 270
permut function 333

combining matrices
augment function 263
stack function 373

common logarithm 310
complex conjugate 396
complex keyword 423
complex numbers

arg function 262
csgn function 274
display of 113
entering 34
Im function 297
imaginary unit symbol 113
Re function 349
signum function 370
vector field plots 182

complex threshold 113
Component Wizard 217
components

application-based 216
customizing 247
deleting 247
inserting 217
overview of 216
redistributing 247
scripted 243
See also application components

computing results 17, 100
concat function 271
cond1 function 271
cond2 function 271
conde function 271
condi function 271
condition number of matrix 271
conditional

functions 256

452 / Index
statement 234
conditional function if 296
conditional statement if 417
confluent hypergeometric function 319, 336
conjugate, complex 396
constants

changing the font style of 50
See also numbers and predefined variables

constraint
in solve blocks 130
tolerance 131

constraints in solve blocks 286, 327, 331
contacting Mathsoft 9
context menu

See pop-up menu
continue statement 418
contour plots

creating 181
formatting 184
See also plots, 3D

controls 245
changing the appearance of 246
inserting 245

Controls, customized 243
convert keyword 201
Convert to Partial Fraction command 201
convert, parfrac keyword 423
copy and paste 15, 118, 156
copying

expressions 48
from E-book 26
regions 15
results 118

copying regions 15
corr function 271
correlation coefficient 271
cos function 272
cosh function 272
cosine integral 432
cot function 272
coth function 272
covariance 276
crate function 272
CreateMesh function 273
CreateSpace function 273
creating

2D plots 161
3D plots 175
contour plots 181
E-book 93
hyperlinks 89

popup window 89
Portable Document Format (PDF) files 93
region tags 90
space curve 178
surface plots 176, 179
text regions 65
variables 17
vector field plots 182
worksheet templates 77

creating arrays 53
cross product 399
crosshair for insertion 13
csc function 274
csch function 274
csgn function 274
csort function 274
cspline function 274
CTOL variable 131, 286, 327, 331, 442
cube root 114
cubic spline interpolation 145
cumint function 275
cumprn function 276
cumulative distribution functions 254
cumulative probability

See probability distribution
curve fitting

functions for 147
polynomial 147
using cubic splines 145

Curve Fitting and Smoothing Functions 250
cvar function 276
cyl2xyz function 276
δ function 388
dashed selection rectangle 14
data

entering into a table 55
Data Acquisition control (DAC) 229
data files

exporting from an array 60
functions for reading and writing 250
importing data from 220
reading from 215
writing to 215

data input 220
Data Tables

creating from a file 219
database, importing from 220
databases, exchanging data with 222, 226
DataTable component 220
date in header or footer 85
dbeta function 276

Index / 453
dbinom function 277
dcauchy function 277
dchisq function 277
debugging a worksheet 123
decimal places

in displayed results 113
internal precision 112

decimal points
numerical calculation 113

default formats
2D plots 170
3D plots 184
numerical results 112
template 79
worksheet layout 77

defining
complex numbers 34
functions 106
global variables 102
local variables in program 232
multiple definitions of variable 101
numbers 33
programs 231
range variables 103
See also creating
strings 35
units 111, 115
variables 17, 99

definite integral 205, 405
definition 397, 411

global 412
local 417

definition symbol (:=) 17, 99
degrees, converting to radians 117, 256
deleting

blank lines 82
characters in math 42
equations 16
hard page breaks 84
hyperlinks 90
operators 45
parentheses 47
parts of an expression 49
regions 16
text 65

delta function 388, 432
derivative 408
derivatives

symbolic 204
determinant 209, 400
Developer’s Reference 23, 29, 230, 244–245, 248

device-independent bitmap 154
dexp function 277
dF function 277
dgamma function 278
dgeom function 278
dhypergeom function 278
diag function 278
dialects (spell-checker) 75
DIB

See device-independent bitmap
dictionaries (spell-checker) 75
Differential Equation Solve Blocks

E-book in Web Library 6
differential equation solvers

Bulstoer function 266
bulstoer function 265
bvalfit function 266
multigrid function 323
Odesolve function 327, 331
Radau function 347
radau function 346
relax function 356
Rkadapt function 359
rkadapt function 358
rkfixed function 326, 360
sbval function 368
Stiffb function 375
stiffb function 374
Stiffr function 376
stiffr function 376

differential equation solvers, command-line 136
differential equations 133

higher order 133, 135
partial 144
second order

differential equations
second order 133

slowly varying solutions 141
smooth systems 140
stiff systems 141

differential equations, evaluating only the final value
141

differentiation 408–409
differentiation variable 408
dilog function 432
dilogarithm function 432
dimensions 110
Dirac function 432
disabling equations 120
display of arrays 58
display of operators 391

454 / Index
displayed precision
See decimal places

division 395
division, inline 395
DLLS, building 243
dlnorm function 278
dlogis function 278
dnbinom function 279
dnorm function 279
dot product 399
double integrals 405
Down One Level command 63
downloads 32
dpois function 279
drag and drop 15, 26, 48, 156–157
dragging regions 15
drawings

See pictures
dt function 279
dunif function 280
dweibull function 280
ε function 388
e, base of natural logarithms 100, 307, 442
e, value of 36
E-book 93

creating 93
searching for information in 25

E-books 23
finding on the Web 26

Edit Go to Page command 13
Edit Links command 158
editing equations

annotated example 41
changing a number 42
changing a variable or function name 42
compared to word processors 41
deleting an operator 45
deleting parentheses 47
deleting parts of expression 49
inserting an operator 42
making expression an argument to a function 48
moving parts of an expression 48
moving/rearranging equations 80

editing lines 41
eff function 280
Ei function 432
eigenanalysis 280–281, 290–291
eigenvals function 280
eigenvalues 259
eigenvec function 281
eigenvecs function 281

eigenvectors 259
Electronic Book

copying information from 26
moving around in 25, 27
toolbar 25, 27

Electronic Books 91
elliptic integral 432
Email 97
endpoints for ranges 105
engineering notation 113
Enter key 1
equal sign (=)

in numerical calculations 101
in solve blocks 128
symbolic calculations 196, 206–207

equality constraints 130
equals 397, 411

bold 415
equations

as constraints in solve blocks 130
breaking 202
calculating results 17, 100
color 51
disabling calculation for 120
dragging and dropping 48
effect of range variables in 105
errors in 123
font 50
global definitions 102
in text 72
locking in area 85–86
order of evaluation 101, 118
processing and calculating 17, 118
properties 120
solving for root 125
solving symbolically 206–208
solving with solve blocks 127
styles 50
units in 109
variable definition 99

equations, solving 286, 327, 331, 364
erf function 281, 432
erfc function 282
ERR variable 320
ERR variable and Minerr 131
error function 282
error messages

correcting 124
in equations 123
tracing the source of 123
with units 110

Index / 455
Euclidean norm 400
Euler’s constant 432
Euler’s gamma function 388
Evaluate Complex command 201
Evaluate Floating Point command 201
Evaluate in Place option 202
Evaluate Symbolically command 201–202
evaluation operators

definition 411
equals 411
global definition 412
infix 414
postfix 414
prefix 413
symbolic equals 413
treefix 414

Excel
Excel component 222

exchanging data with other applications 216
exiting Mathcad 22
exp function 282
Expand command 201
expand keyword 201, 424
expand nested arrays 113
Expert Solver 127
expfit function 282
exponential

notation, entering 34
notation, in displayed results 113

exponential distribution 277, 333, 342, 357
exponential function 282
exponential integral 432
exponentiation

matrix case 396–397
scalar case 396–397

exporting
components as MCM 247
worksheets as RTF 95

exporting data 215
expression type functions

IsArray function 300
IsScalar function 300
IsString function 300
UnitsOf function 382

expressions
applying a function to 48
converting to partial fractions 201
correcting errors in 124
deleting parts of 49
error messages in 123
evaluating 100

expanding 201
moving parts of 48
selecting several 80
simplifying 202
symbolic evaluation of 196–197

Extension Packs 249
extrapolation 338
F (function) keys, table of 446
F distribution 277, 333, 342, 357
Φ function 389
Factor command 201
factor keyword 424
factorial 395
Fahrenheit 111, 117
fast Fourier transform 283, 285
Features In-depth 23
FFT function 285
fft function 283
fhyper function 285
file access functions 250

APPENDPRN function 262
GETWAVINFO function 291
LoadColormap function 308
READ_BLUE function 349
READ_GREEN function 350
READ_HLS function 350
READ_HLS_HUE function 350
READ_HLS_LIGHT function 351
READ_HLS_SAT function 351
READ_HSV function 351
READ_HSV_HUE function 351
READ_HSV_SAT function 351
READ_HSV_VALUE function 352
READ_IMAGE function 352
READ_RED function 353
READBMP function 350
READPRN function 352
READRGB function 353
READWAV function 354
SaveColormap function 368
WRITE_HLS function 384
WRITE_HSV function 384
WRITEBMP function 384
WRITEPRN function 385
WRITERGB function 385
WRITEWAV function 386

File Input component 219
File Output component 219
File Send command 97
files

opening 77

456 / Index
reading data from 250
saving 22
See also data files
See also worksheets

finance
cnper function 270
crate function 272
cumint function 275
cumprn function 276
eff function 280
fv function 288
fvadj function 288
fvc function 288
ipmt function 299
irr function 299
mirr function 322
nom function 324
nper function 325
npv function 325
pmt function 335
ppmt function 338
pv function 340
rate function 347

Find function 128, 208, 286, 327, 331
first order differential equation 136
float keyword 425
floor function 287
font

changing in header or footer 85
changing in math 50
changing in text 68

footers 84
for loop 235
for loop statement 418
Format Header/Footer command 84
Format Style command 71
formatting

2D plots 168
3D plots 184
numbers in matrices 59
operators 391
results 112
symbolic 202
worksheets 83

Formatting toolbar 12
math styles 51
text styles 71

fourier keyword 210, 425
Fourier transform functions

fft function 283
Fourier transforms

alternate form 285
CFFT function 269
cfft function 268
FFT function 285
fft function 283
ICFFT function 295
icfft function 295
IFFT function 297
ifft function 297
symbolic 210

fractions
displaying results as 113

FRAME for animation 121
frequency

Fourier analysis 283
statistical counts 292

Fresnel cosine integral 432
FresnelC function 432
FresnelS function 432
functions

applying to an expression 48
built-in 249
colormap 186
defining 19, 106
file access 250
inserting 249
interpolation 145
list of categories 249
optimization 125
other special 432
piecewise continuous 256
prediction 145
recursive 108
regression 147
See also built-in functions
smoothing 149
solving 125
to find roots of expressions 125
uniform polyhedra 252
user-defined 36, 106

fv function 288
fvadj function 288
fvc function 288
Γ function 388
gamma (Euler’s constant) 432
gamma distribution 278, 334, 342, 358
gamma function 388
Gauss hypergeometric function 285
Gaussian distribution 254, 279, 335, 344, 364
gcd function 289
generalized

Index / 457
regression 148
genfit function 289
geninv function 290
genvals function 290
genvecs function 291
geometric distribution 278, 334, 343, 358
geometric mean 291
Getting Started Primers 23
GETWAVINFO function 291
Given function 286, 327, 331
Given, in solve blocks 128, 208
global definition 412
global definitions 102
gmean function 291
graphics, inserting 151
graphing

data 166
expressions 164
functions 164, 176
in 2D 161
in 3D 175
uniform polyhedra 252
vector 166

graphs
creating 21, 175, 252
formatting 21
resizing 162
See also plots, 2D

greater than 415
greater than or equal to 415
greatest common divisor 289
greatest integer function 287
Greek letters

in equations 36
in text 67
table of 444

Greek toolbar 37, 67, 444
guess

for solve blocks 128
guidelines for aligning regions 81
hard page breaks 84
harmonic mean 294
HBK files 24
headers and footers 84
Heaviside step function 389
Help

Author’s Reference 29
context-sensitive 28
Developer’s Reference 29
online 28
See also Resource Center and technical support

Her function 292
Hermite polynomial 292
hexadecimal numbers 34
highlighting equations 83
highpass filter 389
hist function 292
histogram 292
histogram function 293
history of browsing in Electronic Book 25
hlookup function 294
hmean function 294
HTML 93

Positioning 94
HTML/MathML 95
hyperbolic cosine integral 432
hyperbolic functions

cosh function 272
coth function 272
csch function 274
sech function 369–370
sinh function 371
tanh function 380

hyperbolic sine integral 433
hypergeometric 278, 285, 319, 334, 336, 343, 358
hyperlinks

deleting 90
editing 90
to other file types 91
to regions 90
to worksheets 89

hysical 23
i (imaginary unit) 34
I0 function 294
I1 function 295
ibeta function 295
ICFFT function 295
icfft function 295
identity function 296
if conditional statement 417
if function 256, 296
if statement 234
IFFT function 297
ifft function 297
Im function 297
image file

BMP format 152
in headers and footers 85

Image files
reading from and writing to 215

Image Processing Functions 253
imaginary Bessel Kelvin function 264

458 / Index
imaginary numbers
entering 34
symbol for 34, 113

imaginary value 113
implied multiplication 41, 109, 443
importing data 215, 220
importing data from a database 220
impulse function 388, 432
In function 298
incompatible units (error message) 110
incomplete

beta function 295
elliptic integral 432
gamma function 388

increments for ranges 105
indefinite integral 205, 407
indented paragraphs 70
index variables

See range variables
inequalities

as constraints in solve blocks 130
infinity (∞) 36, 442
infix 414
Inline division 395
inner product 399
in-place activation 156
Input Table component 55
input to a component 216
Insert 44
Insert Area command 85
Insert Function command 249
Insert Hyperlink command 89
Insert key 42, 66
Insert Link command 89
Insert Math Region command 73
insert matrix 399
Insert Matrix command

to create array 53
to resize array 54

Insert Object command 15, 118, 156
Insert Reference command 88
Insert Unit command 110, 115
inserting

blank lines 82
equations in text 72
functions 48
graphic objects 155
graphics computationally linked 158
hyperlinks 89
math region 73
minus sign in front of expression 46

parentheses around expression 46
pictures 151
text 65
units 110
worksheet 88

inserting a component 217
insertion point 16
installation instructions 7
integral transforms

Fourier 210
Laplace 210
z 210

integrals
indefinite 205
symbolic evaluation of 205

integration 405, 407
IntelliMouse support 13, 194
intercept function 298
International System of units (SI) 116
Internet

Collaboratory 29
interp function 298
interpolation

cubic spline 145
functions 145
linear 145

interpolation functions
bspline function 265
cspline function 274
interp function 298
linterp function 306
lspline function 311, 313
pspline function 339

interrupting calculations in progress 120
inverse

cumulative distributions 254
Fourier transform 210
Laplace transform 210
z-transform 210

inverse cumulative probability
See inverse probability distribution

inverse hyperbolic functions
acosh function 260
acoth function 261
acsch function 261
asech function 262
asinh function 263
atanh function 263

inverse of matrix 399
inverse probability distribution functions

qbeta function 341

Index / 459
qbinom function 341
qcauchy function 342
qchisq function 342
qexp function 342
qF function 342
qgamma function 342
qgeom function 343
qhypergeom function 343
qlnorm function 343
qlogis function 343
qnbinom function 344
qnorm function 344
qpois function 344
qt function 345
qunif function 345
qweibull function 345

inverse trigonometric functions
acos 260
acot function 260
acsc function 261
angle function 262
asec function 262
asin 263
atan function 263
atan2 function 263

invfourier keyword 210, 425
invlaplace keyword 210, 426
invztrans keyword 210, 426
ipmt function 299
irr function 299
IsArray function 300
ise 6
IsScalar function 300
IsString function 300
iteration

in programs 235
with range variables 19

iwave function 300
j (imaginary unit) 34
J0 function 300
J1 function 301
Jac function 301
Jacobi polynomial 301
Jacobian matrix 141, 374
JavaScript 244
Jn function 291–292, 301
JPEG 94
js function 302
JScript 244
K0 function 302
K1 function 302

keywords, symbolic 197, 421
assume 422
coeffs 423
collect 423
complex 423
convert, parfrac 423
expand 424
factor 424
float 425
fourier 425
invfourier 425
invlaplace 426
invztrans 426
laplace 426
series 427
simplify 428
solve 429
substitute 430
ztrans 430

Kn function 302
knots 265
Kronecker’s delta function 388
ksmooth function 149, 303
Kummer function 319, 336
kurt function 303
kurtosis 303
Lag function 303
Laguerre polynomial 303
Lambert W function 433
laplace keyword 210, 426
Laplace transforms 210
Laplace’s equation 144, 323, 356
last function 304
lcm function 304
least common multiple 304
least integer function 267
least squares

<function>regress 354
genfit function 289
intercept function 298
linfit function 305
loess function 308, 368
slope function 371
stderr function 374

Leg function 304
Legendre function 285
Legendre polynomial 304
LegendreE function 432
LegendreEc function 432
LegendreEc1 function 432
LegendreF function 433

460 / Index
LegendreKc function 433
LegendreKc1 function 433
LegendrePi function 433
LegendrePic function 433
LegendrePic1 function 433
length function 304
less than 415
less than or equal to 415
lgsfit function 305
limit 410

left-hand 410
right-hand 410

limits
axis 21
default range 21

limits, evaluating 206
line break

in text 66
line function 305
linear

equations 286, 327, 331
independence 347
interpolation 145, 306
prediction 145, 338
programming 127, 315, 321
regression 147, 354
system solver and optimizer 127
systems of equations 127

linfit function 305
link

See also hyperlinks
to objects 155
to other worksheets 88–89

linterp function 145, 306
list box control 245
literal subscripts 37
ln (natural log) function 307
lnfit function 308
LoadColormap function 186, 308
local definition 417
local result format 20
lockable area

See area
locked calculations 85–86
locking and unlocking an area 86
loess function 308, 368
log and exponential functions

exp function 282
ln function 307
log function 310

log function 310

logfit function 310
logistic distribution 334, 343, 362
lognormal distribution 334, 343, 362
long equations 202
lookup function 310
looping

for loop 235
while loop 236

lowpass filter 389
lsolve 127
lsolve function 311
lspline function

one-dimensional case 311
two-dimensional case 313

LU decomposition 314
lu function 314
magnitude 400
mailing worksheets 97
mantissa 287
manual mode 118
margins 83
match function 314
Math Optimization command 213
Math Options command 100
math region 33
math styles

applying 51
Constants 50
editing 50
saving 52
Variables 50

Math toolbar 12, 37
Mathcad

accessing from other applications 248
Mathcad 6, 7, or 8 78
Mathcad Enterprise 6, 96
Mathcad OLE automation objects 248
Mathcad Web Library 32
Mathcad Web site 9
Mathcad’s Object Model 23
MathML 93
MathML, content 94
MathML, presentation 94
Mathsoft controls 245
Mathsoft home page 27
Mathsoft, contacting 9
MATLAB component 226
matrices

adding/deleting rows or columns 54
as array elements 63
calculations by element 61

Index / 461
creating with components 216
defining by formula 54
defining with two range variables 54
definition of 34
determinant 209
displayed as pictures 151
displayed as scrolling output tables 58
extracting a column 56
extracting elements 56
limits on size 53, 59
numbering elements 57
operators for 398
ORIGIN used with 57
plotting in contour plot 182
start with row and column zero 57
subscripts 56

matrix
changing size 54

Matrix Determinant command 209–210
Matrix display style 113
matrix function 314
Matrix Invert command 210
matrix operators

combining 263, 373
cross product 399
determinant 400
dot product 399
insert matrix 399
inverse 399
magnitude 400
picture 401
raising to a power 396–397
subscript 399
sum 399
superscript 400
transpose 400
vectorize 400

Matrix Transpose command 209–210
max function 315
Maximize function 315
MCD file 77
MCM file 247
MCT file 77
mean function 317
Measurement Computing

supported data acquisition devices 229
measurement for the ruler 82
medfit function 317
median function 318
medsmooth function 318
metafile 154

mhyper function 319, 336
Microsoft Internet Explorer 27, 244
Microsoft Office 158
min function 320
Minerr function 131, 320
Minimize function 321
minus sign 395

inserting in front of expression 46
MIP

See mixed integer programming
mirr function 322
mixed integer programming 132
mixed number 397
mixed numbers

displaying results as 113
MKS units 116, 440
mod function 323
mode

Seemanual mode
mode function 323
modifiers, symbolic 421
modulus 400
moving

crosshair 13, 445
editing lines 42, 445
insertion point 42, 445
regions 15

moving regions 15
multigrid function 145, 323
multiple integrals 405
multiple roots

finding with polyroots 125, 127
finding with solve blocks 131

multiplication 40, 395, 399, 403, 405
implied 41, 109, 443

multivalued functions 114
names of variables and functions 36
National Instruments

supported data acquisition devices 229
natural logarithm 307
negating an expression 46
negation 395
negative binomial distribution 279, 335, 344, 363
nested arrays

defining 63
displaying 63
expanding 63, 113

New Features 4
nom function 324
nonlinear

equations 286, 327, 331, 364

462 / Index
regression 289, 305
nonlinear systems of equations 127
nonscalar value (error message) 104
norm1 function 324
norm2 function 324
normal distribution 254, 279, 335, 344, 364
norme function 325
normi function 325
not equal to 415
not function 416
notations in this User’s Guide 1
nper function 325
npv function 325
nth derivative 409
nth root 396
nudging regions 15, 80
nudging with arrows 80
num2str function 326
number format

See result format
number theory functions

gcd function 289
lcm function 304
mod function 323

numbered paragraphs 70
numbers 33

binary 34, 113
complex 34
decimal 113
displayed as zero 113
exponential notation for 34, 113
format for computed results 112
formatting 20, 112
hexadecimal 34
imaginary 34
octal 34, 113
radix (base) for results 113

numerical methods
root finding 125
solving and optimization 132

numol 138
object linking and embedding

See OLE
Object Model in Mathcad 23
objects

embedding 155
linking 155

octal numbers 34, 113
ODBC component 220
Odesolve function 133, 327, 331
OLE

automation 243, 248
drag and drop 157
editing links 158
in-place activation 156, 158
scripting objects 244
via components 216

on error statement 239, 419
online resources 23
OpenGL 175
operator placeholder 45
operators

arithmetic 394
Boolean 415
calculus 402
changing the display of 391
defined 38
deleting 45
derivative 204
evaluation 411
for vectors and matrices 398
indefinite integral 205
inserting 42
matrix 398
programming 417
replacing 45
toolbars 12
vector sum 403

optimization
Maximize function 315
Minerr function 320
Minimize function 321

Optimize Palette command 155
optimizers 127
or function 416
order

of polynomial regression 147
of worksheet evaluation 102

ORIGIN variable 57
otherwise statement 417
output from a component 216
output table 58

alignment 59
resizing 59
versus matrix display style 113

overlapping regions 82
overtyping text 66
page

breaks, inserting and deleting 84
headers and footers 84
length 84
numbering 85

Index / 463
Page Setup dialog box 83, 91
palettes, color, for bitmaps 155
parabolic heat

solving 136
paragraphs 65

bullets 70
hanging indent 70
indenting 70
numbers 70
properties 69
tab stops 70
text alignment in 70

parametric plot
creating 164

parametric surface plots
creating 180–181
See also plots, 3D

parentheses 394
deleting from expression 47
inserting into an expression 46

partial differential equations 144, 323, 356
second order

olve blocks 135
tial differential equations

second order 135
partial fractions 423
password protecting an area 85

hiding an area 86
Paste command 15, 157
Paste Special command 154, 157
pasting

bitmaps 153
device-independent bitmaps 153
from Clipboard 48, 153
metafiles 153
OLE objects 157

pbeta function 330
pbinom function 330
pcauchy function 330
pchisq function 331
PDE solve block 135
PDE, solving with a solve block 135
Pdesolve 135
Pdesolve function 135
Pearson’s correlation coefficient 271
pending computations 118–119
percent 442
permut function 333
personal

dictionary (spell-checker) 75
pexp function 333

pF function 333
pgamma function 334
pgeom function 334
phypergeom function 334
pi

entering 37
value 36

pi (3.14159...) 42, 100, 442, 444
picture 401
picture operator 63, 151
pictures

border on 154
creating from bitmap file 152
creating from matrix 151
creating using SmartSketch 226
formatting 154
pasted from Clipboard 153
resizing 154

piecewise continuous functions
δ function 388
ε function 388
Φ function 389
if function 296
sign function 370

placeholder 16, 33
placeholder for an operator 45
Playback command 122
plnorm function 334
plogis function 334
plots 3D

graphing functions 176
plots, 2D

autoscaling of axis limits 169
changing perspective 171
copying format from existing plot 170
creating 21, 162
default formats 170
formatting 168
graphing expressions 163
graphing functions 163
graphing vectors 166
multiple traces on 164
read-out of coordinates 172
reference lines in 169
resizing 162
setting axis or data limits 169
setting default formats 170
Show Markers 169
titles and labels 168
traces on 164
tracing coordinates on 172

464 / Index
zooming 171
plots, 3D 175

3D Plot Format dialog box 185
3D Plot Wizard 175
annotations 191
backplanes 185
color 186, 190
colormaps 186–187
contour lines 188
contour plots 181
converting 191
creating 175
examples 176, 179
fill color 186
filling contours 187
fog 184
formatting 184
graphic annotations on 191
lighting 190
line color 189
lines 188
multiple plots on 184
OpenGL graphics 175
parametric surface plots 180–181
point color 190
point symbols 190
QuickPlot 175
resizing 162
rotating 193
space curves 178
spinning 193
surface plots 176, 179
text on 191
titles 186
uniform polyhedra 252
vector field plots 182
wireframe 188
zooming 193–194

pmt function 335
pnbinom function 335
PNG 94
pnorm function 335
Poisson distribution 279, 338, 344, 366
Poisson’s equation 144, 324, 356
pol2xy function 337
polar plots

creating 162
formatting 168
See also plots, 2D

polygamma function 433
polyhedra 252

Polyhedron 335
Polyhedron function 335
PolyLookup function 336
polynomial

finding roots of 286, 327, 331, 337, 364
finding the roots of 127
regression 147, 289, 305, 308, 354, 368

polyroots function 127, 337
popup hyperlink 89
pop-up menu

3D plots 191
animation playback 122
Input Table component 56
MathSoft Control component 246
Scriptable Object Component 245
SmartSketch component 226
solving 132
Web browsing 27

popup menu
component 218
Data Acquisition control 229
MATLAB component 226
OBDC component 221

popup window, creating 89
Portable Document Format (PDF), creating 93
postfix 414
ppmt function 338
ppois function 338
precision, internal 112
predefined variables 100
predict function 338
prediction, linear 145
prefix 413
prime notation

inside a solve block 133
principal branch of function 114
Print Preview command 92
printing 22

and calculation of worksheet 119
and pagination 84
blank pages in 83, 92
color 83
page settings for 83
print preview 92
wide worksheets 91

PRNCOLWIDTH variable 442
PRNPRECISION variable 442
probability density functions

dbeta function 276
dbinom function 277
dcauchy function 277

Index / 465
dchisq function 277
dexp function 277
dF function 277
dgamma function 278
dgeom function 278
dhypergeom function 278
dlnorm function 278
dlogis function 278
dnbinom function 279
dnorm function 279
dpois function 279
dunif function 280
dweibull function 280

probability distribution functions
pbeta function 330
pbinom function 330
pcauchy function 330
pchisq function 331
pexp function 333
pF function 333
pgamma function 334
pgeom function 334
phypergeom function 334
plnorm function 334
plogis function 334
pnbinom function 335
pnorm function 335
ppois function 338
pt function 340
punif function 340
pweibull function 341

processing equations 17, 118
results of 118

product 395, 399, 403, 405
programming operators

add line 417
break 418
continue 418
for 418
if 417
local definition 417
on error 419
otherwise 417
return 418
while 418

programs 231
adding lines 232
break statement 237
controlling or interrupting 237
defining 231
error handling 239

for loop 235
generating symbolic results 233
if statement 234
local assignment 231
looping 235
nested 241
on error statement 239
output of 231
recursion 242
return statement 238
statements 232
subroutines 241
symbolic evaluation of 233
while loop 236

properties
of components 218
of controls 221
region 83, 90

protecting a worksheet 87
Psi function 433
Psin function 433
pspline function 339
pt function 340
punif function 340
pv function 340
pweibull function 341
pwrfit function 341
qbeta function 341
qbinom function 341
qcauchy function 342
qchisq function 342
qexp function 342
qF function 342
qgamma function 342
qgeom function 343
qhypergeom function 343
qlnorm function 343
qlogis function 343
qnbinom function 344
qnorm function 344
qpois function 344
QR decomposition 344
qr function 344
qt function 345
quadratic equation solving 132
QuickPlot 163, 175
QuickSheets 23

storing custom operators 392
qunif function 345
qweibull function 345
Radau 140

466 / Index
Radau function 347
radau function 346
radians

converting to degrees 117, 256
trig functions 256

radix of displayed results 113
random number generators

rbeta function 348
rbinom function 348
rcauchy function 348
rchisq function 349
rexp function 357
rF function 357
rgamma function 358
rgeom function 358
rhypergeom function 358
rlnorm function 362
rlogis function 362
rnbinom function 363
rnd function 363
rnorm function 364
root function 364
rpois function 366
rt function 367
runif function 367
rweibull function 367

range product 405
range sum 403
range variable creation 399
range variables

array calculations with 61
creating arrays with 54
defining 19, 103, 105
fundamental principle for 105
how Mathcad evaluates equations with 105
setting endpoints and increments 105

rank function 347
rate function 347
rbeta function 348
rbinom function 348
rcauchy function 348
rchisq function 349
Re function 349
READ_BLUE function 349
READ_GREEN function 350
READ_HLS function 350
READ_HLS_HUE function 350
READ_HLS_LIGHT function 351
READ_HLS_SAT function 351
READ_HSV function 351
READ_HSV_HUE function 351

READ_HSV_SAT function 351
READ_HSV_VALUE function 352
READ_IMAGE function 352
READ_RED function 353
READBIN 215
READBMP function 350
READPRN function 352
READRGB function 353
READWAV function 354
real Bessel Kelvin function 264
recursion 108
Reference Table 23
Reference Tables 23
references

and relative paths 89
to other worksheets 88

regions 13
aligning 80
blank space between 13
copying 15
deleting 16
dragging 15
dragging across documents 15
equation 13
hyperlinking to 90
locking 85
moving 15
overlapping 82
properties 90
properties of 14
protecting from editing 87
putting borders around 13
selecting 14
separating 82
tags, creating 90
text 18, 65
unlocking 86
viewing 13, 82

region-to-region hyperlinking 90
regress function

one-dimensional case 354
two-dimensional case 355

regression
functions 147
generalized 148
localized 147
multivariate 147
polynomial 147
using linear combinations of functions 148

regression functions
expfit function 282

Index / 467
genfit function 289
intercept function 298
lgsfit function 305
line function 305
linfit function 305
lnfit function 308
loess function 308, 368
logfit function 310
medfit function 317
pwrfit function 341
regress function 354
sinfit function 371
slope function 371
stderr function 374

Relative button 94
relative paths

for references 89
relax function 145, 356
Release Notes 32
Repaginate Now command 84
replacing characters in math or text 74
replacing operators 45
reports

for a solve block 132
resizing

graphs 162
pictures 154

Resource Center
accessing worksheets on Web 26
Web browsing in 26

Resources Window
bookmarks 27

Resources window 23
resources, online 23
result format 112
Result Format dialog box 20
results

calculating 17
calculating with equations 100
complex 114
copying 118
formatting 20, 112
units in 115
wrapping 202

return statement 238, 418
reverse function 357
rexp function 357
rF function 357
rgamma function 358
rgeom function 358
rhypergeom function 358

Riccati equation 286, 327, 331
rich text format (RTF) 95
Riemann Zeta function 433
right page margin 83
Rkadapt function 359
rkadapt function 358
rkfixed function 136, 326, 360
rlnorm function 362
rlogis function 362
rnbinom function 363
rnd function 254, 363
rnorm function 364
root function 125, 364
roots

finding 125
finding multiple with solve blocks 131
finding symbolically 206–207
numerical approximations used 125
of polynomials 127

round function 366
round-trip HTML 95
row vector 34
row vectors

See vectors
rows function 366
rpois function 366
rref function 366
rsort function 367
rt function 367
RTF file 77

See also rich text format
ruler

for formatting a worksheet 81
for formatting text 70
measurement system 70

Runge-Kutta initial-value solver 136
runif function 367
rweibull function 367
Save as Web Page 93
Save Layout As button 94
SaveColormap function 186, 368
saving

new file 22
templates 79
worksheets 22, 77

sbval function 143, 368
scalar 33
scalar product 399
scatter plots (3D)

formatting 184
See also plots, 3D

468 / Index
scientific notation 113
scripable object components 243
Scriptable Object component 243

protection when opening 248
scripting languages, supported 244
search

E-book 26
in equations 73
in text 73

search function 369
sec function 369
sech function 369–370
seed for random number generator 363
selecting

graphs 162
math expression 43
page break 84
regions 14
text 66

selection rectangle 14
semicolon, in range variable definitions 104
Separate Regions command 82, 84
separating overlapping regions 82, 84
series keyword 427
SharePoint 96
Sharepoint 6
SharePoint Repository 96
Shi function 433
Show Border option 155
Si function 433
sign function 370
signum function 370
Simplify command 202
simplify keyword 202, 428
simultaneous equations, solving 286, 327, 331
simultaneous equations, solving numerically 127
sin function 370–371
sine integral 433
sinfit function 371
singular matrix 311
singular value decomposition 379–380
sinh function 371
skew function 371
skewness 371
slope function 371
SmartSketch component 158, 226
smooth systems (differential equations) 140
smoothing functions

ksmooth function 303
medsmooth function 318
supsmooth function 378

smoothing of data 149
soft page breaks 84
solve block 286, 327, 331
solve blocks 127, 133, 135

constraints in 130
definition of 127
expressions allowed in 130
finding multiple solutions 131
Given in 128
reports for 132
tolerance 131
using to solve differential equations 133, 135
using to solve numerically 127
using to solve symbolically 208

Solve command 430
solve keyword 206–207, 429
Solving and Optimization Extension Pack 127
solving equations 127

AutoSelect of algorithm 132
linear systems 132
nonlinear systems 132
See also solve blocks
with root function 125
with solve blocks 127, 208
with Solve for Variable 206
with solve keyword 206

solving functions
Find 286
Find function 327, 331
Maximize function 315
Minerr function 320
Minimize function 321
polyroots function 337
root function 364

sorting functions
csort function 274
reverse function 357
rsort function 367
sort function 372

space curves
creating 178
See also plots, 3D

spaces, inserting or deleting 82
special functions

eff function 280
erf function 281
erfc function 282
fhyper function 285
Γ function 388
Her function 292
ibeta function 295

Index / 469
Jac function 301
Lag function 303
Leg function 304
mhyper function 319, 336
other

complete elliptic integral
of the first kind 433
of the second kind 432
of the third kind 433

complex error function 432
cosine integral 432
digamma 433
dilogarithm 432
Dirac delta 432
Euler’s constant 432
exponential integral 432
Fresnel cosine integral 432
Fresnel sine integral 432
hyperbolic cosine integral 432
hyperbolic sine integral 433
incomplete elliptic integral

of the first kind 433
of the second kind 432
of the third kind 433

Lambert W 433
polygamma 433
Riemann Zeta 433
sine integral 433

Tcheb function 381
Ucheb function 381

spell-checking 74
sph2xyz function 373
spherical Bessel functions 302, 387
spline functions 145–146, 311
spreadsheets, exchanging data with 216
square root 396
stack function 258, 373
stack overflow error 108
standard deviation 374
standard error 374
standard normal distribution 254
statistics

cubic spline interpolation 145
cumulative distribution functions 254
generalized linear regression 148
interpolation 145
inverse cumulative distributions 254
linear interpolation 145
linear prediction 145
linear regression 147

multivariate polynomial regression 147
polynomial regression 147
probability density functions 254

statistics functions
corr function 271
cvar function 276
gmean function 291
hist function 292
histogram function 293
hmean function 294
kurt function 303
mean function 317
median function 318
mode function 323
skew function 371
Stdev function 374
stdev function 374
Var function 382
var function 382

stderr function 374
Stdev function 374
stdev function 374
step function 389
step size

for differential equation solving 141
for iteration 105

Stiffb function 375
stiffb function 374
Stiffr function 376
stiffr function 376
str2num function 377
str2vec function 377
string functions

concat function 271
error function 282
num2str function 326
search function 369
str2num function 377
str2vec function 377
strlen function 377
substr function 378
vec2str function 382

strings
arguments to file access functions 250
as elements of vectors 35
defining 35
editing 44
evaluating 35
variables 35

strlen function 377
Student’s t distribution 340, 345, 367

470 / Index
styles
math 50
text 71

submatrix function 378
subroutines 241
subscript button 69
subscripts

in text 69
literal 37
non-numeric 37
ORIGIN used with 57
start with zero 57

substitute keyword 430
substr function 378
subtraction 395
summation 394, 402
superscript 400

to get column from matrix 57
superscript button 69
supsmooth function 149, 378
surface plots

creating 176, 178–179
formatting 184
parametric 180–181
See also plots, 3D

svd function 379
svds function 380
symbolic

equal sign 196
evaluation 196
evaluation of programs 233
keywords 197

symbolic equals 413
symbolic keywords 421

assume 422
coeffs 423
collect 423
complex 423
convert, parfrac 423
expand 424
factor 424
float 425
fourier 425
invfourier 425
invlaplace 426
invztrans 426
laplace 426
series 427
simplify 428
solve 429
substitute 430

ztrans 430
symbolic modifiers 421
symbolics menu 422
Symbolics menu commands 201
Symbolics menu, using 201
system requirements for Mathcad 7
t distribution 340, 345, 367
tab stops in a worksheet 81
tables of data 55
tabs in a paragraph 70
tag

region, creating 90
tan function 380
tanh function 380
Tcheb function 381
Technical Support 32
technical support 9
temperature conversions 111, 117
templates 77

creating new 79
modifying 79
used to save calculation mode 118
using to create a worksheet 77

tensor 388
text 65

alignment 70
bullets in 70
changing font 68
color 69
editing 68
entering 18
Greek letters in 67
inserting equations in 72
moving 67
moving insertion point in 66
Occupy Page Width option 68
Push Regions Down As You Type option 69
regions 65
selecting 66
spell-checking 74
styles 71
tools 73

text box 18, 65
text regions 65

changing width 67
creating 18, 65
editing 68
how to exit 18, 65

text ruler 70
text styles 71

applying 71

Index / 471
creating 72
modifying 71

text tools 73
tilde (~), used in global definitions 102
time in header or footer 85
Tip of the Day 29
TOL variable 100, 286, 327, 331, 364, 442

and solve blocks 131
tolerance

constraint (CTOL) 286, 327, 331
convergence (TOL) 364
See TOL variable and CTOL variable

toolbar
Boolean 415
calculator 394
calculus 402
evaluation 411
Formatting 12
Math 12
matrix and vector 398
programming 417
standard 12

toolbars
customizing 12
Electronic Book 25, 27
programming 232
Web 27

Tools
text 73

top-to-bottom evaluation 101
tr function 381
trace 381
traces, on 2D plots 164
tracing the source of an error 123
trailing zeros 113
transforms

Fourier (numerical) 283, 285
Fourier (symbolic) 210, 425
Laplace 210, 426
wavelet 383
z 210, 430

transpose 400
transpose of matrix 209
treefix 414
trigonometric functions

cos function 272
cot function 272
csc function 274
sec function 369
sin function 370–371
tan function 380

with degrees and radians 117
trunc function 381
truncation

thresholded 5
truncation and round-off functions

ceil function 267
floor function 287
round function 366
trunc function 381

Tutorials
 23

tutorials 23
two-point boundary value problems 142
typing over text 66
U.S. Customary units 116
Ucheb function 381
undefined variables 101, 103
undo 4
uniform distribution 280, 340, 345, 367
uniform polyhedra 252
units

alternative definitions 115
base units 115
CGS system 116
common sources of error 110
converting calculated results 116
default 109
defining 111, 115
dimensional consistency 110
errors in dimensions 110
in calculated values 115
in equations 109
metric 116
MKS system 115
placeholder 115
prefixes 116
SI 116
simplifying 113
U.S. customary 116

UnitsOf function 111, 382
Up One Level command 63
update

window manually 119
worksheet window 119

URL
Mathsoft home page 27

Use Default Palette command 155
user-defined functions 106

evaluating variables in 107
valid names 36

Var function 382

472 / Index
var function 382
Variable Differentiate command 204
Variable Integrate command 205
Variable Solve command 207
variables

changing the font style of 50
defining 17, 99
global definitions of 102
in red 103, 123
matrices 34, 53
names 36
predefined 100
range variables 19, 103
string 35
undefined 123
vectors 34

variance of a data set 382
VBScript 244
vec2str function 382
vector

changing size 54
definition of 34

vector and matrix functions
augment function 263
cholesky function 269
cols function 270
cond1 function 271
cond2 function 271
conde function 271
condi function 271
CreateMesh function 273
CreateSpace function 273
cyl2xyz function 276
diag function 278
eigenvals function 280
eigenvec function 281
eigenvecs function 281
geninv function 290
genvals function 290
genvecs function 291
hlookup function 294
identity function 296
last function 304
lookup function 310
lsolve function 311
lu function 314
match function 314
matrix function 314
max function 315
min function 320
norm1 function 324

norm2 function 324
norme function 325
normi function 325
pol2xy function 337
Polyhedron function 335
PolyLookup function 336
qr function 344
rank function 347
rows function 366
rref function 366
sph2xyz function 373
stack function 373
submatrix function 378
svd function 379
svds function 380
tr function 381
vlookup function 383
xyz2cyl function 386
xyz2pol function 386
xyz2sph function 386

vector and matrix functions functions
length function 304

vector and matrix subscript 399
vector field plots

creating 182
from complex matrices 182
See also plots, 3D

vector norm 400
vector product 399
vector sum 399
vector sum operator 403
vectorize 400
vectorize operator 61

effect of 61
how to type 61
properties of 61, 401

vectors
as array elements 63
calculations by element 61
column vectors 398
displayed as scrolling output tables 58
graphing 166
numbering elements 57
operators for 398
ORIGIN used with 57
row 398
start with element zero 57
subscripts 56
undefined elements filled with zeros 57
vectorize operator 61

View Animate command 121

Index / 473
View Zoom command 13
Visual Basic Scripting Edition 244
vlookup function 383
W function 433
wait message 119
WAV files

reading from and writing to 215
wave function 383
wavelet transform functions

iwave function 300
wave function 383

Web Library 32
Web pages

creating from worksheets 93
formatting 94

Web pages, creating from worksheets 93
Web toolbar 27
Weibull distribution 280, 341, 345, 367
while loop statement 418
while loops 236
windows

update results manually 119
working with 13
zooming in and out of 13

Windows keystrokes 13, 446
wireframe, in 3D plots 188
Wizards

for inserting 3D plots 175
for inserting a component 217

word processor 39
worksheet ruler 81
worksheets

closing 22
creating 77
exporting as RTF 95
formatting 83
gathering in an E-book 93
hyperlinking 89
in popup window 89
including by reference 88
opening 78
opening from Internet 27
order of evaluation 101
printing 22, 91

protecting 87
referencing in another worksheet 88
saving 22, 77–78
saving as templates 79
saving in an earlier format 78
sending by Email 97

World Wide Web
accessing 27
bookmarks for browsing 27
Collaboratory 29
Mathsoft home page 27
toolbar 27

WRITE_HLS function 384
WRITE_HSV function 384
WRITEBIN 215
WRITEBMP function 384
WRITEPRN function 385
WRITERGB function 385
WRITEWAV function 386
Wythoff symbol for a polyhedron 183
xor function 416
X-Y plots

creating 21, 162
formatting 168
See also plots, 2D

xyz2cyl function 386
xyz2pol function 386
xyz2sph function 386
Y0 function 387
Y1 function 387
y-intercept 298
Yn function 387
ys function 387
zero threshold 113
zeros of expressions or functions

See roots
Zeta function 433
zooming

2D plots 171
3D plots 194
windows 13

ztrans keyword 210, 430
z-transforms 210

	Contents
	Getting Started
	Calculating with Mathcad
	Functions and Operators

	About the User’s Guide
	Notations and Conventions

	Chapter 1
	Welcome to Mathcad
	What Is Mathcad?
	Highlights of Mathcad 11 Release
	Usability Features
	Data Input/Output
	Math Enhancements
	Programming
	New Online Resources
	Mathcad Enterprise

	System Requirements
	Installation
	To Install Mathcad
	Activating Your Installation

	Technical Support

	Chapter 2
	Getting Started with Mathcad
	The Mathcad Workspace
	Working with Worksheets

	Regions
	Selecting Regions
	Region Properties
	Moving and Copying Regions
	Deleting Regions

	A Simple Calculation
	Definitions and Variables
	Defining Variables
	Calculating Results

	Entering Text
	Iterative Calculations
	Creating a Range Variable
	Defining a Function
	Formatting a Result

	Graphs
	Creating a Basic Graph
	Formatting a Graph

	Saving, Printing, and Exiting
	Saving a Worksheet
	Printing
	Exiting Mathcad

	Chapter 3
	Online Resources
	Mathcad Resources
	Resources Window and E-books
	Finding Information in an E-book
	Annotating an E-book
	Copying Information from an E-book
	Web Browsing

	Help
	Collaboratory User Forums
	Logging in
	Reading Messages
	Posting Messages
	Searching
	Changing Your User Information
	Other Features

	Other Resources
	Web Library
	Online Documentation
	Release Notes
	Technical Support
	Downloads on Mathcad.com

	Chapter 4
	Working with Math
	Inserting Math
	Numbers and Complex Numbers
	Vectors and Matrices
	Strings
	Names
	Inserting an Operator

	Building Expressions
	Typing in Names and Numbers
	Typing in Operators
	Multiplication
	An Annotated Example

	Editing Expressions
	Changing a Name or Number
	Inserting an Operator
	Applying an Operator to an Expression
	Deleting an Operator
	Replacing an Operator
	Inserting a Minus Sign
	Inserting Parentheses
	Deleting Parentheses
	Insert Function
	Assistance for Using Built-in Functions
	Applying a Function to an Expression
	Moving Parts of an Expression
	Deleting Parts of an Expression

	Math Styles
	Editing Math Styles
	Applying Math Styles
	Saving Math Styles

	Chapter 5
	Vectors, Matrices, and Data Arrays
	Creating Arrays
	Insert Matrix Command
	Creating Arrays with Range Variables
	Entering a Matrix as a Data Table

	Accessing Array Elements
	Subscripts
	Accessing Rows and Columns
	Changing the Array Origin

	Displaying Arrays
	Changing the Display of Arrays-Table versus Matrix
	Changing the Format of Displayed Elements
	Copying and Pasting Arrays

	Working with Arrays
	Performing Calculations in Parallel
	Graphical Display of Arrays

	Nested Arrays
	Defining a Nested Array

	Chapter 6
	Working with Text
	Inserting Text
	Creating a Text Region
	Moving the Insertion Point
	Selecting Text
	Greek Letters in Text
	Changing the Width of a Text Region

	Text and Paragraph Properties
	Changing Text Properties
	Changing Paragraph Properties

	Text Styles
	Applying a Text Style to a Paragraph in a Text Region
	Modifying an Existing Text Style
	Creating and Deleting Text Styles

	Equations in Text
	Inserting an Equation into Text

	Text Tools
	Find and Replace
	Spell-Checking

	Chapter 7
	Worksheet Management
	Worksheets and Templates
	Creating a New Worksheet
	Opening a Worksheet
	Saving Your Worksheet
	Creating a New Template
	Modifying a Template

	Rearranging Your Worksheet
	Aligning Regions
	Inserting or Deleting Blank Lines
	Separating Regions
	Highlighting Regions
	Changing the worksheet background color

	Layout
	Setting Margins, Paper Size, Source, and Orientation
	Page Breaks
	Headers and Footers

	Safeguarding an Area of the Worksheet
	Inserting an Area
	Locking and Collapsing an Area
	Unlocking and Expanding an Area
	Deleting an Area

	Safeguarding an Entire Worksheet
	Worksheet Protection

	Worksheet References
	Hyperlinks
	Creating Hyperlinks Between Worksheets
	Creating Hyperlinks to Other Files

	Distributing Your Worksheets
	Printing
	Printing Wide Worksheets
	Print Preview
	Creating PDF Files
	Creating E-books
	Creating Web Pages and Sites
	Saving Your Worksheet to Microsoft Word
	Storing Worksheets in a SharePoint Repository
	Mailing

	Chapter 8
	Calculating in Mathcad
	Defining and Evaluating Variables
	Defining a Variable
	Built-in Variables
	Evaluating Expressions Numerically
	How Mathcad Scans a Worksheet
	Global Definitions
	Range Variables

	Defining and Evaluating Functions
	Variables in User-Defined Functions
	Recursive Function Definitions

	Units and Dimensions
	Dimensional Checking
	Defining Your Own Units

	Working with Results
	Formatting Results
	Complex Results
	Displaying Units of Results
	Copying and Pasting Numerical Results

	Controlling Calculation
	Calculating in Automatic Mode
	Calculating in Manual Mode
	Interrupting Calculations
	Disabling Equations

	Animation
	Creating an Animation Clip
	Playing an Animation Clip
	Playing a Previously Saved Animation

	Error Messages
	Finding the Source of an Error
	Fixing Errors

	Chapter 9
	Solving and Data Analysis
	Solving and Optimization Functions
	Finding Roots
	Linear/Nonlinear System Solving and Optimization

	Differential Equation Solvers
	Solving an ODE Using a Solve Block
	Solving a PDE using a Solve Block
	Command-line Differential Equation Solvers
	Specialized Initial-Value Differential Equation Solvers
	Boundary Value Problems

	Data Fitting
	Interpolation
	Regression and Smoothing Functions

	Chapter 10
	Inserting Graphics and Other Objects
	Overview
	Inserting Pictures
	Creating a Picture
	Formatting a Picture

	Inserting Objects
	Inserting an Object into a Worksheet
	Editing an Object
	Editing a Link

	Inserting Graphics Computationally Linked to Your Worksheet

	Chapter 11
	2D Plots
	Overview of 2D Plotting
	Creating an X-Y Plot
	Creating a polar plot

	Graphing Functions and Expressions
	2D QuickPlots
	Defining an independent variable
	Plotting Multiple 2D Curves
	Creating a parametric plot

	Plotting Vectors of Data
	Plotting a single vector of data
	Plotting one data vector against another

	Formatting a 2D Plot
	Setting Axis Limits
	Setting Default Formats
	Adding Custom Titles, Labels, and Other Annotations

	Modifying a 2D Plot’s Perspective
	Zooming in on a Plot
	Getting a Readout of Plot Coordinates

	Chapter 12
	3D Plots
	Overview of 3D Plotting
	Inserting a 3D Plot
	3D Plot Wizard

	Creating 3D Plots of Functions
	Creating a Surface, Bar, Contour, or Scatter Plot
	Creating a Space Curve

	Creating 3D Plots of Data
	Creating a Surface, Bar, or Scatter Plot
	Creating a Parametric Surface Plot
	Creating a Three-dimensional Parametric Curve
	Creating a Contour Plot
	Creating a Vector Field Plot
	Graphing Polyhedra
	Graphing Multiple 3D Plots

	Formatting a 3D Plot
	The 3D Plot Format Dialog Box
	Fill Color
	Lines
	Points
	Lighting
	Changing One 3D Plot to Another
	Modifying 3D QuickPlot Data

	Rotating and Zooming on 3D Plots
	Rotating a Plot
	Spinning a Plot
	Zooming a Plot

	Chapter 13
	Symbolic Calculation
	Overview of Symbolic Math
	Live Symbolic Evaluation
	Using Keywords
	Using More Than One Keyword
	Ignoring Previous Definitions

	Using the Symbolics Menu
	Long Results
	Displaying Symbolic Results

	Examples of Symbolic Calculation
	Derivatives
	Integrals
	Limits
	Solving an Equation for a Variable
	Solving a System of Equations Symbolically: “Solve” Keyword
	Solving a System of Equations Symbolically: Solve Block
	Symbolic Matrix Manipulation
	Transformations

	Symbolic Optimization

	Chapter 14
	Importing and Exporting Data
	Overview
	Functions for Reading and Writing Files
	Exchanging Data with Other Applications
	How to Use Components

	Data Input and Output Components
	File Input and File Output
	ODBC Input

	Application Components
	Excel Component
	Axum/S-PLUS Graph and Script Components
	MATLAB Component
	SmartSketch
	The Data Acquisition Control

	Chapter 15
	Extending and Automating Mathcad
	Overview
	Programming within Mathcad
	Conditional Statements
	Looping
	Controlling Program Execution
	Error Handling
	Programs Within Programs

	Building Function DLLs
	Creating Your Own Components
	Scripting Custom OLE Automation Objects
	Mathsoft Controls
	Customizing and Redistributing Components
	Deleting an Exported Component
	Opening a Worksheet Containing a Scripted Component

	Accessing Mathcad from Within Another Application
	Mathcad Add-ins

	Chapter 16
	Functions
	Built-in Functions
	Function Categories
	Bessel Functions
	Complex Numbers Functions
	Curve Fitting and Smoothing Functions
	Differential Equation Solving Functions
	Expression Type Functions
	File Access Functions
	Finance Functions
	Fourier Transforms on Real and Complex Data
	Graph
	Hyperbolic Functions
	Image Processing Functions
	Interpolation and Prediction Functions
	Log and Exponential Functions
	Lookup Functions
	Number Theory/Combinatorics
	Piecewise Continuous Functions
	Probability Densities and Probability Distributions
	Random Numbers
	Solving Functions
	Sorting Functions
	Special Functions
	Statistical Functions
	String Functions
	Trigonometric Functions
	Truncation and Round-off Functions
	User-defined Functions
	Vector and Matrix Functions
	Wavelet Transforms

	Mathcad Functions Listed Alphabetically
	Notes on the Function Listings

	Functions

	Chapter 17
	Operators
	Changing the Display of an Operator
	Defining a Custom Operator
	Using a Custom Operator
	Arithmetic Operators
	Vector and Matrix Operators
	Calculus Operators
	Evaluation Operators
	Boolean Operators
	Programming Operators

	Chapter 18
	Symbolic Keywords
	Accessing Symbolic Keywords
	Finding More Information
	Keywords

	Appendices
	Appendix A: Special Functions
	Function Definitions
	Comments

	Appendix B: SI Units
	Appendix C: CGS units
	Appendix D: U.S. Customary Units
	Appendix E: MKS Units
	Appendix F: Predefined Variables
	Appendix G: Suffixes for Numbers
	Appendix H: Greek Letters
	Appendix I: Arrow and Movement Keys
	Appendix J: Function Keys
	Appendix K: ASCII codes
	Appendix L: References

	Index

