

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2008 by John Sharp

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of the publisher.

Library of Congress Control Number: 2007939305

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 2 1 0 9 8 7

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor-
mation about international editions, contact your local Microsoft Corporation office or contact Microsoft
Press International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress.
Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, MSDN, SQL Server, Excel, Intellisense, Internet Explorer, Jscript,
Silverlight, Visual Basic, Visual C#, Visual Studio, Win32, Windows, Windows Server, and Windows
Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries. Other product and company names mentioned herein may be the trademarks of their
respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places,
and events depicted herein are fictitious. No association with any real company, organization, product,
domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

without any express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its
resellers, or distributors will be held liable for any damages caused or alleged to be caused either directly
or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental and Project Editor: Lynn Finnel
Editorial Production: Waypoint Press
Technical Reviewer: Kurt Meyer; Technical Review services provided by Content Master, a member
of CM Group, Ltd.

Body Part No. X14-22686

Contents at a Glance

Part I Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

 1 Welcome to C# . 3
 2 Working with Variables, Operators, and Expressions 29
 3 Writing Methods and Applying Scope . 49
 4 Using Decision Statements . 67
 5 Using Compound Assignment and Iteration Statements 85
 6 Managing Errors and Exceptions . 103

Part II Understanding the C# Language
 7 Creating and Managing Classes and Objects 123
 8 Understanding Values and References . 145
 9 Creating Value Types with Enumerations and Structures 167
 10 Using Arrays and Collections. 185
 11 Understanding Parameter Arrays . 207
 12 Working with Inheritance . 217
 13 Creating Interfaces and Defi ning Abstract Classes 239
 14 Using Garbage Collection and Resource Management. 257

Part III Creating Components
 15 Implementing Properties to Access Fields 275
 16 Using Indexers. 295
 17 Interrupting Program Flow and Handling Events 311
 18 Introducing Generics . 333
 19 Enumerating Collections . 355
 20 Querying In-Memory Data by Using Query Expressions 371
 21 Operator Overloading . 395
 iii

iv Contents at a Glance
Part IV Working with Windows Applications
 22 Introducing Windows Presentation Foundation 415
 23 Working with Menus and Dialog Boxes 451
 24 Performing Validation . 473

Part V Managing Data
 25 Querying Information in a Database . 499
 26 Displaying and Editing Data by Using Data Binding 529

Part VI Building Web Applications
 27 Introducing ASP.NET . 559
 28 Understanding Web Forms Validation Controls. 587
 29 Protecting a Web Site and Accessing Data with

Web Forms. 597
 30 Creating and Using a Web Service . 623
 Index . 645

Table of Contents
Acknowledgments . xvii

Introduction .xix

Part I Introducing Microsoft Visual C# and
Microsoft Visual Studio 2008

 1 Welcome to C# . 3
Beginning Programming with the Visual Studio 2008 Environment. 3
Writing Your First Program. 8
Using Namespaces. 14
Creating a Graphical Application. 17
Chapter 1 Quick Reference. 28

 2 Working with Variables, Operators, and Expressions 29
Understanding Statements. 29
Using Identifi ers . 30
Identifying Keywords. 30
Using Variables . 31

Naming Variables. 32
Declaring Variables . 32

Working with Primitive Data Types . 33
Displaying Primitive Data Type Values . 34

Using Arithmetic Operators . 38
Operators and Types . 39
Examining Arithmetic Operators. 40
Controlling Precedence . 43
Using Associativity to Evaluate Expressions . 44
Associativity and the Assignment Operator . 45
 v

www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

vi Table of Contents

Incrementing and Decrementing Variables . 45
Prefi x and Postfi x . 46

Declaring Implicitly Typed Local Variables. 47
Chapter 2 Quick Reference. 48

3 Writing Methods and Applying Scope . 49
Declaring Methods . 49

Specifying the Method Declaration Syntax. 50
Writing return Statements. 51
Calling Methods . 53
Specifying the Method Call Syntax. 53

Applying Scope . 56
Defi ning Local Scope. 56
Defi ning Class Scope . 56
Overloading Methods . 57

Writing Methods . 58
Chapter 3 Quick Reference. 66

4 Using Decision Statements . 67
Declaring Boolean Variables. 67
Using Boolean Operators . 68

Understanding Equality and Relational Operators 68
Understanding Conditional Logical Operators. 69
Summarizing Operator Precedence and Associativity 70

Using if Statements to Make Decisions . 71
Understanding if Statement Syntax . 71
Using Blocks to Group Statements . 73
Cascading if Statements . 73

Using switch Statements . 78
Understanding switch Statement Syntax . 79
Following the switch Statement Rules. 80

Chapter 4 Quick Reference. 84

5 Using Compound Assignment and Iteration Statements 85
Using Compound Assignment Operators . 85
Writing while Statements. 87
Writing for Statements . 91

Understanding for Statement Scope . 92

 Table of Contents vii
Writing do Statements . 93
Chapter 5 Quick Reference. 102

 6 Managing Errors and Exceptions . 103
Coping with Errors . 103
Trying Code and Catching Exceptions . 104

Handling an Exception . 105
Using Multiple catch Handlers . 106
Catching Multiple Exceptions . 106

Using Checked and Unchecked Integer Arithmetic . 111
Writing Checked Statements . 112
Writing Checked Expressions. 113

Throwing Exceptions . 114
Using a fi nally Block . 118
Chapter 6 Quick Reference. 120

Part II Understanding the C# Language
 7 Creating and Managing Classes and Objects 123

Understanding Classifi cation . 123
The Purpose of Encapsulation . 124
Defi ning and Using a Class . 124
Controlling Accessibility . 126
Working with Constructors. 127

Overloading Constructors . 128
Understanding static Methods and Data . 136

Creating a Shared Field. 137
Creating a static Field by Using the const Keyword 137

Chapter 7 Quick Reference. 142

 8 Understanding Values and References . 145
Copying Value Type Variables and Classes . 145
Understanding Null Values and Nullable Types . 150

Using Nullable Types . 151
Understanding the Properties of Nullable Types 152

Using ref and out Parameters . 152
Creating ref Parameters . 153
Creating out Parameters . 154

viii Table of Contents
How Computer Memory Is Organized . 156
Using the Stack and the Heap . 157

The System.Object Class . 158
Boxing . 159
Unboxing . 159
Casting Data Safely . 161

The is Operator . 161
The as Operator . 162

Chapter 8 Quick Reference. 164

 9 Creating Value Types with Enumerations and Structures 167
Working with Enumerations. 167

Declaring an Enumeration . 167
Using an Enumeration. 168
Choosing Enumeration Literal Values. 169
Choosing an Enumeration’s Underlying Type . 170

Working with Structures . 172
Declaring a Structure. 174
Understanding Structure and Class Differences. 175
Declaring Structure Variables. 176
Understanding Structure Initialization . 177
Copying Structure Variables. 179

Chapter 9 Quick Reference. 183

 10 Using Arrays and Collections. 185
What Is an Array? . 185

Declaring Array Variables . 185
Creating an Array Instance. 186
Initializing Array Variables . 187
Creating an Implicitly Typed Array . 188
Accessing an Individual Array Element . 189
Iterating Through an Array. 190
Copying Arrays . 191

What Are Collection Classes? . 192
The ArrayList Collection Class . 194
The Queue Collection Class . 196
The Stack Collection Class . 197
The Hashtable Collection Class . 198
The SortedList Collection Class . 199

 Table of Contents ix
Using Collection Initializers . 200
Comparing Arrays and Collections . 200
Using Collection Classes to Play Cards . 201

Chapter 10 Quick Reference. 206

 11 Understanding Parameter Arrays . 207
Using Array Arguments. 208

Declaring a params Array . 209
Using params object[] .211
Using a params Array. 212

Chapter 11 Quick Reference. 215

 12 Working with Inheritance . 217
What Is Inheritance? . 217
Using Inheritance . 218

Base Classes and Derived Classes . 218
Calling Base Class Constructors. 220
Assigning Classes . 221
Declaring new Methods . 222
Declaring Virtual Methods . 224
Declaring override Methods . 225
Understanding protected Access . 227

Understanding Extension Methods . 233
Chapter 12 Quick Reference. 237

 13 Creating Interfaces and Defi ning Abstract Classes 239
Understanding Interfaces . 239

Interface Syntax . 240
Interface Restrictions . 241

Implementing an Interface. 241
Referencing a Class Through Its Interface . 243
Working with Multiple Interfaces . 244

Abstract Classes . 244
Abstract Methods . 245

Sealed Classes . 246
Sealed Methods . 246

Implementing an Extensible Framework . 247
Summarizing Keyword Combinations . 255
Chapter 13 Quick Reference. 256

x Table of Contents
 14 Using Garbage Collection and Resource Management. 257
The Life and Times of an Object . 257

Writing Destructors . 258
Why Use the Garbage Collector? . 260
How Does the Garbage Collector Work?. 261
Recommendations. 262

Resource Management . 262
Disposal Methods . 263
Exception-Safe Disposal . 263
The using Statement. 264
Calling the Dispose Method from a Destructor. 266

Making Code Exception-Safe. 267
Chapter 14 Quick Reference. 270

Part III Creating Components
 15 Implementing Properties to Access Fields 275

Implementing Encapsulation by Using Methods . 276
What Are Properties?. 278

Using Properties. 279
Read-Only Properties . 280
Write-Only Properties . 280
Property Accessibility . 281

Understanding the Property Restrictions . 282
Declaring Interface Properties . 284

Using Properties in a Windows Application . 285
Generating Automatic Properties . 287
Initializing Objects by Using Properties . 288
Chapter 15 Quick Reference. 292

 16 Using Indexers. 295
What Is an Indexer? . 295

An Example That Doesn’t Use Indexers . 295
The Same Example Using Indexers . 297
Understanding Indexer Accessors. 299
Comparing Indexers and Arrays . 300

Indexers in Interfaces. 302
Using Indexers in a Windows Application . 303
Chapter 16 Quick Reference. 308

 Table of Contents xi
 17 Interrupting Program Flow and Handling Events 311
Declaring and Using Delegates . 311

The Automated Factory Scenario . 312
Implementing the Factory Without Using Delegates 312
Implementing the Factory by Using a Delegate. 313
Using Delegates . 316

Lambda Expressions and Delegates . 319
Creating a Method Adapter . 319
Using a Lambda Expression as an Adapter . 320
The Form of Lambda Expressions . 321

Enabling Notifi cations with Events . 323
Declaring an Event. 323
Subscribing to an Event . 324

Unsubscribing from an Event . 324
Raising an Event . 325

Understanding WPF User Interface Events . 325
Using Events . 327

Chapter 17 Quick Reference. 329

 18 Introducing Generics . 333
The Problem with objects. 333
The Generics Solution . 335

Generics vs. Generalized Classes . 337
Generics and Constraints . 338

Creating a Generic Class . 338
The Theory of Binary Trees. 338
Building a Binary Tree Class by Using Generics . 341

Creating a Generic Method . 350
Defi ning a Generic Method to Build a Binary Tree 351

Chapter 18 Quick Reference. 354

 19 Enumerating Collections . 355
Enumerating the Elements in a Collection. 355

Manually Implementing an Enumerator . 357
Implementing the IEnumerable Interface . 361

Implementing an Enumerator by Using an Iterator . 363
A Simple Iterator . 364
Defi ning an Enumerator for the Tree<TItem> Class by
Using an Iterator . 366

Chapter 19 Quick Reference . 368

xii Table of Contents
 20 Querying In-Memory Data by Using Query Expressions 371
What Is Language Integrated Query (LINQ)? . 371
Using LINQ in a C# Application . 372

Selecting Data . 374
Filtering Data . 377
Ordering, Grouping, and Aggregating Data. 377
Joining Data . 380
Using Query Operators. 381
Querying Data in Tree<TItem> Objects . 383
LINQ and Deferred Evaluation. 389

Chapter 20 Quick Reference. 392

 21 Operator Overloading . 395
Understanding Operators. 395

Operator Constraints. 396
Overloaded Operators . 396
Creating Symmetric Operators . 398

Understanding Compound Assignment . 400
Declaring Increment and Decrement Operators . 401
Defi ning Operator Pairs . 403
Implementing an Operator. 404
Understanding Conversion Operators . 406

Providing Built-In Conversions . 406
Implementing User-Defi ned Conversion Operators 407
Creating Symmetric Operators, Revisited . 408
Adding an Implicit Conversion Operator. 409

Chapter 21 Quick Reference. 411

Part IV Working with Windows Applications
 22 Introducing Windows Presentation Foundation 415

Creating a WPF Application . 415
Creating a Windows Presentation Foundation Application 416

Adding Controls to the Form . 430
Using WPF Controls . 430
Changing Properties Dynamically. 439

Handling Events in a WPF Form . 443
Processing Events in Windows Forms. 443

Chapter 22 Quick Reference. 449

 Table of Contents xiii
 23 Working with Menus and Dialog Boxes 451
Menu Guidelines and Style. 451
Menus and Menu Events. 452

Creating a Menu . 452
Handling Menu Events . 458

Shortcut Menus . 464
Creating Shortcut Menus . 464

Windows Common Dialog Boxes . 468
Using the SaveFileDialog Class . 468

Chapter 23 Quick Reference. 471

 24 Performing Validation . 473
Validating Data . 473

Strategies for Validating User Input . 473
An Example—Customer Information Maintenance . 474

Performing Validation by Using Data Binding . 475
Changing the Point at Which Validation Occurs 491

Chapter 24 Quick Reference. 495

Part V Managing Data
 25 Querying Information in a Database . 499

Querying a Database by Using ADO.NET . 499
The Northwind Database . 500
Creating the Database . 500
Using ADO.NET to Query Order Information . 503

Querying a Database by Using DLINQ. 512
Defi ning an Entity Class . 512
Creating and Running a DLINQ Query. 514
Deferred and Immediate Fetching . 516
Joining Tables and Creating Relationships . 517
Deferred and Immediate Fetching Revisited. 521
Defi ning a Custom DataContext Class . 522
Using DLINQ to Query Order Information . 523

Chapter 25 Quick Reference. 527

xiv Table of Contents
 26 Displaying and Editing Data by Using Data Binding 529
Using Data Binding with DLINQ . 529
Using DLINQ to Modify Data . 544

Updating Existing Data . 544
Handling Confl icting Updates . 545
Adding and Deleting Data . 548

Chapter 26 Quick Reference. 556

Part VI Building Web Applications
 27 Introducing ASP.NET . 559

Understanding the Internet as an Infrastructure . 560
Understanding Web Server Requests and Responses 560
Managing State . 561
Understanding ASP.NET . 561

Creating Web Applications with ASP.NET . 563
Building an ASP.NET Application. 564
Understanding Server Controls . 575
Creating and Using a Theme . 582

Chapter 27 Quick Reference. 586

 28 Understanding Web Forms Validation Controls. 587
Comparing Server and Client Validations . 587

Validating Data at the Web Server . 588
Validating Data in the Web Browser. 588
Implementing Client Validation. 589

Chapter 28 Quick Reference. 596

 29 Protecting a Web Site and Accessing Data with
Web Forms. 597

Managing Security . 597
Understanding Forms-Based Security . 598
Implementing Forms-Based Security . 598

Querying and Displaying Data. 605
Understanding the Web Forms GridView Control 605
Displaying Customer and Order History Information 606
Paging Data . 611

xv
 Table of Contents

Editing Data. 612
Updating Rows Through a GridView Control . 612

Navigating Between Forms . 614
Chapter 29 Quick Reference. 621

 30 Creating and Using a Web Service . 623
What Is a Web Service? . 623

The Role of SOAP. 624
What Is the Web Services Description Language? 625
Nonfunctional Requirements of Web Services . 625
The Role of Windows Communication Foundation 627

Building a Web Service . 627
Creating the ProductsService Web Service . 628

Web Services, Clients, and Proxies . 637
Talking SOAP: The Diffi cult Way . 637
Talking SOAP: The Easy Way . 637
Consuming the ProductsService Web Service . 638

Chapter 30 Quick Reference. .644

 Index . 645
www.microsoft.com/learning/booksurvey

Microsoft is interested in hearing your feedback so we can continually improve our books and

learning resources for you. To participate in a brief online survey, please visit:

What do you think of this book? We want to hear from you!

Acknowledgments
An old Latin proverb says “Tempora mutantur, nos et mutantur in illis,” which roughly

 translates into English as “Times change, and we change with them.” This proverb has a

quaint, sedate feel and was obviously penned before the Romans had heard of Microsoft,

Windows, the .NET Framework, and C#; otherwise, they would have written something more

like “Times change, and we run like mad trying to keep up!” When I look back over the last

seven or eight years, I am absolutely fl abbergasted to see how much the .NET Framework,

and the C# language in particular, has evolved. I am also very thankful, because it keeps me

in gainful employment, performing biannual updates on this book. I am not complaining

because the .NET Framework is a superb platform for building applications and services, and

I thank the visionaries in the various product groups at Microsoft who have dedicated sev-

eral millennia of person-years of effort in its development. In my opinion, C# is the greatest

 vehicle for taking full advantage of the .NET Framework. I have thoroughly enjoyed watching

its development and learning the new features that each new release provides. This book is

my attempt to convey my enthusiasm for the language to other programmers who are just

starting along the C# path of discovery.

As with all projects of this type, writing a book is a group effort. The team I have had

the pleasure of working with at Microsoft Press is second to none. In particular, I would

like to single out Lynn Finnel who has kept the faith in me over several editions of this

book, Christina Palaia and Jennifer Harris for their thorough editing of my manuscripts,

and Stephen Sagman who has worked like a Trojan keeping us all in order and on sched-

ule. I must pay special thanks to Kurt Meyer for his sterling efforts in reviewing my work,

 correcting my mistakes, and suggesting modifi cations, and of course to Jon Jagger who

 coauthored the fi rst edition of this book with me back in 2001.

My long-suffering family have been wonderful, as they always are. Diana is now familiar

with terms such as “DLINQ” and “lambda expression” and throws them into conversation

with effortless aplomb. (For example, “Will you ever stop talking about DLINQ and lambda

 expressions?”) James is still convinced that I spend my life playing computer games rather

than working. Francesca has developed a frowning nod that says, “I have no idea what you

are talking about, but I will nod anyway in the hope that you might stop.” And Ginger, my

arch-competitor for the chair in my study, has tried her best to completely distract me and

delay my efforts in the ways that only a cat can.

As ever, “Up the Gills!”

 —John Sharp
 xvii

Introduction
Microsoft Visual C# is a powerful but simple language aimed primarily at developers creating

applications by using the Microsoft .NET Framework. It inherits many of the best features of

C++ and Microsoft Visual Basic but few of the inconsistencies and anachronisms, resulting in

a cleaner and more logical language. With the advent of C# 2.0 in 2005, several important

new features were added to the language, including generics, iterators, and anonymous

methods. C# 3.0, available as part of Microsoft Visual Studio 2008, adds further features,

such as extension methods, lambda expressions, and, most famously of all, the Language

Integrated Query facility, or LINQ. The development environment provided by Visual Studio

2008 makes these powerful features easy to use, and the many new wizards and enhance-

ments included in Visual Studio 2008 can greatly improve your productivity as a developer.

Who This Book Is For
The aim of this book is to teach you the fundamentals of programming with C# by using

Visual Studio 2008 and the .NET Framework version 3.5. You will learn the features of the C#

language, and then use them to build applications running on the Microsoft Windows oper-

ating system. By the time you complete this book, you will have a thorough understanding

of C# and will have used it to build Windows Presentation Foundation (WPF) applications,

access Microsoft SQL Server databases, develop ASP.NET Web applications, and build and

consume a Windows Communication Foundation service.

Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas. You can use

this book if you are new to programming or if you are switching from another programming

language such as C, C++, Sun Microsystems Java, or Visual Basic. Use the following table to

fi nd your best starting point.
 xix

xx Introduction
If you are Follow these steps

New to object-oriented

 programming

 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.”

 2. Work through the chapters in Parts I, II, and III sequentially.

 3. Complete Parts IV, V, and VI as your level of experience and

interest dictates.

Familiar with procedural

 programming languages such

as C, but new to C#

 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.” Skim the fi rst fi ve

chapters to get an overview of C# and Visual Studio 2008, and

then concentrate on Chapters 6 through 21.

 2. Complete Parts IV, V, and VI as your level of experience and

interest dictates.

Migrating from an object-

oriented language such as C++

or Java

 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.”

 2. Skim the fi rst seven chapters to get an overview of C# and

Visual Studio 2008, and then concentrate on Chapters 8

through 21.

 3. For information about building Windows-based applications

and using a database, read Parts IV and V.

 4. For information about building Web applications and Web

services, read Part VI.

Switching from Visual Basic 6 1. Install the practice fi les as described in the next section,

“Installing and Using the Practice Files.”

 2. Work through the chapters in Parts I, II, and III sequentially.

 3. For information about building Windows-based applications,

read Part IV.

 4. For information about accessing a database, read Part V.

 5. For information about creating Web applications and Web

services, read Part VI.

 6. Read the Quick Reference sections at the end of the chapters

for information about specifi c C# and Visual Studio 2008 con-

structs.

Referencing the book after

 working through the exercises

 1. Use the index or the table of contents to fi nd information

about particular subjects.

 2. Read the Quick Reference sections at the end of each chapter

to fi nd a brief review of the syntax and techniques presented

in the chapter.

 Introduction xxi
Conventions and Features in This Book
This book presents information using conventions designed to make the information

 readable and easy to follow. Before you start, read the following list, which explains

 conventions you’ll see throughout the book and points out helpful features that you

might want to use.

Conventions
 Each exercise is a series of tasks. Each task is presented as a series of numbered steps

(1, 2, and so on). A round bullet (•) indicates an exercise that has only one step.

 Notes labeled “tip” provide additional information or alternative methods for

 completing a step successfully.

 Notes labeled “important” alert you to information you need to check before

continuing.

 Text that you type appears in bold.

 A plus sign (+) between two key names means that you must press those keys at the

same time. For example, “Press Alt+Tab” means that you hold down the Alt key while

you press the Tab key.

Other Features
 Sidebars throughout the book provide more in-depth information about the exercise.

The sidebars might contain background information, design tips, or features related to

the information being discussed.

 Each chapter ends with a Quick Reference section. The Quick Reference section

 contains quick reminders of how to perform the tasks you learned in the chapter.

System Requirements
You’ll need the following hardware and software to complete the practice exercises in

this book:

 Windows Vista Home Premium Edition, Windows Vista Business Edition, or Windows

Vista Ultimate Edition. The exercises will also run using Microsoft Windows XP

Professional Edition with Service Pack 2

xxii Introduction
Important If you are using Windows XP, some of the dialog boxes and screen shots described

in this book might look a little different from those that you see. This is because of differences in

the user interface in the Windows Vista operating system and the way in which Windows Vista

manages security.

 Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,

or Microsoft Visual C# 2008 Express Edition and Microsoft Visual Web Developer 2008

Express Edition

 Microsoft SQL Server 2005 Express Edition, Service Pack 2

 1.6-GHz Pentium III+ processor, or faster

 1 GB of available, physical RAM

 Video (800 × 600 or higher resolution) monitor with at least 256 colors

 CD-ROM or DVD-ROM drive

 Microsoft mouse or compatible pointing device

You will also need to have Administrator access to your computer to confi gure SQL

Server 2005 Express Edition and to perform the exercises.

Code Samples
The companion CD inside this book contains the code samples that you’ll use as you perform

the exercises. By using the code samples, you won’t waste time creating fi les that aren’t rel-

evant to the exercise. The fi les and the step-by-step instructions in the lessons also let you

learn by doing, which is an easy and effective way to acquire and remember new skills.

Installing the Code Samples
Follow these steps to install the code samples and required software on your computer so

that you can use them with the exercises.

 1. Remove the companion CD from the package inside this book and insert it into your

CD-ROM drive.

Note An end-user license agreement should open automatically. If this agreement does not

 appear, open My Computer on the desktop or Start menu, double-click the icon for your

CD-ROM drive, and then double-click StartCD.exe.

 Introduction xxiii

 2. Review the end-user license agreement. If you accept the terms, select the accept

 option, and then click Next.

A menu will appear with options related to the book.

 3. Click Install Code Samples.

 4. Follow the instructions that appear.

The code samples are installed to the following location on your computer:

Documents\Microsoft Press\Visual CSharp Step By Step

Using the Code Samples
Each chapter in this book explains when and how to use any code samples for that chapter.

When it’s time to use a code sample, the book will list the instructions for how to open

the fi les.

Important The code samples have been tested by using an account that is a member of the

local Administrators group. It is recommended that you perform the exercises by using an

account that has Administrator rights.

For those of you who like to know all the details, here’s a list of the code sample Visual

Studio 2008 projects and solutions, grouped by the folders where you can fi nd them.

Project Description

Chapter 1

TextHello This project gets you started. It steps through the creation of a

simple program that displays a text-based greeting.

WPFHello This project displays the greeting in a window by using Windows

Presentation Foundation.

Chapter 2

PrimitiveDataTypes This project demonstrates how to declare variables by using each of

the primitive types, how to assign values to these variables, and how

to display their values in a window.

MathsOperators This program introduces the arithmetic operators (+ – * / %).

xxiv Introduction
Project Description

Chapter 3

Methods In this project, you’ll reexamine the code in the previous project and

investigate how it uses methods to structure the code.

DailyRate This project walks you through writing your own methods, running

the methods, and stepping through the method calls by using the

Visual Studio 2008 debugger.

Chapter 4

Selection This project shows how to use a cascading if statement to

 implement complex logic, such as comparing the equivalence of

two dates.

SwitchStatement This simple program uses a switch statement to convert characters

into their XML representations.

Chapter 5

WhileStatement This project uses a while statement to read the contents of a source

fi le one line at a time and display each line in a text box on a form.

DoStatement This project uses a do statement to convert a decimal number to its

octal representation.

Chapter 6

MathsOperators This project reexamines the MathsOperators project from Chapter 2,

“Working with Variables, Operators, and Expressions,” and causes

various unhandled exceptions to make the program fail. The try and

catch keywords then make the application more robust so that it no

longer fails.

Chapter 7

Classes This project covers the basics of defi ning your own classes, complete

with public constructors, methods, and private fi elds. It also shows

how to create class instances by using the new keyword and how to

defi ne static methods and fi elds.

Chapter 8

Parameters This program investigates the difference between value parameters

and reference parameters. It demonstrates how to use the ref and

out keywords.

Chapter 9

StructsAndEnums This project defi nes a struct type to represent a calendar date.

 Introduction xxv
Project Description

Chapter 10

Cards This project uses the ArrayList collection class to group together

playing cards in a hand.

Chapter 11

ParamsArrays This project demonstrates how to use the params keyword to create

a single method that can accept any number of int arguments.

Chapter 12

Vehicles This project creates a simple hierarchy of vehicle classes by using

inheritance. It also demonstrates how to defi ne a virtual method.

ExtensionMethod This project shows how to create an extension method for the int
type, providing a method that converts an integer value from base

10 to a different number base.

Chapter 13

Tokenizer This project uses a hierarchy of interfaces and classes to simulate

both reading a C# source fi le and classifying its contents into vari-

ous kinds of tokens (identifi ers, keywords, operators, and so on). As

an example of use, it also derives classes from the key interfaces to

display the tokens in a rich text box in color syntax.

Chapter 14

UsingStatement This project revisits a small piece of code from Chapter 5, “Using

Compound Assignment and Iteration Statements,” and reveals

that it is not exception-safe. It shows you how to make the code

 exception-safe with a using statement.

Chapter 15

WindowProperties This project presents a simple Windows application that uses

several properties to display the size of its main window. The display

updates automatically as the user resizes the window.

AutomaticProperties This project shows how to create automatic properties for a class

and use them to initialize instances of the class.

Chapter 16

Indexers This project uses two indexers: one to look up a person’s phone

number when given a name, and the other to look up a person’s

name when given a phone number.

Chapter 17
Delegates This project displays the time in digital format by using delegate

callbacks. The code is then simplifi ed by using events.

xxvi Introduction
Project Description

Chapter 18

BinaryTree This solution shows you how to use generics to build a typesafe

structure that can contain elements of any type.

BuildTree This project demonstrates how to use generics to implement a

 typesafe method that can take parameters of any type.

Chapter 19

BinaryTree This project shows you how to implement the generic

IEnumerator<T> interface to create an enumerator for the generic

BinaryTree class.

IteratorBinaryTree This solution uses an iterator to generate an enumerator for the

 generic BinaryTree class.

Chapter 20

QueryBinaryTree This project shows how to use LINQ queries to retrieve data from a

binary tree object.

Chapter 21

Operators This project builds three structs, called Hour, Minute, and Second,

that contain user-defi ned operators. The code is then simplifi ed by

using a conversion operator.

Chapter 22

BellRingers This project is a Windows Presentation Foundation application

 demonstrating how to defi ne styles and use basic WPF controls.

Chapter 23

BellRingers This project is an extension of the application created in Chapter 22,

“Introducing Windows Presentation Foundation,” but with drop-

down and pop-up menus added to the user interface.

Chapter 24

CustomerDetails This project demonstrates how to implement business rules

for validating user input in a WPF application using customer

 information as an example.

Chapter 25

ReportOrders This project shows how to access a database by using ADO.NET

code. The application retrieves information from the Orders table in

the Northwind database.

DLINQOrders This project shows how to use DLINQ to access a database and re-

trieve information from the Orders table in the Northwind database.

 Introduction xxvii

Project Description

Chapter 26

Suppliers This project demonstrates how to use data binding with a WPF

 application to display and format data retrieved from a database

in controls on a WPF form. The application also enables the user

to modify information in the Products table in the Northwind

 database.

Chapter 27

Litware This project creates a simple Microsoft ASP.NET Web site that

 enables the user to input information about employees working for

a fi ctitious software development company.

Chapter 28

Litware This project is an extended version of the Litware project from the

previous chapter and shows how to validate user input in an ASP.

NET Web application.

Chapter 29

Northwind This project shows how to use Forms-based security for

 authenticating the user. The application also demonstrates how to

use ADO.NET from an ASP.NET Web form, showing how to query

and update a database in a scalable manner, and how to create

 applications that span multiple Web forms.

Chapter 30

NorthwindServices This project implements a Windows Communication Foundation

Web service, providing remote access across the Internet to data in

the Products table in the Northwind database.

Uninstalling the Code Samples
Follow these steps to remove the code samples from your computer.

1. In Control Panel, open Add or Remove Programs.

2. From the list of Currently Installed Programs, select Microsoft Visual C# 2008 Step

by Step.

3. Click Remove.

4. Follow the instructions that appear to remove the code samples.

xxviii Introduction
Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the

companion CD. As corrections or changes are collected, they will be added to a Microsoft

Knowledge Base article.

Microsoft Press provides support for books and companion CDs at the following Web site:

http://www.microsoft.com/learning/support/books/

Questions and Comments
If you have comments, questions, or ideas regarding the book or the companion CD, or

questions that are not answered by visiting the site above, please send them to Microsoft

Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft Visual C# 2008 Step by Step Series Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the

above addresses.

Microsoft Visual C# 2008 Step by Step

Part I

Introducing Microsoft Visual C#
and Microsoft Visual Studio 2008

In this part:
Chapter 1. Welcome to C#. 3
Chapter 2. Working with Variables, Operators, and Expressions 29
Chapter 3. Writing Methods and Applying Scope. 49
Chapter 4. Using Decision Statements. 67
Chapter 5. Using Compound Assignment and Iteration Statements 85
Chapter 6. Managing Errors and Exceptions . 103
 1

Chapter 1

Welcome to C#
 After completing this chapter, you will be able to:

 Use the Microsoft Visual Studio 2008 programming environment.

 Create a C# console application.

 Explain the purpose of namespaces.

 Create a simple graphical C# application.

 Microsoft Visual C# is Microsoft’s powerful component-oriented language. C# plays an

important role in the architecture of the Microsoft .NET Framework, and some people have

drawn comparisons to the role that C played in the development of UNIX. If you already

know a language such as C, C++, or Java, you’ll fi nd the syntax of C# reassuringly familiar. If

you are used to programming in other languages, you should soon be able to pick up the

syntax and feel of C#; you just need to learn to put the braces and semicolons in the right

place. Hopefully, this is just the book to help you!

 In Part I, you’ll learn the fundamentals of C#. You’ll discover how to declare variables and

how to use arithmetic operators such as the plus sign (+) and minus sign (–) to manipulate the

values in variables. You’ll see how to write methods and pass arguments to methods. You’ll

also learn how to use selection statements such as if and iteration statements such as while.

Finally, you’ll understand how C# uses exceptions to handle errors in a graceful, easy-to-use

manner. These topics form the core of C#, and from this solid foundation, you’ll progress to

more advanced features in Part II through Part VI.

Beginning Programming with the Visual Studio 2008
Environment

 Visual Studio 2008 is a tool-rich programming environment containing all the functionality

you need to create large or small C# projects. You can even create projects that seamlessly

combine modules compiled using different programming languages. In the fi rst exercise, you

start the Visual Studio 2008 programming environment and learn how to create a console

application.

 Note A console application is an application that runs in a command prompt window, rather

than providing a graphical user interface.
 3

4 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create a console application in Visual Studio 2008

 If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following operations to start Visual Studio 2008:

1. On the Microsoft Windows task bar, click the Start button, point to All Programs,
and then point to the Microsoft Visual Studio 2008 program group.

2. In the Microsoft Visual Studio 2008 program group, click Microsoft Visual Studio
2008.

 Visual Studio 2008 starts, like this:

Note If this is the fi rst time you have run Visual Studio 2008, you might see a dialog box

prompting you to choose your default development environment settings. Visual Studio

2008 can tailor itself according to your preferred development language. The various dia-

log boxes and tools in the integrated development environment (IDE) will have their de-

fault selections set for the language you choose. Select Visual C# Development Settings
from the list, and then click the Start Visual Studio button. After a short delay, the Visual

Studio 2008 IDE appears.

 If you are using Visual C# 2008 Express Edition, on the Microsoft Windows task bar,

click the Start button, point to All Programs, and then click Microsoft Visual C# 2008
Express Edition.

Create a console application in Visual Studio 2008

 Chapter 1 Welcome to C# 5

 Visual C# 2008 Express Edition starts, like this:

 Note To avoid repetition, throughout this book, I simply state, “Start Visual Studio” when

you need to open Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional

Edition, or Visual C# 2008 Express Edition. Additionally, unless explicitly stated, all refer-

ences to Visual Studio 2008 apply to Visual Studio 2008 Standard Edition, Visual Studio

2008 Professional Edition, and Visual C# 2008 Express Edition.

 If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following tasks to create a new console application.

1. On the File menu, point to New, and then click Project.

 The New Project dialog box opens. This dialog box lists the templates that you

can use as a starting point for building an application. The dialog box categorizes

templates according to the programming language you are using and the type of

application.

2. In the Project types pane, click Visual C#. In the Templates pane, click the Console
Application icon.

6 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

3. In the Location fi eld, if you are using the Windows Vista operating system, type

C:\Users\YourName\Documents\Microsoft Press\Visual CSharp Step By
Step\Chapter 1. If you are using Microsoft Windows XP or Windows Server 2003,

type C:\Documents and Settings\YourName\My Documents\Microsoft
Press\Visual CSharp Step by Step\Chapter 1.

 Replace the text YourName in these paths with your Windows user name.

 Note To save space throughout the rest of this book, I will simply refer to the path “C:\

Users\YourName\Documents” or “C:\Documents and Settings\YourName\My Documents”

as your Documents folder.

 Tip If the folder you specify does not exist, Visual Studio 2008 creates it for you.

4. In the Name fi eld, type TextHello.

5. Ensure that the Create directory for solution check box is selected, and then click

OK.

 If you are using Visual C# 2008 Express Edition, the New Project dialog box won’t allow

you to specify the location of your project fi les; it defaults to the C:\Users\YourName\

AppData\Local\Temporary Projects folder. Change it by using the following procedure:

1. On the Tools menu, click Options.

2. In the Options dialog box, turn on the Show All Settings check box, and then click

Projects and Solutions in the tree view in the left pane.

3. In the right pane, in the Visual Studio projects location text box, specify the

Microsoft Press\Visual CSharp Step By Step\Chapter 1 folder under your

Documents folder.

4. Click OK.

 If you are using Visual C# 2008 Express Edition, perform the following tasks to create a

new console application.

1. On the File menu, click New Project.

2. In the New Project dialog box, click the Console Application icon.

3. In the Name fi eld, type TextHello.

4. Click OK.

 Chapter 1 Welcome to C# 7
 Visual Studio creates the project using the Console Application template and displays the

starter code for the project, like this:

 The menu bar at the top of the screen provides access to the features you’ll use in the pro-

gramming environment. You can use the keyboard or the mouse to access the menus and

commands exactly as you can in all Windows-based programs. The toolbar is located beneath

the menu bar and provides button shortcuts to run the most frequently used commands.

The Code and Text Editor window occupying the main part of the IDE displays the contents of

source fi les. In a multi-fi le project, when you edit more than one fi le, each source fi le has its

own tab labeled with the name of the source fi le. You can click the tab to bring the named

source fi le to the foreground in the Code and Text Editor window. The Solution Explorer dis-

plays the names of the fi les associated with the project, among other items. You can also

double-click a fi le name in the Solution Explorer to bring that source fi le to the foreground in

the Code and Text Editor window.

 Before writing the code, examine the fi les listed in the Solution Explorer, which Visual Studio

2008 has created as part of your project:

 Solution ‘TextHello’ This is the top-level solution fi le, of which there is one per appli-

cation. If you use Windows Explorer to look at your Documents\Microsoft Press\Visual

CSharp Step by Step\Chapter 1\TextHello folder, you’ll see that the actual name of this

fi le is TextHello.sln. Each solution fi le contains references to one or more project fi les.

8 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 TextHello This is the C# project fi le. Each project fi le references one or more fi les con-

taining the source code and other items for the project. All the source code in a single

project must be written in the same programming language. In Windows Explorer, this

fi le is actually called TextHello.csproj, and it is stored in your \My Documents\Microsoft

Press\Visual CSharp Step by Step\Chapter 1\TextHello\TextHello folder.

 Properties This is a folder in the TextHello project. If you expand it, you will see that it

contains a fi le called AssemblyInfo.cs. AssemblyInfo.cs is a special fi le that you can use

to add attributes to a program, such as the name of the author, the date the program

was written, and so on. You can specify additional attributes to modify the way in which

the program runs. Learning how to use these attributes is outside the scope of this

book.

 References This is a folder that contains references to compiled code that your ap-

plication can use. When code is compiled, it is converted into an assembly and given

a unique name. Developers use assemblies to package useful bits of code they have

written so they can distribute it to other developers who might want to use the code in

their applications. Many of the features that you will be using when writing applications

using this book make use of assemblies provided by Microsoft with Visual Studio 2008.

 Program.cs This is a C# source fi le and is the one currently displayed in the Code and

Text Editor window when the project is fi rst created. You will write your code for the

console application in this fi le. It also contains some code that Visual Studio 2008 pro-

vides automatically, which you will examine shortly.

Writing Your First Program
 The Program.cs fi le defi nes a class called Program that contains a method called Main. All

methods must be defi ned inside a class. You will learn more about classes in Chapter 7,

“Creating and Managing Classes and Objects.” The Main method is special—it designates

the program’s entry point. It must be a static method. (You will look at methods in detail in

Chapter 3, “Writing Methods and Applying Scope,” and I discuss static methods in Chapter 7.)

 Important C# is a case-sensitive language. You must spell Main with a capital M.

 In the following exercises, you’ll write the code to display the message Hello World in the

console; you’ll build and run your Hello World console application; and you’ll learn how

namespaces are used to partition code elements.

 Chapter 1 Welcome to C# 9

Write the code by using IntelliSense

1. In the Code and Text Editor window displaying the Program.cs fi le, place the cursor in

the Main method immediately after the opening brace, {, and then press Enter to cre-

ate a new line. On the new line, type the word Console, which is the name of a built-

in class. As you type the letter C at the start of the word Console, an IntelliSense list

appears. This list contains all of the C# keywords and data types that are valid in this

context. You can either continue typing or scroll through the list and double-click the

Console item with the mouse. Alternatively, after you have typed Con, the IntelliSense

list will automatically home in on the Console item and you can press the Tab or Enter

key to select it.

 Main should look like this:

static void Main(string[] args)
{
 Console
}

 Note Console is a built-in class that contains the methods for displaying messages on the

screen and getting input from the keyboard.

2. Type a period immediately after Console. Another IntelliSense list appears, displaying

the methods, properties, and fi elds of the Console class.

3. Scroll down through the list, select WriteLine, and then press Enter. Alternatively, you

can continue typing the characters W, r, i, t, e, L until WriteLine is selected, and then

press Enter.

The IntelliSense list closes, and the word WriteLine is added to the source fi le. Main
should now look like this:

static void Main(string[] args)
{
 Console.WriteLine
}

4. Type an opening parenthesis , (. Another IntelliSense tip appears.

 This tip displays the parameters that the WriteLine method can take. In fact, WriteLine is

an overloaded method, meaning that the Console class contains more than one method

named WriteLine—it actually provides 19 different versions of this method. Each ver-

sion of the WriteLine method can be used to output different types of data. (Chapter 3

describes overloaded methods in more detail.) Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(
}

Write the code by using IntelliSense

10 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Tip You can click the up and down arrows in the tip to scroll through the different

overloads of WriteLine.

5. Type a closing parenthesis,) followed by a semicolon, ;.

 Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine();
}

6. Move the cursor, and type the string “Hello World”, including the quotation marks,

between the left and right parentheses following the WriteLine method.

 Main should now look like this:

static void Main(string[] args)
{
 Console.WriteLine(“Hello World”);
}

 Tip Get into the habit of typing matched character pairs, such as (and) and { and }, before fi lling

in their contents. It’s easy to forget the closing character if you wait until after you’ve entered the

contents.

IntelliSense Icons
 When you type a period after the name of a class, IntelliSense displays the name of

every member of that class. To the left of each member name is an icon that depicts

the type of member. Common icons and their types include the following:

 Icon Meaning

method (discussed in Chapter 3)

property (discussed in Chapter 15)

class (discussed in Chapter 7)

struct (discussed in Chapter 9)

enum (discussed in Chapter 9)

 Chapter 1 Welcome to C# 11

Icon Meaning

interface (discussed in Chapter 13)

delegate (discussed in Chapter 17)

extension method (discussed in Chapter 12)

You will also see other IntelliSense icons appear as you type code in different contexts.

Note You will frequently see lines of code containing two forward slashes followed by ordinary

text. These are comments. They are ignored by the compiler but are very useful for developers

because they help document what a program is actually doing. For example:

Console.ReadLine(); // Wait for the user to press the Enter key

The compiler will skip all text from the two slashes to the end of the line. You can also add

multiline comments that start with a forward slash followed by an asterisk (/*). The compiler will

skip everything until it fi nds an asterisk followed by a forward slash sequence (*/), which could

be many lines lower down. You are actively encouraged to document your code with as many

meaningful comments as necessary.

Build and run the console application

 1. On the Build menu, click Build Solution.

 This action compiles the C# code, resulting in a program that you can run. The Output
window appears below the Code and Text Editor window.

Tip If the Output window does not appear, on the View menu, click Output to display it.

In the Output window, you should see messages similar to the following indicating how

the program is being compiled.

------ Build started: Project: TextHello, Configuration: Debug Any CPU ----
C:\Windows\Microsoft.NET\Framework\v3.5\Csc.exe /config /nowarn:1701;1702 …
Compile complete -- 0 errors, 0 warnings
TextHello -> C:\Documents and Settings\John\My Documents\Microsoft Press\…
========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ========

If you have made some mistakes, they will appear in the Error List window. The

following image shows what happens if you forget to type the closing quotation marks

Build and run the console application

12 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
after the text Hello World in the WriteLine statement. Notice that a single mistake can

sometimes cause multiple compiler errors.

 Tip You can double-click an item in the Error List window, and the cursor will be placed

on the line that caused the error. You should also notice that Visual Studio displays a wavy

red line under any lines of code that will not compile when you enter them.

 If you have followed the previous instructions carefully, there should be no errors or

warnings, and the program should build successfully.

 Tip There is no need to save the fi le explicitly before building because the Build Solution

command automatically saves the fi le. If you are using Visual Studio 2008 Standard Edition

or Visual Studio 2008 Professional Edition, the project is saved in the location specifi ed

when you created it. If you are using Visual C# 2008 Express Edition, the project is saved in

a temporary location and is copied to the folder you specifi ed in the Options dialog box

only when you explicitly save the project by using the Save All command on the File menu

or when you close Visual C# 2008 Express Edition.

 An asterisk after the fi le name in the tab above the Code and Text Editor window indicates

that the fi le has been changed since it was last saved.

 Chapter 1 Welcome to C# 13
 2. On the Debug menu, click Start Without Debugging.

 A command window opens, and the program runs. The message Hello World appears,

and then the program waits for you to press any key, as shown in the following graphic:

 Note The prompt “Press any key to continue . . .” is generated by Visual Studio; you did

not write any code to do this. If you run the program by using the Start Debugging com-

mand on the Debug menu, the application runs, but the command window closes immedi-

ately without waiting for you to press a key.

 3. Ensure that the command window displaying the program’s output has the focus, and

then press Enter.

 The command window closes, and you return to the Visual Studio 2008 programming

environment.

 4. In Solution Explorer, click the TextHello project (not the solution), and then click the

Show All Files toolbar button on the Solution Explorer toolbar—this is the second

button from the left on the toolbar in the Solution Explorer window.

 Entries named bin and obj appear above the Program.cs fi le. These entries correspond

directly to folders named bin and obj in the project folder (Microsoft Press\Visual

CSharp Step by Step\Chapter 1\TextHello\TextHello). Visual Studio creates these folders

when you build your application, and they contain the executable version of the pro-

gram together with some other fi les used to build and debug the application.

 5. In Solution Explorer, click the plus sign (+) to the left of the bin entry.

 Another folder named Debug appears.

 Note You may also see a folder called Release.

14 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 6. In Solution Explorer, click the plus sign (+) to the left of the Debug folder.

 Four more items named TextHello.exe, TextHello.pdb, TextHello.vshost.exe, and

TextHello.vshost.exe.manifest appear, like this:

Show All Files

 Note If you are using Visual C# 2008 Express Edition, you might not see all of these fi les.

 The fi le TextHello.exe is the compiled program, and it is this fi le that runs when you

click Start Without Debugging on the Debug menu. The other fi les contain information

that is used by Visual Studio 2008 if you run your program in Debug mode (when you

click Start Debugging on the Debug menu).

Using Namespaces
 The example you have seen so far is a very small program. However, small programs can soon

grow into much bigger programs. As a program grows, two issues arise. First, it is harder to

understand and maintain big programs than it is to understand and maintain smaller pro-

grams. Second, more code usually means more names, more methods, and more classes. As

the number of names increases, so does the likelihood of the project build failing because

two or more names clash (especially when a program also uses third-party libraries written by

developers who have also used a variety of names).

 In the past, programmers tried to solve the name-clashing problem by prefi xing names with

some sort of qualifi er (or set of qualifi ers). This solution is not a good one because it’s not

scalable; names become longer, and you spend less time writing software and more time

typing (there is a difference) and reading and rereading incomprehensibly long names.

 Chapter 1 Welcome to C# 15
 Namespaces help solve this problem by creating a named container for other identifi ers, such

as classes. Two classes with the same name will not be confused with each other if they live

in different namespaces. You can create a class named Greeting inside the namespace named

TextHello, like this:

namespace TextHello
{
 class Greeting
 {
 ...
 }
}

 You can then refer to the Greeting class as TextHello.Greeting in your programs. If another

developer also creates a Greeting class in a different namespace, such as NewNamespace, and

installs it on your computer, your programs will still work as expected because they are using

the TextHello.Greeting class. If you want to refer to the other developer’s Greeting class, you

must specify it as NewNamespace.Greeting.

 It is good practice to defi ne all your classes in namespaces, and the Visual Studio 2008 en-

vironment follows this recommendation by using the name of your project as the top-level

namespace. The .NET Framework software development kit (SDK) also adheres to this rec-

ommendation; every class in the .NET Framework lives inside a namespace. For example,

the Console class lives inside the System namespace. This means that its full name is actually

System.Console.

 Of course, if you had to write the full name of a class every time you used it, the situation

would be no better than prefi xing qualifi ers or even just naming the class with some glob-

ally unique name such SystemConsole and not bothering with a namespace. Fortunately, you

can solve this problem with a using directive in your programs. If you return to the TextHello

program in Visual Studio 2008 and look at the fi le Program.cs in the Code and Text Editor
window, you will notice the following statements at the top of the fi le:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

 A using statement brings a namespace into scope. In subsequent code in the same fi le,

you no longer have to explicitly qualify objects with the namespace to which they belong.

The four namespaces shown contain classes that are used so often that Visual Studio 2008

automatically adds these using statements every time you create a new project. You can add

further using directives to the top of a source fi le.

 The following exercise demonstrates the concept of namespaces in more depth.

16 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Try longhand names

1. In the Code and Text Editor window displaying the Program.cs fi le, comment out the

fi rst using directive at the top of the fi le, like this:

//using System;

2. On the Build menu, click Build Solution.

The build fails, and the Error List window displays the following error message:

The name ’Console’ does not exist in the current context.

3. In the Error List window, double-click the error message.

 The identifi er that caused the error is selected in the Program.cs source fi le.

4. In the Code and Text Editor window, edit the Main method to use the fully qualifi ed

name System.Console.

 Main should look like this:

static void Main(string[] args)
{
 System.Console.WriteLine(“Hello World”);
}

 Note When you type System. the names of all the items in the System namespace are

displayed by IntelliSense.

5. On the Build menu, click Build Solution.

 The build should succeed this time. If it doesn’t, make sure that Main is exactly as it ap-

pears in the preceding code, and then try building again.

6. Run the application to make sure it still works by clicking Start Without Debugging on

the Debug menu.

Namespaces and Assemblies
 A using statement simply brings the items in a namespace into scope and frees you

from having to fully qualify the names of classes in your code. Classes are compiled into

assemblies. An assembly is a fi le that usually has the .dll fi le name extension, although

strictly speaking, executable programs with the .exe fi le name extension are also

assemblies.

Try longhand names

 Chapter 1 Welcome to C# 17
 An assembly can contain many classes. The classes that the .NET Framework class

library comprises, such as System.Console, are provided in assemblies that are installed

on your computer together with Visual Studio. You will fi nd that the .NET Framework

class library contains many thousands of classes. If they were all held in the same

assembly, the assembly would be huge and diffi cult to maintain. (If Microsoft updated

a single method in a single class, it would have to distribute the entire class library to all

developers!)

 For this reason, the .NET Framework class library is split into a number of assemblies,

partitioned by the functional area to which the classes they contain relate. For example,

there is a “core” assembly that contains all the common classes, such as System.Console,

and there are further assemblies that contain classes for manipulating databases, ac-

cessing Web services, building graphical user interfaces, and so on. If you want to make

use of a class in an assembly, you must add to your project a reference to that assem-

bly. You can then add using statements to your code that bring the items in namespac-

es in that assembly into scope.

 You should note that there is not necessarily a 1:1 equivalence between an assembly

and a namespace; a single assembly can contain classes for multiple namespaces, and a

single namespace can span multiple assemblies. This all sounds very confusing at fi rst,

but you will soon get used to it.

 When you use Visual Studio to create an application, the template you select auto-

matically includes references to the appropriate assemblies. For example, in Solution
Explorer for the TextHello project, click the plus sign (+) to the left of the References
folder. You will see that a Console application automatically includes references to as-

semblies called System, System.Core, System.Data, and System.Xml. You can add refer-

ences for additional assemblies to a project by right-clicking the References folder and

clicking Add Reference—you will practice performing this task in later exercises.

Creating a Graphical Application
 So far, you have used Visual Studio 2008 to create and run a basic Console application. The

Visual Studio 2008 programming environment also contains everything you need to create

graphical Windows-based applications. You can design the form-based user interface of a

Windows-based application interactively. Visual Studio 2008 then generates the program

statements to implement the user interface you’ve designed.

 Visual Studio 2008 provides you with two views of a graphical application: the design view

and the code view. You use the Code and Text Editor window to modify and maintain the

18 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
code and logic for a graphical application, and you use the Design View window to lay out

your user interface. You can switch between the two views whenever you want.

 In the following set of exercises, you’ll learn how to create a graphical application by using

Visual Studio 2008. This program will display a simple form containing a text box where you

can enter your name and a button that displays a personalized greeting in a message box

when you click the button.

Note Visual Studio 2008 provides two templates for building graphical applications—the

Windows Forms Application template and the WPF Application template. Windows Forms is a

technology that fi rst appeared with the .NET Framework version 1.0. WPF, or Windows

Presentation Foundation, is an enhanced technology that fi rst appeared with the .NET

Framework version 3.0. It provides many additional features and capabilities over Windows

Forms, and you should consider using it in preference to Windows Forms for all new

development.

Create a graphical application in Visual Studio 2008

 If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following operations to create a new graphical application:

 1. On the File menu, point to New, and then click Project.

 The New Project dialog box opens.

 2. In the Project Types pane, click Visual C#.

 3. In the Templates pane, click the WPF Application icon.

 4. Ensure that the Location fi eld refers to your Documents\Microsoft Press\Visual
CSharp Step by Step\Chapter 1 folder.

 5. In the Name fi eld, type WPFHello.

 6. In the Solution fi eld, ensure that Create new solution is selected.

 This action creates a new solution for holding the project. The alternative, Add to
Solution, adds the project to the TextHello solution.

 7. Click OK.

 If you are using Visual C# 2008 Express Edition, perform the following tasks to create a

new graphical application.

 1. On the File menu, click New Project.

 2. If the New Project message box appears, click Save to save your changes to

the TextHello project. In the Save Project dialog box, verify that the Location

fi eld is set to Microsoft Press\Visual CSharp Step By Step\Chapter 1 under your

Documents folder, and then click Save.

Create a graphical application in Visual Studio 2008

 Chapter 1 Welcome to C# 19

 3. In the New Project dialog box, click the WPF Application icon.

 4. In the Name fi eld, type WPFHello.

 5. Click OK.

 Visual Studio 2008 closes your current application and creates the new WPF application. It

displays an empty WPF form in the Design View window, together with another window con-

taining an XAML description of the form, as shown in the following graphic:

 Tip Close the Output and Error List windows to provide more space for displaying the Design
View window.

 XAML stands for Extensible Application Markup Language and is an XML-like language used

by WPF applications to defi ne the layout of a form and its contents. If you have knowledge of

XML, XAML should look familiar. You can actually defi ne a WPF form completely by writing

an XAML description if you don’t like using the Design View window of Visual Studio or if you

don’t have access to Visual Studio; Microsoft provides an XAML editor called XMLPad that

you can download free of charge from the MSDN Web site.

 In the following exercise, you’ll use the Design View window to add three controls to the

Windows form and examine some of the C# code automatically generated by Visual Studio

2008 to implement these controls.

20 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Create the user interface

1. Click the Toolbox tab that appears to the left of the form in the Design View window.

The Toolbox appears, partially obscuring the form, and displaying the various com-

ponents and controls that you can place on a Windows form. The Common section

displays a list of controls that are used by most WPF applications. The Controls section

displays a more extensive list of controls.

2. In the Common section, click Label, and then click the visible part of the form.

A label control is added to the form (you will move it to its correct location in a mo-

ment), and the Toolbox disappears from view.

Tip If you want the Toolbox to remain visible but not to hide any part of the form, click

the Auto Hide button to the right in the Toolbox title bar (it looks like a pin). The Toolbox
appears permanently on the left side of the Visual Studio 2008 window, and the Design
View window shrinks to accommodate it. (You may lose a lot of space if you have a low-

resolution screen.) Clicking the Auto Hide button once more causes the Toolbox to disap-

pear again.

3. The label control on the form is probably not exactly where you want it. You can click

and drag the controls you have added to a form to reposition them. Using this tech-

nique, move the label control so that it is positioned toward the upper-left corner of

the form. (The exact placement is not critical for this application.)

Note The XAML description of the form in the lower pane now includes the label control,

together with properties such as its location on the form, governed by the Margin prop-

erty. The Margin property consists of four numbers indicating the distance of each edge of

the label from the edges of the form. If you move the control around the form, the value

of the Margin property changes. If the form is resized, the controls anchored to the form’s

edges that move are resized to preserve their margin values. You can prevent this by set-

ting the Margin values to zero. You learn more about the Margin and also the Height and

Width properties of WPF controls in Chapter 22, “Introducing Windows Presentation

Foundation.”

4. On the View menu, click Properties Window.

 The Properties window appears on the lower-right side of the screen, under Solution
Explorer (if it was not already displayed). The Properties window provides another way

for you to modify the properties for items on a form, as well as other items in a project.

It is context sensitive in that it displays the properties for the currently selected item.

If you click the title bar of the form displayed in the Design View window, you can see

that the Properties window displays the properties for the form itself. If you click the

label control, the window displays the properties for the label instead. If you click any-

where else on the form, the Properties window displays the properties for a mysterious

Create the user interface

 Chapter 1 Welcome to C# 21

item called a grid. A grid acts as a container for items on a WPF form, and you can use

the grid, among other things, to indicate how items on the form should be aligned and

grouped together.

5. Click the label control on the form. In the Properties window, locate the Text section.

 By using the properties in this section, you can specify the font and font size for the

label but not the actual text that the label displays.

6. Change the FontSize property to 20, and then click the title bar of the form.

 The size of the text in the label changes, although the label is no longer big enough to

display the text. Change the FontSize property back to 12.

 Note The text displayed in the label might not resize itself immediately in the Design
View window. It will correct itself when you build and run the application, or if you close

and open the form in the Design View window.

7. Scroll the XAML description of the form in the lower pane to the right, and examine the

properties of the label control.

 The label control consists of a <Label> tag containing property values, followed by the

text for the label itself (“Label”), followed by a closing </Label> tag.

8. Change the text Label (just before the closing tag) to Please enter your name, as

shown in the following image.

22 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Notice that the text displayed in the label on the form changes, although the label is

still too small to display it correctly.

9. Click the form in the Design View window, and then display the Toolbox again.

 Note If you don’t click the form in the Design View window, the Toolbox displays the

message “There are no usable controls in this group.”

10. In the Toolbox, click TextBox, and then click the form. A text box control is added to the

form. Move the text box control so that it is directly underneath the label control.

 Tip When you drag a control on a form, alignment indicators appear automatically when

the control becomes aligned vertically or horizontally with other controls. This gives you a

quick visual cue for making sure that controls are lined up neatly.

11. While the text box control is selected, in the Properties window, change the value of the

Name property displayed at the top of the window to userName.

 Note You will learn more about naming conventions for controls and variables in

Chapter 2, “Working with Variables, Operators, and Expressions.”

12. Display the Toolbox again, click Button, and then click the form. Drag the button con-

trol to the right of the text box control on the form so that the bottom of the button is

aligned horizontally with the bottom of the text box.

13. Using the Properties window, change the Name property of the button control to ok.

14. In the XAML description of the form, scroll the text to the right to display the caption

displayed by the button, and change it from Button to OK. Verify that the caption of

the button control on the form changes.

15. Click the title bar of the Window1.xaml form in the Design View window. In the

Properties window, change the Title property to Hello.

16. In the Design View window, notice that a resize handle (a small square) appears on the

lower right-hand corner of the form when it is selected. Move the mouse pointer over

the resize handle. When the pointer changes to a diagonal double-headed arrow, click

and drag the pointer to resize the form. Stop dragging and release the mouse button

when the spacing around the controls is roughly equal.

 Important Click the title bar of the form and not the outline of the grid inside the form

before resizing it. If you select the grid, you will modify the layout of the controls on the

form but not the size of the form itself.

 Chapter 1 Welcome to C# 23

 Note If you make the form narrower, the OK button remains a fi xed distance from the

right-hand edge of the form, determined by its Margin property. If you make the form too

narrow, the OK button will overwrite the text box control. The right-hand margin of the

label is also fi xed, and the text for the label will start to disappear when the label shrinks as

the form becomes narrower.

 The form should now look similar to this:

17. On the Build menu, click Build Solution, and verify that the project builds successfully.

18. On the Debug menu, click Start Without Debugging.

 The application should run and display your form. You can type your name in the text

box and click OK, but nothing happens yet. You need to add some code to process the

Click event for the OK button, which is what you will do next.

19. Click the Close button (the X in the upper-right corner of the form) to close the form

and return to Visual Studio.

 You have managed to create a graphical application without writing a single line of C# code.

It does not do much yet (you will have to write some code soon), but Visual Studio actually

generates a lot of code for you that handles routine tasks that all graphical applications must

perform, such as starting up and displaying a form. Before adding your own code to the ap-

plication, it helps to have an understanding of what Visual Studio has generated for you.

24 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 In Solution Explorer, click the plus sign (+) beside the fi le Window1.xaml. The fi le Window1.

xaml.cs appears. Double-click the fi le Window1.xaml.cs. The code for the form is displayed in

the Code and Text Editor window. It looks like this:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;

namespace WPFHello
{
 /// <summary>
 /// Interaction logic for Window1.xaml
 /// </summary>

 public partial class Window1 : Window
 {

 public Window1()
 {
 InitializeComponent();
 }

 }
}

 Apart from a good number of using statements bringing into scope some namespaces that

most WPF applications use, the fi le contains the defi nition of a class called Window1 but not

much else. There is a little bit of code for the Window1 class known as a constructor that calls

a method called InitializeComponent, but that is all. (A constructor is a special method with

the same name as the class. It is executed when an instance of the class is created and can

contain code to initialize the instance. You will learn about constructors in Chapter 7.) In fact,

the application contains a lot more code, but most of it is generated automatically based

on the XAML description of the form, and it is hidden from you. This hidden code performs

operations such as creating and displaying the form, and creating and positioning the various

controls on the form.

 The purpose of the code that you can see in this class is so that you can add your own

methods to handle the logic for your application, such as what happens when the user clicks

the OK button.

 Chapter 1 Welcome to C# 25
 Tip You can also display the C# code fi le for a WPF form by right-clicking anywhere in the

Design View window and then clicking View Code.

 At this point you might well be wondering where the Main method is and how the form gets

displayed when the application runs; remember that Main defi nes the point at which the pro-

gram starts. In Solution Explorer, you should notice another source fi le called App.xaml. If you

double-click this fi le, the Design View window displays the message “Intentionally Left Blank,”

but the fi le has an XAML description. One property in the XAML code is called StartupUri,
and it refers to the Window1.xaml fi le as shown here:

 If you click the plus sign (+) adjacent to App.xaml in Solution Explorer, you will see that there

is also an Application.xaml.cs fi le. If you double-click this fi le, you will fi nd it contains the

following code:

using System;
using System.Collections.Generic;
using System.Configuration;
using System.Data;
using System.Linq;
using System.Windows;

26 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

namespace WPFHello
{
 /// <summary>
 /// Interaction logic for App.xaml
 /// </summary>

 public partial class App : Application
 {

 }
}

 Once again, there are a number of using statements, but not a lot else, not even a Main

method. In fact, Main is there, but it is also hidden. The code for Main is generated based on

the settings in the App.xaml fi le; in particular, Main will create and display the form specifi ed

by the StartupUri property. If you want to display a different form, you edit the App.xaml fi le.

 The time has come to write some code for yourself!

Write the code for the OK button

1. Click the Window1.xaml tab above the Code and Text Editor window to display

Window1 in the Design View window.

2. Double-click the OK button on the form.

The Window1.xaml.cs fi le appears in the Code and Text Editor window, but a new

method has been added called ok_Click. Visual Studio automatically generates code to

call this method whenever the user clicks the OK button. This is an example of an event,

and you will learn much more about how events work as you progress through this

book.

3. Add the code shown in bold type to the ok_Click method:

void ok_Click(object sender, RoutedEventArgs e)
{
 MessageBox.Show(“Hello “ + userName.Text);
}

This is the code that will run when the user clicks the OK button. Do not worry too

much about the syntax of this code just yet (just make sure you copy it exactly as

shown) because you will learn all about methods in Chapter 3. The interesting part is

the MessageBox.Show statement. This statement displays a message box containing

the text “Hello” with whatever name the user typed into the username text box on the

appended form.

4. Click the Window1.xaml tab above the Code and Text Editor window to display

Window1 in the Design View window again.

Write the code for the OK button

Chapter 1 Welcome to C# 27

5. In the lower pane displaying the XAML description of the form, examine the Button

element, but be careful not to change anything. Notice that it contains an element

called Click that refers to the ok_Click method:

<Button Height=”23” … Click=”ok_Click”>OK</Button>

6. On the Debug menu, click Start Without Debugging.

7. When the form appears, type your name in the text box, and then click OK. A message

box appears, welcoming you by name.

8. Click OK in the message box.

 The message box closes.

9. Close the form.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 2.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and

save the project.

28 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Chapter 1 Quick Reference
 To Do this Key combination

 Create a new console application
using Visual Studio 2008
Standard or Professional Edition

On the File menu, point to New, and then click
Project to open the New Project dialog box.
For the project type, select Visual C#. For the
template, select Console Application. Select a
directory for the project fi les in the Location
box. Choose a name for the project. Click OK.

 Create a new console application

using Visual C# 2008 Express

Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the

Visual Studio projects location box, specify a

directory for the project fi les.

On the File menu, click New Project to open the

New Project dialog box. For the template, select

Console Application. Choose a name for the

project. Click OK.

 Create a new graphical application

using Visual Studio 2008 Standard

or Professional Edition

On the File menu, point to New, and then click

Project to open the New Project dialog box. For

the project type, select Visual C#. For the template,

select WPF Application. Select a directory for the

project fi les in the Location box. Choose a name for

the project. Click OK.

 Create a new graphical application

using Visual C# 2008 Express

Edition

On the Tools menu, click Options. In the Options
dialog box, click Projects and Solutions. In the

Visual Studio projects location box, specify a

directory for the project fi les.

On the File menu, click New Project to open the

New Project dialog box. For the template, select

WPF Application. Choose a name for the project.

Click OK.

 Build the application On the Build menu, click Build Solution. F6

 Run the application On the Debug menu, click Start Without
Debugging.

Ctrl+F5

Chapter 2

Working with Variables, Operators,
and Expressions

 After completing this chapter, you will be able to:

 Understand statements, identifi ers, and keywords.

 Use variables to store information.

 Work with primitive data types.

 Use arithmetic operators such as the plus sign (+) and the minus sign (–).

 Increment and decrement variables.

 In Chapter 1, “Welcome to C#,” you learned how to use the Microsoft Visual Studio 2008

programming environment to build and run a Console program and a Windows Presentation

Foundation (WPF) application. In this chapter, you are introduced to the elements of

Microsoft Visual C# syntax and semantics, including statements, keywords, and identifi ers.

You’ll study the primitive types that are built into the C# language and the characteristics of

the values that each type holds. You’ll also see how to declare and use local variables (vari-

ables that exist only in a method or other small section of code), learn about the arithmetic

operators that C# provides, fi nd out how to use operators to manipulate values, and learn

how to control expressions containing two or more operators.

Understanding Statements
 A statement is a command that performs an action. You combine statements to create

methods. You’ll learn more about methods in Chapter 3, “Writing Methods and Applying

Scope,” but for now, think of a method as a named sequence of statements. Main, which was

introduced in the previous chapter, is an example of a method. Statements in C# follow a

well-defi ned set of rules describing their format and construction. These rules are collectively

known as syntax. (In contrast, the specifi cation of what statements do is collectively known as

semantics.) One of the simplest and most important C# syntax rules states that you must ter-

minate all statements with a semicolon. For example, without its terminating semicolon, the

following statement won’t compile:

Console.WriteLine(“Hello World”);
 29

30 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 Tip C# is a “free format” language, which means that white space, such as a space character or a

newline, is not signifi cant except as a separator. In other words, you are free to lay out your state-

ments in any style you choose. However, you should adopt a simple, consistent layout style and

keep to it to make your programs easier to read and understand.

 The trick to programming well in any language is learning the syntax and semantics of the

language and then using the language in a natural and idiomatic way. This approach makes

your programs more easily maintainable. In the chapters throughout this book, you’ll see

examples of the most important C# statements.

Using Identifi ers
 Identifi ers are the names you use to identify the elements in your programs, such as

namespaces, classes, methods, and variables (you will learn about variables shortly). In C#,

you must adhere to the following syntax rules when choosing identifi ers:

 You can use only letters (uppercase and lowercase), digits, and underscore characters.

 An identifi er must start with a letter (an underscore is considered a letter).

 For example, result, _score, footballTeam, and plan9 are all valid identifi ers, whereas result%,

footballTeam$, and 9plan are not.

 Important C# is a case-sensitive language: footballTeam and FootballTeam are not the same

identifi er.

Identifying Keywords
 The C# language reserves 77 identifi ers for its own use, and you cannot reuse these identi-

fi ers for your own purposes. These identifi ers are called keywords, and each has a particular

meaning. Examples of keywords are class, namespace, and using. You’ll learn the meaning of

most of the C# keywords as you proceed through this book. The keywords are listed in the

following table.

 Chapter 2 Working with Variables, Operators, and Expressions 31

 abstract do in protected true

 as double int public try

 base else interface readonly typeof

 bool enum internal ref uint

 break event is return ulong

 byte explicit lock sbyte unchecked

 case extern long sealed unsafe

 catch false namespace short ushort

 char fi nally new sizeof using

 checked fi xed null stackalloc virtual

 class fl oat object static void

 const for operator string volatile

 continue foreach out struct while

 decimal goto override switch

 default if params this

 delegate implicit private throw

 Tip In the Visual Studio 2008 Code and Text Editor window, keywords are colored blue when you

type them.

 C# also uses the following identifi ers. These identifi ers are not reserved by C#, which means

that you can use these names as identifi ers for your own methods, variables, and classes, but

you should really avoid doing so if at all possible.

 from join select yield

 get let set

 group orderby value

 into partial where

Using Variables
 A variable is a storage location that holds a value. You can think of a variable as a box in the

computer’s memory holding temporary information. You must give each variable in a pro-

gram an unambiguous name that uniquely identifi es it in the context in which it is used. You

use a variable’s name to refer to the value it holds. For example, if you want to store the value

of the cost of an item in a store, you might create a variable simply called cost and store the

item’s cost in this variable. Later on, if you refer to the cost variable, the value retrieved will be

the item’s cost that you stored there earlier.

32 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Naming Variables
 You should adopt a naming convention for variables that helps you avoid confusion

concerning the variables you have defi ned. The following list contains some general

recommendations:

 Don’t use underscores in identifi ers.

 Don’t create identifi ers that differ only by case. For example, do not create one variable

named myVariable and another named MyVariable for use at the same time because it

is too easy to get them confused.

 Note Using identifi ers that differ only by case can limit the ability to reuse classes in

applications developed using other languages that are not case sensitive, such as Microsoft

Visual Basic.

 Start the name with a lowercase letter.

 In a multiword identifi er, start the second and each subsequent word with an uppercase

letter. (This is called camelCase notation.)

 Don’t use Hungarian notation. (Microsoft Visual C++ developers reading this book are

probably familiar with Hungarian notation. If you don’t know what Hungarian notation

is, don’t worry about it!)

 Important You should treat the fi rst two of the preceding recommendations as compul-

sory because they relate to Common Language Specifi cation (CLS) compliance. If you want

to write programs that can interoperate with other languages, such as Microsoft Visual

Basic .NET, you must comply with these recommendations.

 For example, score, footballTeam, _score, and FootballTeam are all valid variable names, but

only the fi rst two are recommended.

Declaring Variables
 Variables hold values. C# has many different types of values that it can store and process—

integers, fl oating-point numbers, and strings of characters, to name three. When you declare

a variable, you must specify the type of data it will hold.

 You declare the type and name of a variable in a declaration statement. For example, the

following statement declares that the variable named age holds int (integer) values. As al-

ways, the statement must be terminated with a semicolon.

int age;

 Chapter 2 Working with Variables, Operators, and Expressions 33
 The variable type int is the name of one of the primitive C# types, integer, which is a whole

number. (You’ll learn about several primitive data types later in this chapter.)

 Note Microsoft Visual Basic programmers should note that C# does not allow implicit variable

declarations. You must explicitly declare all variables before you use them.

 After you’ve declared your variable, you can assign it a value. The following statement assigns

age the value 42. Again, you’ll see that the semicolon is required.

age = 42;

 The equal sign (=) is the assignment operator, which assigns the value on its right to the vari-

able on its left. After this assignment, the age variable can be used in your code to refer to

the value it holds. The next statement writes the value of the age variable, 42, to the console:

Console.WriteLine(age);

 Tip If you leave the mouse pointer over a variable in the Visual Studio 2008 Code and Text Editor
window, a ScreenTip appears, telling you the type of the variable.

Working with Primitive Data Types
 C# has a number of built-in types called primitive data types. The following table lists the

most commonly used primitive data types in C# and the range of values that you can store in

each.

 Data type Description Size (bits) Range 1 Sample usage

 int Whole numbers 32 –231 through

231 – 1

int count;
count = 42;

 long Whole numbers (bigger

range)

64 –263 through

263 – 1

long wait;
wait = 42L;

 fl oat Floating-point numbers 32 ±1.5 × 1045 through

±3.4 × 1038

float away;
away = 0.42F;

 double Double-precision (more

accurate) fl oating-point

numbers

64 ±5.0 × 10−324

through ±1.7 × 10308

double trouble;
trouble = 0.42;

 decimal Monetary values 128 28 signifi cant fi gures decimal coin;
coin = 0.42M;

34 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Data type Description Size (bits) Range 1 Sample usage

string Sequence of characters 16 bits per

character

Not applicable string vest;
vest =
“fortytwo”;

char Single character 16 0 through 216 – 1 char grill;
grill = ‘x’;

bool Boolean 8 True or false bool teeth;
teeth = false;

Unassigned Local Variables
 When you declare a variable, it contains a random value until you assign a value to it.

This behavior was a rich source of bugs in C and C++ programs that created a variable

and accidentally used it as a source of information before giving it a value. C# does not

allow you to use an unassigned variable. You must assign a value to a variable before

you can use it; otherwise, your program might not compile. This requirement is called

the Defi nite Assignment Rule. For example, the following statements will generate a

compile-time error because age is unassigned:

int age;
Console.WriteLine(age); // compile-time error

Displaying Primitive Data Type Values
 In the following exercise, you’ll use a C# program named PrimitiveDataTypes to demonstrate

how several primitive data types work.

Display primitive data type values

1. Start Visual Studio 2008 if it is not already running.

2. If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, on the File menu, point to Open, and then click Project/Solution.

 If you are using Visual C# 2008 Express Edition, on the File menu, click Open Project.

 The Open Project dialog box appears.

3. Move to the \Microsoft Press\Visual CSharp Step by Step\Chapter 2\PrimitiveDataTypes

folder in your Documents folder. Select the PrimitiveDataTypes solution fi le, and then

click Open.

 The solution loads, and Solution Explorer displays the PrimitiveDataTypes project.

Display primitive data type values

 Chapter 2 Working with Variables, Operators, and Expressions 35

Note Solution fi le names have the .sln suffi x, such as PrimitiveDataTypes.sln. A solution

can contain one or more projects. Project fi les have the .csproj suffi x. If you open a project

rather than a solution, Visual Studio 2008 will automatically create a new solution fi le for it.

If you build the solution, Visual Studio 2008 automatically saves any new or updated fi les,

so you will be prompted to provide a name and location for the new solution fi le.

4. On the Debug menu, click Start Without Debugging.

The following application window appears:

5. In the Choose a data type list, click the string type.

The value “forty two” appears in the Sample value box.

6. Click the int type in the list.

The value to do appears in the Sample value box, indicating that the statements to dis-

play an int value still need to be written.

7. Click each data type in the list. Confi rm that the code for the double and bool types

also must be completed.

8. Click Quit to close the window and stop the program.

 Control returns to the Visual Studio 2008 programming environment.

Use primitive data types in code

1. In Solution Explorer, double-click Window1.xaml.

 The WPF form for the application appears in the Design View window.

2. Right-click anywhere in the Design View window displaying the Window1.xaml form,

and then click View Code.

 The Code and Text Editor window opens, displaying the Window1.xaml.cs fi le.

Use primitive data types in code

36 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Note Remember that you can also use Solution Explorer to access the code; click the plus

sign, +, to the left of the Window1.xaml fi le, and then double-click Window1.xaml.cs.

3. In the Code and Text Editor window, fi nd the showFloatValue method.

 Tip To locate an item in your project, on the Edit menu, point to Find and Replace, and

then click Quick Find. A dialog box opens, asking what you want to search for. Type the

name of the item you’re looking for, and then click Find Next. By default, the search is not

case-sensitive. If you want to perform a case-sensitive search, click the plus button, +, next

to the Find Options label to display additional options, and select the Match Case check

box. If you have time, you can experiment with the other options as well.

 You can also press Ctrl+F (press the Control key, and then press F) to display the Quick Find

dialog box rather than using the Edit menu. Similarly, you can press Ctrl+H to display the

Quick Replace dialog box.

 The showFloatValue method runs when you click the fl oat type in the list box. This

method contains the following three statements:

float variable;
variable=0.42F;
value.Text = “0.42F”;

 The fi rst statement declares a variable named variable of type fl oat.

 The second statement assigns variable the value 0.42F. (The F is a type suffi x specifying

that 0.42 should be treated as a fl oat value. If you forget the F, the value 0.42 will be

treated as a double, and your program will not compile because you cannot assign a

value of one type to a variable of a different type without writing additional code—C#

is very strict in this respect.)

 The third statement displays the value of this variable in the value text box on the

form. This statement requires a little bit of your attention. The way in which you display

an item in a text box is to set its Text property. Notice that you access the property

of an object by using the same “dot” notation that you saw for running a method.

(Remember Console.WriteLine from Chapter 1?) The data that you put in the Text prop-

erty must be a string (a sequence of characters enclosed in double quotation marks),

and not a number. If you try to assign a number to the Text property, your program

will not compile. In this program, the statement simply displays the text “0.42F” in the

text box. In a real-world application, you would add statements that convert the value

of the variable variable into a string and then put this into the Text property, but you

need to know a little bit more about C# and the Microsoft .NET Framework before you

can do that. (Chapter 11, “Understanding Parameter Arrays,” and Chapter 21, “Operator

Overloading,” cover data type conversions.)

 Chapter 2 Working with Variables, Operators, and Expressions 37

4. In the Code and Text Editor window, locate the showIntValue method. It looks like this:

private void showIntValue()
{
 value.Text = “to do”;
}

 The showIntValue method is called when you click the int type in the list box.

 Tip Another way to fi nd a method in the Code and Text Editor window is to click the

Members drop-down list that appears above the window, to the right. This window dis-

plays a list of all the methods (and other items) in the class displayed in the Code and Text
Editor window. You can click the name of a member, and you will be taken directly to it in

the Code and Text Editor window.

5. Type the following two statements at the start of the showIntValue method, on a new

line after the opening brace, as shown in bold type in the following code:

private void showIntValue()
{
 int variable;
 variable = 42;
}

6. In the original statement in this method, change the string “to do” to “42”.

 The method should now look exactly like this:

private void showIntValue()
{
 int variable;
 variable = 42;
 value.Text = “42”;
}

 Note If you have previous programming experience, you might be tempted to change

the third statement to

value.Text = variable;

 This looks like it should display the value of variable in the value text box on the form.

However, C# performs strict type checking; text boxes can display only string values, and

variable is an int, so this statement will not compile. You will see how to convert between

numeric and string values later in this chapter.

7. On the Debug menu, click Start Without Debugging.

 The form appears again.

38 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 8. Select the int type in the Choose a data type list. Confi rm that the value 42 is displayed

in the Sample value text box.

 9. Click Quit to close the window and stop the program.

 10. In the Code and Text Editor window, fi nd the showDoubleValue method.

 11. Edit the showDoubleValue method exactly as shown in bold type in the following code:

private void showDoubleValue()
{
 double variable;
 variable = 0.42;
 value.Text = “0.42”;
}

 12. In the Code and Text Editor window, locate the showBoolValue method.

 13. Edit the showBoolValue method exactly as follows:

private void showBoolValue()
{
 bool variable;
 variable = false;
 value.Text = “false”;
}

 14. On the Debug menu, click Start Without Debugging.

 15. In the Choose a data type list, select the int, double, and bool types. In each case, verify

that the correct value is displayed in the Sample value text box.

 16. Click Quit to stop the program.

Using Arithmetic Operators
 C# supports the regular arithmetic operations you learned in your childhood: the plus sign

(+) for addition, the minus sign (–) for subtraction, the asterisk (*) for multiplication, and the

forward slash (/) for division. The symbols +, –, *, and / are called operators because they

“operate” on values to create new values. In the following example, the variable moneyPaid-
ToConsultant ends up holding the product of 750 (the daily rate) and 20 (the number of days

the consultant was employed):

long moneyPaidToConsultant;
moneyPaidToConsultant = 750 * 20;

 Chapter 2 Working with Variables, Operators, and Expressions 39
 Note The values that an operator operates on are called operands. In the expression 750 * 20,

the * is the operator, and 750 and 20 are the operands.

Operators and Types
 Not all operators are applicable to all data types. The operators that you can use on a value

depend on the value’s type. For example, you can use all the arithmetic operators on values

of type char, int, long, fl oat, double, or decimal. However, with the exception of the plus oper-

ator, +, you can’t use the arithmetic operators on values of type string or bool. So the follow-

ing statement is not allowed because the string type does not support the minus operator

(subtracting one string from another would be meaningless):

// compile-time error
Console.WriteLine(“Gillingham” – “Forest Green Rovers”);

 You can use the + operator to concatenate string values. You need to be careful because this

can have results you might not expect. For example, the following statement writes “431” (not

“44”) to the console:

Console.WriteLine(“43” + “1”);

 Tip The .NET Framework provides a method called Int32.Parse that you can use to convert

a string value to an integer if you need to perform arithmetic computations on values held

as strings.

 You should also be aware that the type of the result of an arithmetic operation depends on

the type of the operands used. For example, the value of the expression 5.0/2.0 is 2.5; the

type of both operands is double (in C#, literal numbers with decimal points are always double,

not fl oat, to maintain as much accuracy as possible), so the type of the result is also double.

However, the value of the expression 5/2 is 2. In this case, the type of both operands is int, so

the type of the result is also int. C# always rounds values down in circumstances like this. The

situation gets a little more complicated if you mix the types of the operands. For example,

the expression 5/2.0 consists of an int and a double. The C# compiler detects the mismatch

and generates code that converts the int into a double before performing the operation. The

result of the operation is therefore a double (2.5). However, although this works, it is consid-

ered poor practice to mix types in this way.

40 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Numeric Types and Infi nite Values
 There are one or two other features of numbers in C# that you should be aware of. For

example, the result of dividing any number by zero is infi nity, which is outside the range

of the int, long, and decimal types, and consequently evaluating an expression such as

5/0 results in an error. However, the double and fl oat types actually have a special value

that can represent infi nity, and the value of the expression 5.0/0.0 is Infi nity. The one

exception to this rule is the value of the expression 0.0/0.0. Usually, if you divide zero

by anything, the result is zero, but if you divide anything by zero the result is infi nity.

The expression 0.0/0.0 results in a paradox—the value must be zero and infi nity at the

same time. C# has another special value for this situation called NaN, which stands for

“not a number.” So if you evaluate 0.0/0.0, the result is NaN. NaN and Infi nity propagate

through expressions. If you evaluate 10 + NaN, the result is NaN, and if you evaluate 10

+ Infi nity, the result is Infi nity. The one exception to this rule is the expression Infi nity *

0, which results in 0, whereas the result of the expression NaN * 0 is NaN.

C# also supports one less-familiar arithmetic operator: the remainder, or modulus, operator,

which is represented by the percent sign (%). The result of x % y is the remainder after divid-

ing x by y. For example, 9 % 2 is 1 because 9 divided by 2 is 4, remainder 1.

Note If you are familiar with C or C++, you will know that you can’t use the remainder operator

on fl oat or double values in these languages. However, C# relaxes this rule. The remainder

operator is valid with all numeric types, and the result is not necessarily an integer. For example,

the result of the expression 7.0 % 2.4 is 2.2.

Examining Arithmetic Operators
 The following exercise demonstrates how to use the arithmetic operators on int values using

a previously written C# program called MathsOperators.

Work with arithmetic operators

 1. Open the MathsOperators project, located in the \Microsoft Press\Visual CSharp Step

by Step\Chapter 2\MathsOperators folder in your Documents folder.

 2. On the Debug menu, click Start Without Debugging.

A form appears on the screen.

 3. Type 54 in the left operand text box.

Work with arithmetic operators

 Chapter 2 Working with Variables, Operators, and Expressions 41

4. Type 13 in the right operand text box.

 You can now apply any of the operators to the values in the text boxes.

5. Click the – Subtraction button, and then click Calculate.

 The text in the Expression text box changes to 54 – 13, and the value 41 appears in the

Result box, as shown in the following image:

6. Click the / Division button, and then click Calculate.

 The text in the Expression text box changes to 54/13, and the value 4 appears in the

Result text box. In real life, 54/13 is 4.153846 recurring, but this is not real life; this is C#

performing integer division, and when you divide one integer by another integer, the

answer you get back is an integer, as explained earlier.

7. Click the % Remainder button, and then click Calculate.

 The text in the Expression text box changes to 54 % 13, and the value 2 appears in the

Result text box. This is because the remainder after dividing 54 by 13 is 2. (54 – ((54/13)

* 13) is 2 if you do the arithmetic rounding down to an integer at each stage—my old

math master at school would be horrifi ed to be told that (54/13) * 13 does not equal

54!)

8. Test the other combinations of numbers and operators. When you have fi nished, click

Quit to return to the Visual Studio 2008 programming environment.

 Now take a look at the MathsOperators program code.

42 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Examine the MathsOperators program code

1. Display the Window1.xaml form in the Design View window (double-click the fi le

Window1.xaml in Solution Explorer).

2. On the View menu, point to Other Windows, and then click Document Outline.

The Document Outline window appears, showing the names and types of the controls

on the form. If you click each of the controls on the form, the name of the control is

highlighted in the Document Outline window. Similarly, if you select a control in the

Document Outline window, the corresponding control is selected in the Design View

window.

3. On the form, click the two TextBox controls in which the user types numbers. In the

Document Outline window, verify that they are named lhsOperand and rhsOperand.
(You can see the name of a control in the parentheses to the right of the control.)

When the form runs, the Text property of each of these controls holds the values that

the user enters.

4. Toward the bottom of the form, verify that the TextBox control used to display the

expression being evaluated is named expression and that the TextBox control used to

display the result of the calculation is named result.

5. Close the Document Outline window.

6. Display the code for the Window1.xaml.cs fi le in the Code and Text Editor window.

7. In the Code and Text Editor window, locate the subtractValues method. It looks like this:

private void subtractValues()
{
 int lhs = int.Parse(lhsOperand.Text);
 int rhs = int.Parse(rhsOperand.Text);
 int outcome;
 outcome = lhs – rhs;
 expression.Text = lhsOperand.Text + “ – “ + rhsOperand.Text;
 result.Text = outcome.ToString();
}

The fi rst statement in this method declares an int variable called lhs and initializes it

with the integer corresponding to the value typed by the user in the lhsOperand text

box. Remember that the Text property of a text box control contains a string, so you

must convert this string to an integer before you can assign it to an int variable. The int
data type provides the int.Parse method, which does precisely this.

The second statement declares an int variable called rhs and initializes it to the value in

the rhsOperand text box after converting it to an int.

The third statement declares an int variable called outcome.

Examine the MathsOperators program code

 Chapter 2 Working with Variables, Operators, and Expressions 43
 The fourth statement subtracts the value of the rhs variable from the value of the lhs
variable and assigns the result to outcome.

 The fi fth statement concatenates three strings indicating the calculation being

performed (using the plus operator, +) and assigns the result to the expression.Text
property. This causes the string to appear in the expression text box on the form.

 The sixth statement displays the result of the calculation by assigning it to the Text
property of the result text box. Remember that the Text property is a string and that

the result of the calculation is an int, so you must convert the string to an int before as-

signing it to the Text property. This is what the ToString method of the int type does.

The ToString Method
 Every class in the .NET Framework has a ToString method. The purpose of ToString is to

convert an object to its string representation. In the preceding example, the ToString

method of the integer object, outcome, is used to convert the integer value of outcome

to the equivalent string value. This conversion is necessary because the value is dis-

played in the Text property of the result text box—the Text property can contain only

strings. When you create your own classes, you can defi ne your own implementation

of the ToString method to specify how your class should be represented as a string.

You learn more about creating your own classes in Chapter 7, “Creating and Managing

Classes and Objects.”

Controlling Precedence
 Precedence governs the order in which an expression’s operators are evaluated. Consider the

following expression, which uses the + and * operators:

2 + 3 * 4

 This expression is potentially ambiguous; do you perform the addition fi rst or the multipli-

cation? In other words, does 3 bind to the + operator on its left or to the * operator on its

right? The order of the operations matters because it changes the result:

 If you perform the addition fi rst, followed by the multiplication, the result of the

addition (2 + 3) forms the left operand of the * operator, and the result of the whole

expression is 5 * 4, which is 20.

 If you perform the multiplication fi rst, followed by the addition, the result of the

multiplication (3 * 4) forms the right operand of the + operator, and the result of the

whole expression is 2 + 12, which is 14.

44 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 In C#, the multiplicative operators (*, /, and %) have precedence over the additive operators

(+ and –), so in expressions such as 2 + 3 * 4, the multiplication is performed fi rst, followed

by the addition. The answer to 2 + 3 * 4 is therefore 14. As each new operator is discussed in

later chapters, its precedence will be explained.

 You can use parentheses to override precedence and force operands to bind to operators in

a different way. For example, in the following expression, the parentheses force the 2 and the

3 to bind to the + operator (making 5), and the result of this addition forms the left operand

of the * operator to produce the value 20:

(2 + 3) * 4

 Note The term parentheses or round brackets refers to (). The term braces or curly brackets
refers to { }. The term square brackets refers to [].

Using Associativity to Evaluate Expressions
 Operator precedence is only half the story. What happens when an expression contains

different operators that have the same precedence? This is where associativity becomes

important. Associativity is the direction (left or right) in which the operands of an operator

are evaluated. Consider the following expression that uses the / and * operators:

4 / 2 * 6

 This expression is still potentially ambiguous. Do you perform the division fi rst, or the

multiplication? The precedence of both operators is the same (they are both multiplicative),

but the order in which the expression is evaluated is important because you get one of two

possible results:

 If you perform the division fi rst, the result of the division (4/2) forms the left operand of

the * operator, and the result of the whole expression is (4/2) * 6, or 12.

 If you perform the multiplication fi rst, the result of the multiplication (2 * 6) forms the

right operand of the / operator, and the result of the whole expression is 4/(2 * 6), or

4/12.

 In this case, the associativity of the operators determines how the expression is evaluated.

The * and / operators are both left-associative, which means that the operands are evaluated

from left to right. In this case, 4/2 will be evaluated before multiplying by 6, giving the result

12. As each new operator is discussed in subsequent chapters, its associativity is also covered.

 Chapter 2 Working with Variables, Operators, and Expressions 45
Associativity and the Assignment Operator
 In C#, the equal sign (=) is an operator. All operators return a value based on their operands.

The assignment operator (=) is no different. It takes two operands; the operand on its right

side is evaluated and then stored in the operand on its left side. The value of the assignment

operator is the value that was assigned to the left operand. For example, in the following as-

signment statement, the value returned by the assignment operator is 10, which is also the

value assigned to the variable myInt:

int myInt;
myInt = 10; //value of assignment expression is 10

 At this point, you are probably thinking that this is all very nice and esoteric, but so what?

Well, because the assignment operator returns a value, you can use this same value with an-

other occurrence of the assignment statement, like this:

int myInt;
int myInt2;
myInt2 = myInt = 10;

 The value assigned to the variable myInt2 is the value that was assigned to myInt. The assign-

ment statement assigns the same value to both variables. This technique is very useful if you

want to initialize several variables to the same value. It makes it very clear to anyone reading

your code that all the variables must have the same value:

myInt5 = myInt4 = myInt3 = myInt2 = myInt = 10;

 From this discussion, you can probably deduce that the assignment operator associates

from right to left. The rightmost assignment occurs fi rst, and the value assigned propagates

through the variables from right to left. If any of the variables previously had a value, it is

overwritten by the value being assigned.

Incrementing and Decrementing Variables
 If you want to add 1 to a variable, you can use the + operator:

count = count + 1;

 However, adding 1 to a variable is so common that C# provides its own operator just for this

purpose: the ++ operator. To increment the variable count by 1, you can write the following

statement:

count++;

46 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 Similarly, C# provides the –– operator that you can use to subtract 1 from a variable, like this:

 count--;

 Note The ++ and – – operators are unary operators, meaning that they take only a single

operand. They share the same precedence and left associativity as the ! unary operator, which is

discussed in Chapter 4, “Using Decision Statements.”

Prefi x and Postfi x
 The increment, ++, and decrement, – –, operators are unusual in that you can place them

either before or after the variable. Placing the operator symbol before the variable is called

the prefi x form of the operator, and using the operator symbol after the variable is called the

postfi x form. Here are examples:

count++; // postfix increment
++count; // prefix increment
count--; // postfix decrement
--count; // prefix decrement

 Whether you use the prefi x or postfi x form of the ++ or – – operator makes no difference

to the variable being incremented or decremented. For example, if you write count++, the

value of count increases by 1, and if you write ++count, the value of count also increases by 1.

Knowing this, you’re probably wondering why there are two ways to write the same thing. To

understand the answer, you must remember that ++ and –– are operators and that all opera-

tors are used to evaluate an expression that has a value. The value returned by count++ is the

value of count before the increment takes place, whereas the value returned by ++count is
the value of count after the increment takes place. Here is an example:

int x;
x = 42;
Console.WriteLine(x++); // x is now 43, 42 written out
x = 42;
Console.WriteLine(++x); // x is now 43, 43 written out

 The way to remember which operand does what is to look at the order of the elements (the

operand and the operator) in a prefi x or postfi x expression. In the expression x++, the vari-

able x occurs fi rst, so its value is used as the value of the expression before x is incremented.

In the expression ++x, the operator occurs fi rst, so its operation is performed before the

value of x is evaluated as the result.

 These operators are most commonly used in while and do statements, which are presented

in Chapter 5, “Using Compound Assignment and Iteration Statements.” If you are using the

increment and decrement operators in isolation, stick to the postfi x form and be consistent.

 Chapter 2 Working with Variables, Operators, and Expressions 47
Declaring Implicitly Typed Local Variables
 Earlier in this chapter, you saw that you declare a variable by specifying a data type and an

identifi er, like this:

int myInt;

 It was also mentioned that you should assign a value to a variable before you attempt to use

it. You can declare and initialize a variable in the same statement, like this:

int myInt = 99;

 or even like this, assuming that myOtherInt is an initialized integer variable:

int myInt = myOtherInt * 99;

 Now, remember that the value you assign to a variable must be of the same type as the

variable. For example, you can assign an int value only to an int variable. The C# compiler can

quickly work out the type of an expression used to initialize a variable and tell you if it does

not match the type of the variable. You can also ask the C# compiler to infer the type of a

variable from an expression and use this type when declaring the variable by using the var
keyword in place of the type, like this:

var myVariable = 99;
var myOtherVariable = “Hello”;

 Variables myVariable and myOtherVariable are referred to as implicitly typed variables.

The var keyword causes the compiler to deduce the type of the variables from the types

of the expressions used to initialize them. In these examples, myVariable is an int, and

myOtherVariable is a string. It is important to understand that this is a convenience for de-

claring variables only and that after a variable has been declared, you can assign only values

of the inferred type to it—you cannot assign fl oat, double, or string values to myVariable at

a later point in your program, for example. You should also understand that you can use

the var keyword only when you supply an expression to initialize a variable. The following

declaration is illegal and will cause a compilation error:

var yetAnotherVariable; // Error - compiler cannot infer type

Important If you have programmed with Visual Basic in the past, you may be familiar with the

Variant type, which you can use to store any type of value in a variable. I emphasize here and

now that you should forget everything you ever learned when programming with Visual Basic

about Variant variables. Although the keywords look similar, var and Variant mean totally differ-

ent things. When you declare a variable in C# using the var keyword, the type of values that you

assign to the variable cannot change from that used to initialize the variable.

48 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 If you are a purist, you are probably gritting your teeth at this point and wondering why on

earth the designers of a neat language such as C# should allow a feature such as var to creep

in. After all, it sounds like an excuse for extreme laziness on the part of programmers and can

make it more diffi cult to understand what a program is doing or track down bugs (and it can

even easily introduce new bugs into your code). However, trust me that var has a very valid

place in C#, as you will see when you work through many of the following chapters. However,

for the time being, we will stick to using explicitly typed variables except for when implicit

typing becomes a necessity.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 3.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or click Save (if you are using Visual C# 2008 Express Edition) and

save the project.

Chapter 2 Quick Reference
 To Do this

 Declare a variable Write the name of the data type, followed by the name of the

variable, followed by a semicolon. For example:

int outcome;

 Change the value of a variable Write the name of the variable on the left, followed by the

assignment operator, followed by the expression calculating the

new value, followed by a semicolon. For example:

outcome = 42;

 Convert a string to an int Call the System.Int32.Parse method. For example:

System.Int32.Parse(“42”);

 Override precedence Use parentheses in the expression to force the order of

evaluation. For example:

(3 + 4) * 5

 Initialize several variables to the

same value

Use an assignment statement that initializes all the variables. For

example:

myInt4 = myInt3 = myInt2 = myInt = 10;

 Increment or decrement a variable Use the ++ or -- operator. For example:

count++;

(Footnotes)

1 The value of 216 is 65,536; the value of 231 is 2,147,483,648; and the value of 263 is 9,223,372,036,854,775,808.

Chapter 3

Writing Methods and Applying
Scope

 After completing this chapter, you will be able to:

 Declare and call methods.

 Pass information to a method.

 Return information from a method.

 Defi ne local and class scope.

 Use the integrated debugger to step in and out of methods as they run.

 In Chapter 2, “Working with Variables, Operators, and Expressions,” you learned how to

declare variables, how to create expressions using operators, and how precedence and

 associativity control how expressions containing multiple operators are evaluated. In this

chapter, you’ll learn about methods. You’ll also learn how to use arguments and parameters

to pass information to a method and how to return information from a method by using re-

turn statements. Finally, you’ll see how to step in and out of methods by using the Microsoft

Visual Studio 2008 integrated debugger. This information is useful when you need to trace

the execution of your methods if they do not work quite as you expected.

Declaring Methods
 A method is a named sequence of statements. If you have previously programmed using

languages such as C or Microsoft Visual Basic, you know that a method is very similar to a

function or a subroutine. A method has a name and a body. The method name should be a

meaningful identifi er that indicates the overall purpose of the method (CalculateIncomeTax,

for example). The method body contains the actual statements to be run when the method

is called. Additionally, methods can be given some data for processing and can return

 information, which is usually the result of the processing. Methods are a fundamental and

powerful mechanism.
 49

50 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Specifying the Method Declaration Syntax
 The syntax of a Microsoft Visual C# method is as follows:

returnType methodName (parameterList)
{
 // method body statements go here
}

 The returnType is the name of a type and specifi es the kind of information the method

returns as a result of its processing. This can be any type, such as int or string. If you’re

writing a method that does not return a value, you must use the keyword void in place

of the return type.

 The methodName is the name used to call the method. Method names follow the same

identifi er rules as variable names. For example, addValues is a valid method name,

whereas add$Values is not. For now, you should follow the camelCase convention for

method names—for example, displayCustomer.

 The parameterList is optional and describes the types and names of the information

that you can pass into the method for it to process. You write the parameters between

the opening and closing parentheses as though you’re declaring variables, with the

name of the type followed by the name of the parameter. If the method you’re writing

has two or more parameters, you must separate them with commas.

 The method body statements are the lines of code that are run when the method is

called. They are enclosed between opening and closing braces { }.

 Important C, C++, and Microsoft Visual Basic programmers should note that C# does not

support global methods. You must write all your methods inside a class, or your code will not

compile.

 Here’s the defi nition of a method called addValues that returns an int result and has two int
parameters called leftHandSide and rightHandSide:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 // method body statements go here
 // ...
}

 Note You must explicitly specify the types of any parameters and the return type of a method.

You cannot use the var keyword.

 Chapter 3 Writing Methods and Applying Scope 51
 Here’s the defi nition of a method called showResult that does not return a value and has a

single int parameter called answer:

void showResult(int answer)
{
 // ...
}

 Notice the use of the keyword void to indicate that the method does not return anything.

 Important Visual Basic programmers should notice that C# does not use different keywords to

distinguish between a method that returns a value (a function) and a method that does not re-

turn a value (a procedure or subroutine). You must always specify either a return type or void.

Writing return Statements
 If you want a method to return information (in other words, its return type is not void), you

must write a return statement inside the method. You do this by using the keyword return

followed by an expression that calculates the returned value, and a semicolon. The type of

expression must be the same as the type specifi ed by the method. In other words, if a meth-

od returns an int, the return statement must return an int; otherwise, your program will not

compile. Here is an example:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
 return leftHandSide + rightHandSide;
}

 The return statement is usually positioned at the end of your method because it causes the

method to fi nish. Any statements that occur after the return statement are not executed

 (although the compiler warns you about this problem if you place statements after the return

statement).

 If you don’t want your method to return information (in other words, its return type is void),

you can use a variation of the return statement to cause an immediate exit from the method.

You write the keyword return immediately followed by a semicolon. For example:

void showResult(int answer)
{
 // display the answer
 ...
 return;
}

52 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 If your method does not return anything, you can also omit the return statement because the

method fi nishes automatically when execution arrives at the closing brace at the end of the

method. Although this practice is common, it is not always considered good style.

In the following exercise, you will examine another version of the MathsOperators application

from Chapter 2. This version has been improved by the careful use of some small methods.

Examine method defi nitions

1. Start Visual Studio 2008 if it is not already running.

2. Open the Methods project in the \Microsoft Press\Visual CSharp Step by Step\

Chapter 3\Methods folder in your Documents folder.

3. On the Debug menu, click Start Without Debugging.

Visual Studio 2008 builds and runs the application.

4. Refamiliarize yourself with the application and how it works, and then click Quit.

5. Display the code for Window1.xaml.cs in the Code and Text Editor window.

6. In the Code and Text Editor window, locate the addValues method.

The method looks like this:

private int addValues(int leftHandSide, int rightHandSide)
{
 expression.Text = leftHandSide.ToString() + “ + “ + rightHandSide.ToString();
 return leftHandSide + rightHandSide;
}

The addValues method contains two statements. The fi rst statement displays the

 calculation being performed in the expression text box on the form. The values of the

parameters leftHandSide and rightHandSide are converted to strings (using the ToString

method you met in Chapter 2) and concatenated together with a string representation

of the plus operator (+) in the middle.

The second statement uses the + operator to add the values of the leftHandSide and

rightHandSide int variables together and returns the result of this operation. Remember

that adding two int values together creates another int value, so the return type of the

addValues method is int.

If you look at the methods subtractValues, multiplyValues, divideValues, and

remainderValues, you will see that they follow a similar pattern.

Examine method defi nitions

 Chapter 3 Writing Methods and Applying Scope 53
 7. In the Code and Text Editor window, locate the showResult method.

 The showResult method looks like this:

private void showResult(int answer)
{
 result.Text = answer.ToString();
}

This method contains one statement that displays a string representation of the answer
parameter in the result text box.

 Tip There is no minimum length for a method. If a method helps to avoid repetition

and makes your program easier to understand, the method is useful regardless of how

small it is.

 There is also no maximum length for a method, but usually you want to keep your method

code small enough to get the job done. If your method is more than one screen in length,

consider breaking it into smaller methods for readability.

Calling Methods
 Methods exist to be called! You call a method by name to ask it to perform its task. If the

method requires information (as specifi ed by its parameters), you must supply the informa-

tion requested. If the method returns information (as specifi ed by its return type), you should

arrange to capture this information somehow.

Specifying the Method Call Syntax
 The syntax of a C# method call is as follows:

result = methodName (argumentList)

 The methodName must exactly match the name of the method you’re calling.

Remember, C# is a case-sensitive language.

 The result = clause is optional. If specifi ed, the variable identifi ed by result contains the

value returned by the method. If the method is void (it does not return a value), you

must omit the result = clause of the statement.

 The argumentList supplies the optional information that the method accepts. You must

supply an argument for each parameter, and the value of each argument must be com-

patible with the type of its corresponding parameter. If the method you’re calling has

two or more parameters, you must separate the arguments with commas.

54 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 Important You must include the parentheses in every method call, even when calling a method

that has no arguments.

 To clarify these points, take a look at the addValues method again:

int addValues(int leftHandSide, int rightHandSide)
{
 // ...
}

The addValues method has two int parameters, so you must call it with two comma-

 separated int arguments:

addValues(39, 3); // okay

You can also replace the literal values 39 and 3 with the names of int variables. The values in

those variables are then passed to the method as its arguments, like this:

int arg1 = 99;
int arg2 = 1;
addValues(arg1, arg2);

If you try to call addValues in some other way, you will probably not succeed for the reasons

described in the following examples:

addValues; // compile-time error, no parentheses
addValues(); // compile-time error, not enough arguments
addValues(39); // compile-time error, not enough arguments
addValues(“39”, “3”); // compile-time error, wrong types

The addValues method returns an int value. This int value can be used wherever an int value

can be used. Consider these examples:

int result = addValues(39, 3); // on right-hand side of an assignment
showResult(addValues(39, 3)); // as argument to another method call

The following exercise continues looking at the Methods application. This time you will

 examine some method calls.

Examine method calls

 1. Return to the Methods project. (This project is already open in Visual Studio 2008 if

you’re continuing from the previous exercise. If you are not, open it from the \Microsoft

Press\Visual CSharp Step by Step\Chapter 3\Methods folder in your Documents folder.)

 2. Display the code for Window1.xaml.cs in the Code and Text Editor window.

Examine method calls

 Chapter 3 Writing Methods and Applying Scope 55

3. Locate the calculateClick method, and look at the fi rst two statements of this method

after the try statement and opening brace. (We cover the purpose of try statements in

Chapter 6, “Managing Errors and Exceptions.”)

 The statements are as follows:

int leftHandSide = System.Int32.Parse(lhsOperand.Text);
int rightHandSide = System.Int32.Parse(rhsOperand.Text);

 These two statements declare two int variables called leftHandSide and rightHandSide.

However, the interesting parts are the way in which the variables are initialized. In both

cases, the Parse method of the System.Int32 class is called (System is a namespace, and

Int32 is the name of the class in this namespace). You have seen this method before; it

takes a single string parameter and converts it to an int value. These two lines of code

take whatever the user has typed into the lhsOperand and rhsOperand text box controls

on the form and converts them to int values.

4. Look at the fourth statement in the calculateClick method (after the if statement and

another opening brace):

calculatedValue = addValues(leftHandSide, rightHandSide);

 This statement calls the addValues method, passing the values of the leftHandSide and

rightHandSide variables as its arguments. The value returned by the addValues method

is stored in the calculatedValue variable.

5. Look at the next statement:

showResult(calculatedValue);

 This statement calls the showResult method, passing the value in the calculatedValue

variable as its argument. The showResult method does not return a value.

6. In the Code and Text Editor window, fi nd the showResult method you looked at earlier.

 The only statement of this method is this:

result.Text = answer.ToString();

 Notice that the ToString method call uses parentheses even though there are no

arguments.

 Tip You can call methods belonging to other objects by prefi xing the method with the

name of the object. In the preceding example, the expression answer.ToString() calls the

method named ToString belonging to the object called answer.

56 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Applying Scope
 In some of the examples, you can see that you can create variables inside a method. These

variables come into existence at the point where they are defi ned, and subsequent state-

ments in the same method can then use these variables; a variable can be used only after it

has been created. When the method has fi nished, these variables disappear.

 If a variable can be used at a particular location in a program, the variable is said to be in

scope at that location. To put it another way, the scope of a variable is simply the region of

the program in which that variable is usable. Scope applies to methods as well as variables.

The scope of an identifi er (of a variable or method) is linked to the location of the declaration

that introduces the identifi er in the program, as you’ll now learn.

Defi ning Local Scope
 The opening and closing braces that form the body of a method defi ne a scope. Any vari-

ables you declare inside the body of a method are scoped to that method; they disappear

when the method ends and can be accessed only by code running in that method. These

variables are called local variables because they are local to the method in which they are de-

clared; they are not in scope in any other method. This arrangement means that you cannot

use local variables to share information between methods. Consider this example:

class Example
{
 void firstMethod()
 {
 int myVar;
 ...
 }
 void anotherMethod()
 {
 myVar = 42; // error – variable not in scope
 ...
 }
}

 This code would fail to compile because anotherMethod is trying to use the variable myVar,
which is not in scope. The variable myVar is available only to statements in fi rstMethod and

that occur after the line of code that declares myVar.

Defi ning Class Scope
 The opening and closing braces that form the body of a class also create a scope. Any vari-

ables you declare inside the body of a class (but not inside a method) are scoped to that

 Chapter 3 Writing Methods and Applying Scope 57
class. The proper C# name for the variables defi ned by a class is a fi eld. In contrast with local

variables, you can use fi elds to share information between methods. Here is an example:

class Example
{
 void firstMethod()
 {
 myField = 42; // ok
 ...
 }

 void anotherMethod()
 {
 myField++; // ok
 ...
 }

 int myField = 0;
}

 The variable myField is defi ned in the class but outside the methods fi rstMethod and

 anotherMethod. Therefore, myField has class scope and is available for use by all methods

in the class.

 There is one other point to notice about this example. In a method, you must declare a

 variable before you can use it. Fields are a little different. A method can use a fi eld before

the statement that defi nes the fi eld—the compiler sorts out the details for you!

Overloading Methods
 If two identifi ers have the same name and are declared in the same scope, they are said to

be overloaded. Often an overloaded identifi er is a bug that gets trapped as a compile-time

error. For example, if you declare two local variables with the same name in the same meth-

od, you get a compile-time error. Similarly, if you declare two fi elds with the same name in

the same class or two identical methods in the same class, you also get a compile-time error.

This fact may seem hardly worth mentioning, given that everything so far has turned out to

be a compile-time error. However, there is a way that you can overload an identifi er, and that

way is both useful and important.

 Consider the WriteLine method of the Console class. You have already used this method

for outputting a string to the screen. However, when you type WriteLine in the Code and
Text Editor window when writing C# code, you will notice that IntelliSense gives you 19 dif-

ferent options! Each version of the WriteLine method takes a different set of parameters;

one version takes no parameters and simply outputs a blank line, another version takes a

bool parameter and outputs a string representation of its value (true or false), yet another

implementation takes a decimal parameter and outputs it as a string, and so on. At compile

58 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
time, the compiler looks at the types of the arguments you are passing in and then calls the

version of the method that has a matching set of parameters. Here is an example:

static void Main()
{
 Console.WriteLine(“The answer is “);
 Console.WriteLine(42);
}

Overloading is primarily useful when you need to perform the same operation on different

data types. You can overload a method when the different implementations have different

sets of parameters; that is, when they have the same name but a different number of param-

eters, or when the types of the parameters differ. This capability is allowed so that, when you

call a method, you can supply a comma-separated list of arguments, and the number and

type of the arguments are used by the compiler to select one of the overloaded methods.

However, note that although you can overload the parameters of a method, you can’t over-

load the return type of a method. In other words, you can’t declare two methods with the

same name that differ only in their return type. (The compiler is clever, but not that clever.)

Writing Methods
In the following exercises, you’ll create a method that calculates how much a consultant

would charge for a given number of consultancy days at a fi xed daily rate. You will start by

developing the logic for the application and then use the Generate Method Stub Wizard to

help you write the methods that are used by this logic. Next, you’ll run these methods in a

Console application to get a feel for the program. Finally, you’ll use the Visual Studio 2008

debugger to step in and out of the method calls as they run.

Develop the logic for the application

 1. Using Visual Studio 2008, open the DailyRate project in the \Microsoft Press\Visual

CSharp Step by Step\Chapter 3\DailyRate folder in your Documents folder.

 2. In the Solution Explorer, double-click the fi le Program.cs to display the code for the

 program in the Code and Text Editor window.

 3. Add the following statements to the body of the run method, between the opening

and closing braces:

double dailyRate = readDouble(“Enter your daily rate: “);
int noOfDays = readInt(“Enter the number of days: “);
writeFee(calculateFee(dailyRate, noOfDays));

The run method is called by the Main method when the application starts. (The way in

which it is called requires an understanding of classes, which we look at in Chapter 7,

“Creating and Managing Classes and Objects.”)

Develop the logic for the application

 Chapter 3 Writing Methods and Applying Scope 59

The block of code you have just added to the run method calls the readDouble method

(which you will write shortly) to ask the user for the daily rate for the consultant. The

next statement calls the readInt method (which you will also write) to obtain the num-

ber of days. Finally, the writeFee method (to be written) is called to display the results

on the screen. Notice that the value passed to writeFee is the value returned by the

calculateFee method (the last one you will need to write), which takes the daily rate and

the number of days and calculates the total fee payable.

Note You have not yet written the readDouble, readInt, writeFee, or calculateFee method,

so IntelliSense does not display these methods when you type this code. Do not try to

build the application yet, because it will fail.

Write the methods using the Generate Method Stub Wizard

1. In the Code and Text Editor window, right-click the readDouble method call in the run

method.

A shortcut menu appears that contains useful commands for generating and editing

code, as shown here:

2. On the shortcut menu, click Generate Method Stub.

Write the methods using the Generate Method Stub Wizard

60 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 The Generate Method Stub Wizard examines the call to the readDouble method,

 ascertains the type of its parameters and return value, and generates a method with a

default implementation, like this:

private double readDouble(string p)
{
 throw new NotImplementedException();
}

 The new method is created with the private qualifi er, which is described in Chapter 7.

The body of the method currently just throws a NotImplementedException. (Exceptions

are described in Chapter 6.) You will replace the body with your own code in the next

step.

3. Delete the throw new NotImplementedException(); statement from the readDouble

method, and replace it with the following lines of code:

Console.Write(p);
string line = Console.ReadLine();
return double.Parse(line);

 This block of code outputs the string in variable p to the screen. This variable is the

string parameter passed in when the method is called, and it contains a message

prompting the user to type in the daily rate.

 Note The Console.Write method is very similar to the Console.WriteLine statement that

you have used in earlier exercises, except that it does not output a newline character after

the message.

 The user types a value, which is read into a string by using the ReadLine method and

converted to a double by using the double.Parse method. The result is passed back as

the return value of the method call.

 Note The ReadLine method is the companion method to WriteLine; it reads user input

from the keyboard, fi nishing when the user presses the Enter key. The text typed by the

user is passed back as the return value.

4. Right-click the call to the readInt method in the run method, and then click Generate
Method Stub to generate the readInt method.

 The readInt method is generated, like this:

private int readInt(string p)
{
 throw new NotImplementedException();
}

 Chapter 3 Writing Methods and Applying Scope 61

5. Replace the throw new NotImplementedException(); statement in the body of the

 readInt method with the following code:

Console.Write(p);
string line = Console.ReadLine();
return int.Parse(line);

 This block of code is similar to the code for the readDouble method. The only

 difference is that the method returns an int value, so the string typed by the user is

converted to a number by using the int.Parse method.

6. Right-click the call to the calculateFee method in the run method, and then click

Generate Method Stub.

 The calculateFee method is generated, like this:

private object calculateFee(double dailyRate, int noOfDays)
{
 throw new NotImplementedException();
}

 Notice that the Generate Method Stub Wizard uses the name of the arguments passed

in to generate names for the parameters. (You can of course change the parameter

names if they are not suitable.) What is more intriguing is the type returned by the

method, which is object. The Generate Method Stub Wizard is unable to determine

exactly which type of value should be returned by the method from the context in

which it is called. The object type just means a “thing,” and you should change it to the

type you require when you add the code to the method. You will learn more about

the object type in Chapter 7.

7. Change the defi nition of the calculateFee method so that it returns a double, as shown

in bold type here:

private double calculateFee(double dailyRate, int noOfDays)
{
 throw new NotImplementedException();
}

8. Replace the body of the calculateFee method with the following statement, which

 calculates the fee payable by multiplying the two parameters together and then

returns it:

return dailyRate * noOfDays;

9. Right-click the call to the writeFee method in the run method, and then click Generate
Method Stub.

62 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Note that the Generate Method Stub Wizard uses the defi nition of the calculateFee

method to work out that its parameter should be a double. Also, the method call does

not use a return value, so the type of the method is void:

private void writeFee(double p)
{
 ...
}

 Tip If you feel suffi ciently comfortable with the syntax, you can also write methods by

typing them directly into the Code and Text Editor window. You do not always have to use

the Generate Method Stub menu option.

10. Type the following statements inside the writeFee method:

Console.WriteLine(“The consultant’s fee is: {0}”, p * 1.1);

 Note This version of the WriteLine method demonstrates the use of a format string. The

text {0} in the string used as the fi rst argument to the WriteLine method is a placeholder

that is replaced with the value of the expression following the string (p * 1.1) when it is

evaluated at run time. Using this technique is preferable to alternatives, such as converting

the value of the expression p * 1.1 to a string and using the + operator to concatenate it

to the message.

11. On the Build menu, click Build Solution.

Refactoring Code
 A very useful feature of Visual Studio 2008 is the ability to refactor code.

 Occasionally, you will fi nd yourself writing the same (or similar) code in more than one

place in an application. When this occurs, highlight the block of code you have just

typed, and on the Refactor menu, click Extract Method. The Extract Method dialog box

appears, prompting you for the name of a new method to create containing this code.

Type a name, and click OK. The new method is created containing your code, and the

code you typed is replaced with a call to this method. Extract Method is also intelligent

enough to work out whether the method should take any parameters and return a

value.

 Chapter 3 Writing Methods and Applying Scope 63

Test the program

1. On the Debug menu, click Start Without Debugging.

Visual Studio 2008 builds the program and then runs it. A console window appears.

2. At the Enter your daily rate prompt, type 525, and then press Enter.

3. At the Enter the number of days prompt, type 17, and then press Enter.

The program writes the following message to the console window:

The consultant’s fee is: 9817.5

4. Press the Enter key to close the application and return to the Visual Studio 2008

programming environment.

In the fi nal exercise, you’ll use the Visual Studio 2008 debugger to run your program in slow

motion. You’ll see when each method is called (this action is referred to as stepping into the
method) and then see how each return statement transfers control back to the caller (also

known as stepping out of the method). While you are stepping in and out of methods, you’ll

use the tools on the Debug toolbar. However, the same commands are also available on the

Debug menu when an application is running in Debug mode.

Step through the methods using the Visual Studio 2008 debugger

1. In the Code and Text Editor window, fi nd the run method.

2. Move the mouse to the fi rst statement in the run method:

double dailyRate = readDouble(“Enter your daily rate: “);

3. Right-click anywhere on this line, and on the shortcut menu, click Run To Cursor.

 The program starts and runs until it reaches the fi rst statement in the run method, and

then it pauses. A yellow arrow in the left margin of the Code and Text Editor window

indicates the current statement, which is also highlighted with a yellow background.

4. On the View menu, point to Toolbars, and then make sure the Debug toolbar is

selected.

 If it was not already visible, the Debug toolbar opens. It may appear docked with the

other toolbars. If you cannot see the toolbar, try using the Toolbars command on the

View menu to hide it, and notice which buttons disappear. Then display the toolbar

again. The Debug toolbar looks like this (the toolbar differs slightly between Visual

Studio 2008 and Microsoft Visual C# 2008 Express Edition):

Continue

Step into Step over

Step out

Test the program

Step through the methods using the Visual Studio 2008 debugger

64 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 Tip To make the Debug toolbar appear in its own window, use the handle at the left end

of the toolbar to drag it over the Code and Text Editor window.

5. On the Debug toolbar, click the Step Into button. (This is the sixth button from the left.)

 This action causes the debugger to step into the method being called. The yellow

cursor jumps to the opening brace at the start of the readDouble method.

6. Click Step Into again. The cursor advances to the fi rst statement:

Console.Write(p);

 Tip You can also press F11 rather than repeatedly clicking Step Into on the Debug toolbar.

7. On the Debug toolbar, click Step Over. (This is the seventh button from the left.)

 This action causes the method to execute the next statement without debugging it

(stepping into it). The yellow cursor moves to the second statement of the method,

and the program displays the Enter your daily rate prompt in a Console window before

returning to Visual Studio 2008. (The Console window might be hidden behind Visual

Studio.)

 Tip You can also press F10 rather than clicking Step Over on the Debug toolbar.

8. On the Debug toolbar, click Step Over.

 This time, the yellow cursor disappears and the Console window gets the focus because

the program is executing the Console.ReadLine method and is waiting for you to type

something.

9. Type 525 in the Console window, and then press Enter.

 Control returns to Visual Studio 2008. The yellow cursor appears on the third line of the

method.

10. Without clicking, move the mouse over the reference to the line variable on either the

second or the third line of the method (it doesn’t matter which).

 A ScreenTip appears, displaying the current value of the line variable (“525”). You can

use this feature to make sure that a variable has been set to an expected value while

stepping through methods.

11. On the Debug toolbar, click Step Out. (This is the eighth button from the left.)

 Chapter 3 Writing Methods and Applying Scope 65

 This action causes the current method to continue running uninterrupted to its end.

The readDouble method fi nishes, and the yellow cursor is placed back at the fi rst

 statement of the run method.

 Tip You can also press Shift+F11 rather than clicking Step Out on the Debug toolbar.

12. On the Debug toolbar, click Step Into.

 The yellow cursor moves to the second statement in the run method:

int noOfDays = readInt(“Enter the number of days: “);

13. On the Debug toolbar, click Step Over.

 This time you have chosen to run the method without stepping through it. The Console

window appears again, prompting you for the number of days.

14. In the Console window, type 17, and then press Enter.

 Control returns to Visual Studio 2008. The yellow cursor moves to the third statement

of the run method:

writeFee(calculateFee(dailyRate, noOfDays));

15. On the Debug toolbar, click Step Into.

 The yellow cursor jumps to the opening brace at the start of the calculateFee method.

This method is called fi rst, before writeFee, because the value returned by this method

is used as the parameter to writeFee.

16. On the Debug toolbar, click Step Out.

 The yellow cursor jumps back to the third statement of the run method.

17. On the Debug toolbar, click Step Into.

 This time, the yellow cursor jumps to the opening brace at the start of the writeFee

method.

18. Place the mouse over the p variable in the method defi nition.

 The value of p, 8925.0, is displayed in a ScreenTip.

19. On the Debug toolbar, click Step Out.

 The message The consultant’s fee is: 9817.5 is displayed in the Console window. (You

may need to bring the Console window to the foreground to display it if it is hidden

behind Visual Studio 2008.) The yellow cursor returns to the third statement in the run

method.

20. On the Debug toolbar, click Continue (this is the fi rst button on the toolbar) to cause the

program to continue running without stopping at each statement.

66 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 Tip You can also press F5 to continue execution in the debugger.

 The application completes and fi nishes running.

 Congratulations! You’ve successfully written and called methods and used the Visual

Studio 2008 debugger to step in and out of methods as they run.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 4, “Using Decision Statements .”

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 3 Quick Reference
 To Do this

 Declare a method Write the method inside a class. For example:

int addValues(int leftHandSide, int rightHandSide)
{
 ...
}

 Return a value from inside a

method

Write a return statement inside the method. For example:

return leftHandSide + rightHandSide;

 Return from a method before

the end of the method

Write a return statement inside the method. For example:

return;

 Call a method Write the name of the method, together with any arguments

between parentheses. For example:

addValues(39, 3);

 Use the Generate Method Stub

Wizard

Right-click a call to the method, and then click Generate Method Stub
on the shortcut menu.

 Display the Debug toolbar On the View menu, point to Toolbars, and then click Debug.

 Step into a method On the Debug toolbar, click Step Into.

or

On the Debug menu, click Step Into.

 Step out of a method On the Debug toolbar, click Step Out.
or

On the Debug menu, click Step Out.

Chapter 4

Using Decision Statements
 After completing this chapter, you will be able to:

 Declare Boolean variables.

 Use Boolean operators to create expressions whose outcome is either true or false.

 Write if statements to make decisions based on the result of a Boolean expression.

 Write switch statements to make more complex decisions.

 In Chapter 3, “Writing Methods and Applying Scope,” you learned how to group related

statements into methods. You also learned how to use parameters to pass information to a

method and how to use return statements to pass information out of a method. Dividing a

program into a set of discrete methods, each designed to perform a specifi c task or calcula-

tion, is a necessary design strategy. Many programs need to solve large and complex prob-

lems. Breaking up a program into methods helps you understand these problems and focus

on how to solve them one piece at a time. You also need to be able to write methods that

selectively perform different actions depending on the circumstances. In this chapter, you’ll

see how to accomplish this task.

Declaring Boolean Variables
 In the world of programming (unlike in the real world), everything is black or white, right or

wrong, true or false. For example, if you create an integer variable called x, assign the value

99 to x, and then ask, “Does x contain the value 99?” the answer is defi nitely true. If you ask,

“Is x less than 10?” the answer is defi nitely false. These are examples of Boolean expressions.
A Boolean expression always evaluates to true or false.

Note The answers to these questions are not defi nitive for all programming languages. An

unassigned variable has an undefi ned value, and you cannot, for example, say that it is defi nitely

less than 10. Issues such as this one are a common source of errors in C and C++ programs. The

Microsoft Visual C# compiler solves this problem by ensuring that you always assign a value to a

variable before examining it. If you try to examine the contents of an unassigned variable, your

program will not compile.
 67

68 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 Microsoft Visual C# provides a data type called bool. A bool variable can hold one of two

values: true or false. For example, the following three statements declare a bool variable

called areYouReady, assign true to the variable, and then write its value to the console:

bool areYouReady;
areYouReady = true;
Console.WriteLine(areYouReady); // writes True

Using Boolean Operators
 A Boolean operator is an operator that performs a calculation whose result is either true or

false. C# has several very useful Boolean operators, the simplest of which is the NOT opera-

tor, which is represented by the exclamation point (!). The ! operator negates a Boolean val-

ue, yielding the opposite of that value. In the preceding example, if the value of the variable

areYouReady is true, the value of the expression !areYouReady is false.

Understanding Equality and Relational Operators
 Two Boolean operators that you will frequently use are the equality (==) and inequality (!=)

operators. You use these binary operators to fi nd out whether one value is the same as an-

other value of the same type. The following table summarizes how these operators work,

 using an int variable called age as an example.

 Operator Meaning Example Outcome if age is 42

 == Equal to age == 100 False

 != Not equal to age != 0 True

 Closely related to these two operators are the relational operators. You use these operators

to fi nd out whether a value is less than or greater than another value of the same type. The

following table shows how to use these operators.

 Operator Meaning Example Outcome if age is 42
 < Less than age < 21 False

 <= Less than or equal to age <= 18 False

 > Greater than age > 16 True

 >= Greater than or equal to age >= 30 True

 Note Don’t confuse the equality operator == with the assignment operator =. The expression

x==y compares x with y and has the value true if the values are the same. The expression x=y

assigns the value of y to x.

 Chapter 4 Using Decision Statements 69
Understanding Conditional Logical Operators
 C# also provides two other Boolean operators: the logical AND operator, which is

 represented by the && symbol, and the logical OR operator, which is represented by the ||

symbol. Collectively, these are known as the conditional logical operators. Their purpose is to

combine two Boolean expressions or values into a single Boolean result. These binary opera-

tors are similar to the equality and relational operators in that the value of the expressions in

which they appear is either true or false, but they differ in that the values on which they op-

erate must be either true or false.

 The outcome of the && operator is true if and only if both of the Boolean expressions

it operates on are true. For example, the following statement assigns the value true to

 validPercentage if and only if the value of percent is greater than or equal to 0 and the

 value of percent is less than or equal to 100:

bool validPercentage;
validPercentage = (percent >= 0) && (percent <= 100);

 Tip A common beginner’s error is to try to combine the two tests by naming the percent
variable only once, like this:

percent >= 0 && <= 100 // this statement will not compile

 Using parentheses helps avoid this type of mistake and also clarifi es the purpose of the

expression. For example, compare these two expressions:

validPercentage = percent >= 0 && percent <= 100

 and

validPercentage = (percent >= 0) && (percent <= 100)

 Both expressions return the same value because the precedence of the && operator is less than

that of >= and <=. However, the second expression conveys its purpose in a more readable

manner.

 The outcome of the || operator is true if either of the Boolean expressions it operates

on is true. You use the || operator to determine whether any one of a combination of

Boolean expressions is true. For example, the following statement assigns the value true to

 invalidPercentage if the value of percent is less than 0 or the value of percent is greater than

100:

bool invalidPercentage;
invalidPercentage = (percent < 0) || (percent > 100);

70 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Short-Circuiting
 The && and || operators both exhibit a feature called short-circuiting. Sometimes it is

not necessary to evaluate both operands when ascertaining the result of a conditional

logical expression. For example, if the left operand of the && operator evaluates to

false, the result of the entire expression must be false regardless of the value of the

right operand. Similarly, if the value of the left operand of the || operator evaluates

to true, the result of the entire expression must be true, irrespective of the value of the

right operand. In these cases, the && and || operators bypass the evaluation of the

right operand. Here are some examples:

(percent >= 0) && (percent <= 100)

 In this expression, if the value of percent is less than 0, the Boolean expression on the

left side of && evaluates to false. This value means that the result of the entire expres-

sion must be false, and the Boolean expression to the right of the && operator is not

evaluated.

(percent < 0) || (percent > 100)

 In this expression, if the value of percent is less than 0, the Boolean expression on the

left side of || evaluates to true. This value means that the result of the entire expres-

sion must be true and the Boolean expression to the right of the || operator is not

evaluated.

 If you carefully design expressions that use the conditional logical operators, you

can boost the performance of your code by avoiding unnecessary work. Place simple

Boolean expressions that can be evaluated easily on the left side of a conditional logical

operator and put more complex expressions on the right side. In many cases, you will

fi nd that the program does not need to evaluate the more complex expressions.

Summarizing Operator Precedence and Associativity
 The following table summarizes the precedence and associativity of all the operators you

have learned about so far. Operators in the same category have the same precedence. The

operators in categories higher up in the table take precedence over operators in categories

lower down.

U

Chapter 4 Using Decision Statements 71

 Category Operators Description Associativity

 Primary ()

++

--

Precedence override

Post-increment

Post-decrement

Left

 Unary !

+

-

++

--

Logical NOT

Addition

Subtraction

Pre-increment

Pre-decrement

Left

 Multiplicative *

/

%

Multiply

Divide

Division remainder

(modulus)

Left

 Additive +

-

Addition

Subtraction

Left

 Relational <

<=

>

>=

Less than

Less than or equal to

Greater than

Greater than or equal to

Left

 Equality ==

!=

Equal to

Not equal to

Left

 Conditional AND && Logical AND Left

 Conditional OR || Logical OR Left

 Assignment = Right

sing if Statements to Make Decisions
 When you want to choose between executing two different blocks of code depending on the

result of a Boolean expression, you can use an if statement.

Understanding if Statement Syntax
 The syntax of an if statement is as follows (if and else are C# keywords):

if (booleanExpression)
 statement-1;
else
 statement-2;

72 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 If booleanExpression evaluates to true, statement-1 runs; otherwise, statement-2 runs. The

else keyword and the subsequent statement-2 are optional. If there is no else clause and the

booleanExpression is false, execution continues with whatever code follows the if statement.

 For example, here’s an if statement that increments a variable representing the second hand

of a stopwatch (minutes are ignored for now). If the value of the seconds variable is 59, it is

reset to 0; otherwise, it is incremented using the ++ operator:

int seconds;
...
if (seconds == 59)
 seconds = 0;
else
 seconds++;

Boolean Expressions Only, Please!
 The expression in an if statement must be enclosed in parentheses. Additionally, the

expression must be a Boolean expression. In some other languages (notably C and

C++), you can write an integer expression, and the compiler will silently convert the

integer value to true (nonzero) or false (0). C# does not support this behavior, and the

compiler reports an error if you write such an expression.

 If you accidentally specify the assignment operator, =, instead of the equality test

operator, ==, in an if statement, the C# compiler recognizes your mistake and refuses to

compile your code. For example:

int seconds;
...
if (seconds = 59) // compile-time error
...
if (seconds == 59) // ok

 Accidental assignments were another common source of bugs in C and C++ programs,

which would silently convert the value assigned (59) to a Boolean expression (anything

nonzero was considered to be true), with the result that the code following the if state-

ment would be performed every time.

 Incidentally, you can use a Boolean variable as the expression for an if statement,

although it must still be enclosed in parentheses, as shown in this example:

bool inWord;
...
if (inWord == true) // ok, but not commonly used
...
if (inWord) // better

 Chapter 4 Using Decision Statements 73
Using Blocks to Group Statements
 Notice that the syntax of the if statement shown earlier specifi es a single statement after the

if (booleanExpression) and a single statement after the else keyword. Sometimes you’ll want

to perform more than one statement when a Boolean expression is true. You could group

the statements inside a new method and then call the new method, but a simpler solution is

to group the statements inside a block. A block is simply a sequence of statements grouped

between an opening and a closing brace. A block also starts a new scope. You can defi ne

variables inside a block, but they will disappear at the end of the block.

 In the following example, two statements that reset the seconds variable to 0 and increment

the minutes variable are grouped inside a block, and the whole block executes if the value of

seconds is equal to 59:

int seconds = 0;
int minutes = 0;
...
if (seconds == 59)
{
 seconds = 0;
 minutes++;
}
else
 seconds++;

 Important If you omit the braces, the C# compiler associates only the fi rst statement (seconds
= 0;) with the if statement. The subsequent statement (minutes++;) will not be recognized by

the compiler as part of the if statement when the program is compiled. Furthermore, when the

compiler reaches the else keyword, it will not associate it with the previous if statement, and it

will report a syntax error instead.

Cascading if Statements
 You can nest if statements inside other if statements. In this way, you can chain together a

sequence of Boolean expressions, which are tested one after the other until one of them

evaluates to true. In the following example, if the value of day is 0, the fi rst test evaluates to

true and dayName is assigned the string “Sunday”. If the value of day is not 0, the fi rst test

fails and control passes to the else clause, which runs the second if statement and compares

the value of day with 1. The second if statement is reached only if the fi rst test is false.

Similarly, the third if statement is reached only if the fi rst and second tests are false.

if (day == 0)
 dayName = “Sunday”;
else if (day == 1)
 dayName = “Monday”;

74 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

else if (day == 2)
 dayName = “Tuesday”;
else if (day == 3)
 dayName = “Wednesday”;
else if (day == 4)
 dayName = “Thursday”;
else if (day == 5)
 dayName = “Friday”;
else if (day == 6)
 dayName = “Saturday”;
else
 dayName = “unknown”;

 In the following exercise, you’ll write a method that uses a cascading if statement to compare

two dates.

Write if statements

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the Selection project, located in the \Microsoft Press\Visual CSharp Step by

Step\Chapter 4\Selection folder in your Documents folder.

3. On the Debug menu, click Start Without Debugging.

Visual Studio 2008 builds and runs the application. The form contains two

DateTimePicker controls called fi rst and second. (These controls display a calendar

allowing you to select a date when you click the drop-down arrow.) Both controls are

initially set to the current date.

4. Click Compare.

 The following text appears in the text box:

first == second : False
first != second : True
first < second : False
first <= second : False
first > second : True
first >= second : True

 The Boolean expression fi rst == second should be true because both fi rst and second

are set to the current date. In fact, only the less than operator and the greater than or

equal to operator seem to be working correctly.

Write if statementsf

 Chapter 4 Using Decision Statements 75

 8
5. Click Quit to return to the Visual Studio 2008 programming environment.

6. Display the code for Window1.xaml.cs in the Code and Text Editor window.

7. Locate the compareClick method, which looks like this:

private int compareClick(object sender, RoutedEventArgs e)
{
 int diff = dateCompare(first.Value, second.Value);
 info.Text = “”;
 show(“first == second”, diff == 0);
 show(“first != second”, diff != 0);
 show(“first < second”, diff < 0);
 show(“first <= second”, diff <= 0);
 show(“first > second”, diff > 0);
 show(“first >= second”, diff >= 0);
}

 This method runs whenever the user clicks the Compare button on the form. It retrieves

the values of the dates displayed in the fi rst and second DateTimePicker controls on the

form and calls another method called dateCompare to compare them. You will examine

the dateCompare method in the next step.

 The show method summarizes the results of the comparison in the info text box control

on the form.

. Locate the dateCompare method, which looks like this:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 // TO DO
 return 42;
}

 This method currently returns the same value whenever it is called, rather than 0, -1,

or +1 depending on the values of its parameters. This explains why the application is

not working as expected!

76 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 The purpose of this method is to examine its arguments and return an integer value

based on their relative values; it should return 0 if they have the same value, -1 if the

value of the fi rst argument is less than the value of the second argument, and +1 if the

value of the fi rst argument is greater than the value of the second argument. (A date is

considered greater than another date if it comes after it chronologically.) You need to

implement the logic in this method to compare two dates correctly.

9. Remove the // TO DO comment and the return statement from the dateCompare

method.

10. Add the following statements shown in bold type to the body of the dateCompare

method:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 int result;

 if (leftHandSide.Year < rightHandSide.Year)
 result = -1;
 else if (leftHandSide.Year > rightHandSide.Year)
 result = +1;
}

 If the expression leftHandSide.Year < rightHandSide.Year is true, the date

in leftHandSide must be earlier than the date in rightHandSide, so the program

sets the result variable to -1. Otherwise, if the expression leftHandSide.Year >
rightHandSide.Year is true, the date in leftHandSide must be later than the date in

rightHandSide, and the program sets the result variable to +1.

 If the expression leftHandSide.Year < rightHandSide.Year is false and the

expression leftHandSide.Year > rightHandSide.Year is also false, the Year
property of both dates must be the same, so the program needs to compare the

months in each date.

11. Add the following statements shown in bold type to the body of the dateCompare

method, after the code you entered in the preceding step:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 ...

 else if (leftHandSide.Month < rightHandSide.Month)
 result = -1;
 else if (leftHandSide.Month > rightHandSide.Month)
 result = +1;
}

 These statements follow a similar logic for comparing months to that used to compare

years in the preceding step.

 Chapter 4 Using Decision Statements 77

 If the expression leftHandSide.Month < rightHandSide.Month is false and the

expression leftHandSide.Month > rightHandSide.Month is also false, the Month

property of both dates must be the same, so the program fi nally needs to compare the

days in each date.

12. Add the following statements to the body of the dateCompare method, after the code

you entered in the preceding two steps:

private int dateCompare(DateTime leftHandSide, DateTime rightHandSide)
{
 ...

 else if (leftHandSide.Day < rightHandSide.Day)
 result = -1;
 else if (leftHandSide.Day > rightHandSide.Day)
 result = +1;
 else
 result = 0;
 return result;
}

 You should recognize the pattern in this logic by now.

 If leftHandSide.Day < rightHandSide.Day and leftHandSide.Day >
rightHandSide.Day both are false, the value in the Day properties in both variables

must be the same. The Month values and the Year values must also be identical,

respectively, for the program logic to have reached this far, so the two dates must be

the same, and the program sets the value of result to 0.

 The fi nal statement returns the value stored in the result variable.

13. On the Debug menu, click Start Without Debugging.

 The application is rebuilt and restarted. Once again, the two DateTimePicker controls,

fi rst and second, are set to the current date.

14. Click Compare.

 The following text appears in the text box:

first == second : True
first != second : False
first < second : False
first <= second : True
first > second : False
first >= second : True

 These are the correct results for identical dates.

15. Click the drop-down arrow for the second DateTimePicker control, and then click

tomorrow’s date.

78 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 16. Click Compare.

 The following text appears in the text box:

first == second : False
first != second : True
first < second : True
first <= second : True
first > second : False
first >= second : False

 Again, these are the correct results when the fi rst date is earlier than the second date.

 17. Test some other dates, and verify that the results are as you would expect. Click Quit
when you have fi nished.

Comparing Dates in Real-World Applications
 Now that you have seen how to use a rather long and complicated series of if and else

statements, I should mention that this is not the technique you would use to com-

pare dates in a real-world application. In the Microsoft .NET Framework class library,

dates are held using a special type called DateTime. If you look at the dateCompare

method you have written in the preceding exercise, you will see that the two param-

eters, leftHandSide and rightHandSide, are DateTime values. The logic you have written

compares only the date part of these variables—there is also a time element. For two

DateTime values to be considered equal, they should not only have the same date but

also the same time. Comparing dates and times is such a common operation that the

DateTime type has a built-in method called Compare for doing just that. The Compare

method takes two DateTime arguments and compares them, returning a value indicat-

ing whether the fi rst argument is less than the second, in which case the result will be

negative; whether the fi rst argument is greater than the second, in which case the result

will be positive; or whether both arguments represent the same date and time, in which

case the result will be 0.

Using switch Statements
 Sometimes when you write a cascading if statement, all the if statements look similar because

they all evaluate an identical expression. The only difference is that each if compares the

result of the expression with a different value. For example, consider the following block of

 Chapter 4 Using Decision Statements 79
code that uses an if statement to examine the value in the day variable and work out which

day of the week it is:

if (day == 0)
 dayName = “Sunday”;
else if (day == 1)
 dayName = “Monday”;
else if (day == 2)
 dayName = “Tuesday”;
else if (day == 3)
 ...
else
 dayName = “Unknown”;

 In these situations, often you can rewrite the cascading if statement as a switch statement to

make your program more effi cient and more readable.

Understanding switch Statement Syntax
 The syntax of a switch statement is as follows (switch, case, and default are keywords):

switch (controllingExpression)
{
case constantExpression :
 statements
 break;
case constantExpression :
 statements
 break;
...
default :
 statements
 break;
}

 The controllingExpression is evaluated once. Control then jumps to the block of code identi-

fi ed by the constantExpression whose value is equal to the result of the controllingExpression.

(The identifi er is called a case label.) Execution runs as far as the break statement, at which

point the switch statement fi nishes and the program continues at the fi rst statement after the

closing brace of the switch statement. If none of the constantExpression values are equal to

the value of the controllingExpression, the statements below the optional default label run.

 Note Each constantExpression value must be unique, so the controllingExpression will match

only one of them. If the value of the controllingExpression does not match any constantExpression

value, and there is no default label, program execution continues with the fi rst statement after

the closing brace of the switch statement.

80 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 For example, you can rewrite the previous cascading if statement as the following switch

statement:

switch (day)
{
case 0 :
 dayName = “Sunday”;
 break;
case 1 :
 dayName = “Monday”;
 break;
case 2 :
 dayName = “Tuesday”;
 break;
...
default :
 dayName = “Unknown”;
 break;
}

Following the switch Statement Rules
 The switch statement is very useful, but unfortunately, you can’t always use it when you may

like to. Any switch statement you write must adhere to the following rules:

 You can use switch only on primitive data types, such as int or string. With any other

types (including fl oat and double), you’ll have to use an if statement.

 The case labels must be constant expressions, such as 42 or “42”. If you need to

 calculate your case label values at run time, you must use an if statement.

 The case labels must be unique expressions. In other words, two case labels cannot

have the same value.

 You can specify that you want to run the same statements for more than one value by

providing a list of case labels and no intervening statements, in which case the code for

the fi nal label in the list is executed for all cases in that list. However, if a label has one

or more associated statements, execution cannot fall through to subsequent labels, and

the compiler generates an error. For example:

switch (trumps)
{
case Hearts :
case Diamonds : // Fall-through allowed – no code between labels
 color = "Red"; // Code executed for Hearts and Diamonds
 break;
case Clubs :
 color = "Black";
case Spades : // Error – code between labels
 color = "Black";
 break;
}

 Chapter 4 Using Decision Statements 81
Note The break statement is the most common way to stop fall-through, but you can also use a

return statement or a throw statement. The throw statement is described in Chapter 6,

“Managing Errors and Exceptions.”

switch Fall-Through Rules
 Because you cannot accidentally fall through from one case label to the next if there is

any intervening code, you can freely rearrange the sections of a switch statement with-

out affecting its meaning (including the default label, which by convention is usually

placed as the last label but does not have to be).

 C and C++ programmers should note that the break statement is mandatory for every

case in a switch statement (even the default case). This requirement is a good thing; it is

very common in C or C++ programs to forget the break statement, allowing execution

to fall through to the next label and leading to bugs that are very diffi cult to spot.

 If you really want to, you can mimic C/C++ fall-through in C# by using a goto statement

to go to the following case or default label. Using goto in general is not recommended,

though, and this book does not show you how to do it!

 In the following exercise, you will complete a program that reads the characters of a string

and maps each character to its XML representation. For example, the left angle bracket

character, <, has a special meaning in XML (it’s used to form elements). If you have data that

contains this character, it must be translated into the text “<” so that an XML processor

knows that it is data and not part of an XML instruction. Similar rules apply to the right angle

bracket (>), ampersand (&), single quotation mark (‘), and double quotation mark (“) char-

acters. You will write a switch statement that tests the value of the character and traps the

 special XML characters as case labels.

Write switch statements

 1. Start Visual Studio 2008 if it is not already running.

 2. Open the SwitchStatement project, located in the \Microsoft Press\Visual CSharp Step

by Step\Chapter 4\SwitchStatement folder in your Documents folder.

 3. On the Debug menu, click Start Without Debugging.

 Visual Studio 2008 builds and runs the application. The application displays a form

containing two text boxes separated by a Copy button.

Write switch statements

82 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

4. Type the following sample text into the upper text box:

inRange = (lo <= number) && (hi >= number);

5. Click Copy.

 The statement is copied verbatim into the lower text box, and no translation of the <,

&, or > character occurs.

6. Close the form, and return to Visual Studio 2008.

7. Display the code for Window1.xaml.cs in the Code and Text Editor window, and locate

the copyOne method.

 The copyOne method copies the character specifi ed as its input parameter to the end

of the text displayed in the lower text box. At the moment, copyOne contains a switch

statement with a single default section. In the following few steps, you will modify this

switch statement to convert characters that are signifi cant in XML to their XML map-

ping. For example, the < character will be converted to the string “<”.

8. Add the following statements to the switch statement after the opening brace for the

statement and directly before the default label:

case ‘<’ :
 target.Text += “<”;
 break;

 If the current character being copied is a >, this code will append the string “<” to

the text being output in its place.

9. Add the following statements to the switch statement after the break statement you

have just added and above the default label:

case ‘>’ :
 target.Text += “>”;
 break;
case ‘&’ :
 target.Text += “&”;
 break;

 Chapter 4 Using Decision Statements 83

case ‘\”’ :
 target.Text += “"”;
 break;
case ‘\’’ :
 target.Text += “'”;
 break;

 Note The single quotation mark (‘) and double quotation mark (“) have a special meaning

in C# as well as in XML—they are used to delimit character and string constants. The back-

slash (\) in the fi nal two case labels is an escape character that causes the C# compiler to

treat these characters as literals rather than as delimiters.

10. On the Debug menu, click Start Without Debugging.

11. Type the following text into the upper text box:

inRange = (lo <= number) && (hi >= number);

12. Click Copy.

 The statement is copied into the lower text box. This time, each character undergoes

the XML mapping implemented in the switch statement. The target text box displays

the following text:

inRange = (lo <= number) && (hi >= number)

13. Experiment with other strings, and verify that all special characters (<, >, &, “, and ‘) are

handled correctly.

14. Close the form.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 open, and turn to Chapter 5.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

84 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Chapter 4 Quick Reference
 To Do this Example

 Determine whether two values

are equivalent

Use the == or != operator. answer == 42

 Compare the value of two

expressions

Use the <, <=, >, or >=

operator.

Age >= 21

 Declare a Boolean variable Use the bool keyword as

the type of the variable.

bool inRange;

 Create a Boolean expression that

is true only if two other conditions

are true

Use the && operator. inRange = (lo <= number)
 && (number <= hi);

 Create a Boolean expression

that is true if either of two other

conditions is true

Use the || operator. outOfRange = (number < lo)
 || (hi < number);

 Run a statement if a

condition is true

Use an if statement. If (inRange)
 process();

 Run more than one statement if

a condition is

true

Use an if statement and a

block.

If (seconds == 59)
{
 seconds = 0;
 minutes++;
}

 Associate different

statements with different values

of a controlling expression

Use a switch statement. switch (current)
{
 case 0:
 ...
 break;

 case 1:
 ...
 break;
 default :
 ...
 break;
}

Chapter 5

Using Compound Assignment and
Iteration Statements

 After completing this chapter, you will be able to:

 Update the value of a variable by using compound assignment operators.

 Write while, for, and do iteration statements.

 Step through a do statement and watch as the values of variables change.

 In Chapter 4, “Using Decision Statements,” you learned how to use the if and switch

 constructs to run statements selectively. In this chapter, you’ll see how to use a variety of

iteration (or looping) statements to run one or more statements repeatedly. When you write

iteration statements, you usually need to control the number of iterations that you perform.

You can achieve this by using a variable, updating its value with each iteration, and stop-

ping the process when the variable reaches a particular value. You’ll also learn about the

special assignment operators that you should use to update the value of a variable in these

circumstances.

Using Compound Assignment Operators
 You’ve already seen how to use arithmetic operators to create new values. For example, the

following statement uses the plus operator (+) to display to the console a value that is 42

greater than the variable answer:

Console.WriteLine(answer + 42);

 You’ve also seen how to use assignment statements to change the value of a variable. The

following statement uses the assignment operator to change the value of answer to 42:

answer = 42;

 If you want to add 42 to the value of a variable, you can combine the assignment operator

and the addition operator. For example, the following statement adds 42 to answer. After this

statement runs, the value of answer is 42 more than it was before:

answer = answer + 42;
 85

86 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 Although this statement works, you’ll probably never see an experienced programmer write

code like this. Adding a value to a variable is so common that C# lets you perform this task in

shorthand manner by using the operator +=. To add 42 to answer, you can write the following

statement:

answer += 42;

 You can use this shortcut to combine any arithmetic operator with the assignment operator,

as the following table shows. These operators are collectively known as the compound
 assignment operators.

 Don’t write this Write this

 variable = variable * number; variable *= number;

 variable = variable / number; variable /= number;

 variable = variable % number; variable %= number;

 variable = variable + number; variable += number;

 variable = variable - number; variable -= number;

 Tip The compound assignment operators share the same precedence and right associativity as

the simple assignment operators.

 The += operator also functions on strings; it appends one string to the end of another. For

example, the following code displays “Hello John” on the console:

string name = “John”;
string greeting = “Hello “;
greeting += name;
Console.WriteLine(greeting);

 You cannot use any of the other compound assignment operators on strings.

 Note Use the increment (++) and decrement (--) operators instead of a compound assignment

operator when incrementing or decrementing a variable by 1. For example, replace:

count += 1;

 with

count++;

 Chapter 5 Using Compound Assignment and Iteration Statements 87
Writing while Statements
 You use a while statement to run a statement repeatedly while some condition is true. The

syntax of a while statement is as follows:

while (booleanExpression)
 statement

 The Boolean expression is evaluated, and if it is true, the statement runs and then the

Boolean expression is evaluated again. If the expression is still true, the statement is repeated

and then the Boolean expression is evaluated again. This process continues until the Boolean

expression evaluates to false, when the while statement exits. Execution then continues with

the fi rst statement after the while statement. A while statement shares many syntactic simi-

larities with an if statement (in fact, the syntax is identical except for the keyword):

 The expression must be a Boolean expression.

 The Boolean expression must be written inside parentheses.

 If the Boolean expression evaluates to false when fi rst evaluated, the statement does n

not run.

 If you want to perform two or more statements under the control of a while statement,

you must use braces to group those statements in a block.

 Here’s a while statement that writes the values 0 through 9 to the console:

int i = 0;
while (i < 10)
{
 Console.WriteLine(i);
 i++;
}

 All while statements should terminate at some point. A common beginner’s mistake is forget-

ting to include a statement to cause the Boolean expression eventually to evaluate to false

and terminate the loop, which results in a program that runs forever. In the example, the i++

statement performs this role.

 Note The variable i in the while loop controls the number of iterations that it performs. This is a

very common idiom, and the variable that performs this role is sometimes called the Sentinel
variable.

 In the following exercise, you will write a while loop to iterate through the contents of a text

fi le one line at a time and write each line to a text box in a form.

88 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

Write a while statement

1. Using Microsoft Visual Studio 2008, open the WhileStatement project, located in the

\Microsoft Press\Visual CSharp Step by Step\Chapter 5\WhileStatement folder in your

Documents folder.

2. On the Debug menu, click Start Without Debugging.

 Visual Studio 2008 builds and runs the application. The application is a simple text fi le

viewer that you can use to select a fi le and display its contents.

3. Click Open File.

 The Open dialog box opens.

4. Move to the \Microsoft Press\Visual CSharp Step by Step\Chapter 5\WhileStatement\

WhileStatement folder in your Documents folder.

5. Select the fi le Window1.xaml.cs, and then click Open.

 The name of the fi le, Window1.xaml.cs, appears in the small text box on the form, but

the contents of the fi le Window1.xaml.cs do not appear in the large text box. This is

because you have not yet implemented the code that reads the contents of the fi le and

displays it. You will add this functionality in the following steps.

6. Close the form and return to Visual Studio 2008.

7. Display the code for the fi le Window1.xaml.cs in the Code and Text Editor window, and

locate the openFileDialogFileOk method.

 This method runs when the user clicks the Open button after selecting a fi le in the

Open dialog box. The body of the method is currently implemented as follows:

private void openFileDialogFileOk(object sender, System.ComponentModel.
CancelEventArgs e)
{
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 filename.Text = src.Name;

 // add while loop here
}

 The fi rst statement declares a string variable called fullPathname and initializes it to the

FileName property of the openFileDialog object. This property contains the full name

(including the folder) of the source fi le selected in the Open dialog box.

 Note The openFileDialog object is an instance of the OpenFileDialog class. This class

provides methods that you can use to display the standard Windows Open dialog box,

select a fi le, and retrieve the name and path of the selected fi le.

Write a while statement

 Chapter 5 Using Compound Assignment and Iteration Statements 89

 1

 1
 The second statement declares a FileInfo variable called src and initializes it to an object

that represents the fi le selected in the Open dialog box. (FileInfo is a class provided by

the Microsoft .NET Framework that you can use to manipulate fi les.)

 The third statement assigns the Text property of the fi lename control to the Name

property of the src variable. The Name property of the src variable holds the name

of the fi le selected in the Open dialog box, but without the name of the folder. This

 statement displays the name of the fi le in the text box on the form.

8. Replace the // add while loop here comment with the following statement:

source.Text = “”;

 The source variable refers to the large text box on the form. Setting its Text property to

the empty string (“”) clears any text that is currently displayed in this text box.

9. Type the following statement after the line you just added to the openFileDialogFileOk

method:

TextReader reader = src.OpenText();

 This statement declares a TextReader variable called reader. TextReader is another class,

provided by the .NET Framework, that you can use for reading streams of characters

from sources such as fi les. It is located in the System.IO namespace. The FileInfo class

provides the OpenText method for opening a fi le for reading. This statement opens the

fi le selected by the user in the Open dialog box so that the reader variable can read the

contents of this fi le.

0. Add the following statement after the previous line you added to the openFileDialog-
FileOk method:

string line = reader.ReadLine();

 This statement declares a string variable called line and calls the reader.ReadLine

 method to read the fi rst line from the fi le into this variable. This method returns either

the next line of text or a special value called null if there are no more lines to read. (If

there are no lines initially, the fi le must be empty.)

1. Add the following statements to the openFileDialogFileOk method after the code you

have just entered:

while (line != null)
{
 source.Text += line + ‘\n’;
 line = reader.ReadLine();
}

 This is a while loop that iterates through the fi le one line at a time until there are no

more lines available.

90 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 The Boolean expression at the start of the while loop examines the value in the line

variable. If it is not null, the body of the loop displays the current line of text by

 appending it to the end of the Text property of the source text box, together with a

newline character (‘\n’ —the ReadLine method of the TextReader object strips out

the newline characters as it reads each line, so the code needs to add it back in

again). The while loop then reads in the next line of text before performing the next

iteration. The while loop fi nishes when there is no more text in the fi le and the ReadLine

method returns a null value.

12. Add the following statement after the closing brace at the end of the while loop:

reader.Close();

 This statement closes the fi le.

13. On the Debug menu, click Start Without Debugging.

14. When the form appears, click Open File.

15. In the Open File dialog box, move to the \Microsoft Press\Visual CSharp Step by Step\

Chapter 5\WhileStatement\WhileStatement folder in your Documents folder. Select the

fi le Window1.xaml.cs, and then click Open.

 This time the contents of the selected fi le appear in the text box—you should recognize

the code that you have just been editing:

16. Scroll through the text in the text box, and fi nd the openFileDialogFileOk method.

Verify that this method contains the code you just added.

17. Close the form and return to the Visual Studio 2008 programming environment.

 Chapter 5 Using Compound Assignment and Iteration Statements 91
Writing for Statements
 Most while statements have the following general structure:

initialization
while (Boolean expression)
{
 statement
 update control variable
}

 With a for statement, you can write a more formal version of this kind of construct by com-

bining the initialization, the Boolean expression, and the update (the loop’s “housekeeping”).

You’ll fi nd the for statement useful because it is much harder to forget any one of the three

parts. Here is the syntax of a for statement:

for (initialization; Boolean expression; update control variable)
 statement

 You can rephrase the while loop shown earlier that displays the integers from 0 to 9 as the

following for loop:

for (int i = 0; i < 10; i++)
{
 Console.WriteLine(i);
}

 The initialization occurs once at the start of the loop. Then, if the Boolean expression evalu-

ates to true, the statement runs. The control variable update occurs, and then the Boolean

expression is reevaluated. If the condition is still true, the statement is executed again, the

control variable is updated, the Boolean expression is evaluated again, and so on.

 Notice that the initialization occurs only once, that the statement in the body of the loop

always executes before the update occurs, and that the update occurs before the Boolean

expression reevaluates.

 You can omit any of the three parts of a for statement. If you omit the Boolean expression, it

defaults to true. The following for statement runs forever:

for (int i = 0; ;i++)
{
 Console.WriteLine(“somebody stop me!”);
}

92 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 If you omit the initialization and update parts, you have a strangely spelled while loop:

int i = 0;
for (; i < 10;)
{
 Console.WriteLine(i);
 i++;
}

 Note The initialization, Boolean expression, and update control variable parts of a for statement

must always be separated by semicolons, even when they are omitted.

 If necessary, you can provide multiple initializations and multiple updates in a for loop (you

can have only one Boolean expression). To achieve this, separate the various initializations

and updates with commas, as shown in the following example:

for (int i = 0, j = 10; i <= j; i++, j--)
{
 ...
}

 As a fi nal example, here is the while loop from the preceding exercise recast as a for loop.

for (string line = reader.ReadLine(); line != null; line = reader.ReadLine())
{
 source.Text += line + ‘\n’;
}

 Tip It’s considered good style to use braces to explicitly delineate the statement block for the

body of if, while, and for statements even when the block contains only one statement. By writing

the block, you make it easier to add statements to the block at a later date. Without the block, to

add another statement, you’d have to remember to add both the extra statement and the braces,

and it’s very easy to forget the braces.

Understanding for Statement Scope
 You might have noticed that you can declare a variable in the initialization part of a for state-

ment. That variable is scoped to the body of the for statement and disappears when the for
statement fi nishes. This rule has two important consequences. First, you cannot use that vari-

able after the for statement has ended because it’s no longer in scope. Here’s an example:

for (int i = 0; i < 10; i++)
{
 ...
}
Console.WriteLine(i); // compile-time error

 Chapter 5 Using Compound Assignment and Iteration Statements 93

 Second, you can write next to each other two or more for statements that reuse the same

variable name because each variable is in a different scope. Here’s an example:

for (int i = 0; i < 10; i++)
{
 ...
}

for (int i = 0; i < 20; i += 2) // okay
{
 ...
}

Writing do Statements
 The while and for statements both test their Boolean expression at the start of the loop. This

means that if the expression evaluates to false on the very fi rst test, the body of the loop

does not run, not even once. The do statement is different; its Boolean expression is evalu-

ated after each iteration, so the body always executes at least once.

 The syntax of the do statement is as follows (don’t forget the fi nal semicolon):

do
 statement
while (booleanExpression);

 You must use a statement block if the body of the loop comprises more than one statement.

Here’s a version of the example that writes the values 0 through 9 to the console, this time

constructed using a do statement:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
}
while (i < 10);

94 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

The break and continue Statements
 In Chapter 4, you saw the break statement being used to jump out of a switch state-

ment. You can also use a break statement to jump out of the body of an iteration

statement. When you break out of a loop, the loop exits immediately and execution

continues at the fi rst statement after the loop. Neither the update nor the continuation

condition of the loop is rerun.

In contrast, the continue statement causes the program to perform the next iteration of

the loop immediately (after reevaluating the Boolean expression). Here’s another ver-

sion of the example that writes the values 0 through 9 to the console, this time using

break and continue statements:

int i = 0;
while (true)
{
 Console.WriteLine(“continue “ + i);
 i++;
 if (i < 10)
 continue;
 else
 break;
}

 This code is absolutely ghastly. Many programming guidelines recommend using

 continue cautiously or not at all because it is often associated with hard-to-under-

stand code. The behavior of continue is also quite subtle. For example, if you ex-

ecute a continue statement from inside a for statement, the update part runs before

 performing the next iteration of the loop.

 In the following exercise, you will write a do statement to convert a positive whole number to

its string representation in octal notation.

Examine a do statement

1. Using Visual Studio 2008, open the DoStatement project, located in the \Microsoft

Press\Visual CSharp Step by Step\Chapter 5\DoStatement folder in your Documents

folder.

2. On the Debug menu, click Start Without Debugging.

 The application displays a form that has two text boxes and a button called Show Steps.
When you type a positive integer (the program doesn’t work with negative integers) in

the upper text box and click Show Steps, the program takes the number that you have

typed in and converts it to a string representing the octal (base 8) value of the same

Examine a do statement

 Chapter 5 Using Compound Assignment and Iteration Statements 95

number. The program uses a well-known algorithm that repeatedly divides a number

by 8, calculating the remainder at each stage. The lower text box shows the steps used

to build this octal presentation.

3. Type 2693 in the upper text box, and then click Show Steps.

 The lower text box displays the steps used to create the octal representation of 2693

(5205):

4. Close the window to return to the Visual Studio 2008 programming environment.

5. Display the code for Window1.xaml.cs in the Code and Text Editor window.

6. Locate the showStepsClick method. This method runs when the user clicks the Show
Steps button on the form.

 This method contains the following statements:

int amount = int.Parse(number.Text);
steps.Text = “”;
string current = “”;
do
{
 int nextDigit = amount % 8;
 int digitCode = ‘0’ + nextDigit;
 char digit = Convert.ToChar(digitCode);
 current = digit + current;
 steps.Text += current + “\n”;
 amount /= 8;
}
while (amount != 0);

 The fi rst statement converts the string value in the Text property of the number text

box into an int using the Parse method of the int type:

int amount = int.Parse(number.Text);

96 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 The second statement clears the text displayed in the lower text box (called steps) by

setting its Text property to the empty string:

steps.Text = “”;

 The third statement declares a string variable called current and initializes it to the

empty string:

string current = “”;

 The real work in this method is performed by the do statement, which begins at the

fourth statement:

do
{
 ...
}
while (amount != 0);

 The algorithm repeatedly performs integer arithmetic to divide the amount variable by

8 and determine the remainder; the remainder after each successive division constitutes

the next digit in the string being built. Eventually, when amount is reduced to 0, the

loop fi nishes. Notice that the body must run at least once. This behavior is exactly what

is required because even the number 0 has one octal digit.

 Look more closely at the code, and you will see that the fi rst statement inside the do

loop is this:

int nextDigit = amount % 8;

 This statement declares an int variable called nextDigit and initializes it to the remainder

after dividing the value in amount by 8. This will be a number somewhere between 0

and 7.

 The next statement is this:

int digitCode = ‘0’ + nextDigit;

 This statement requires a little explanation! Characters have a unique code according to

the character set used by the operating system. In the character sets frequently used by

the Microsoft Windows operating system, the code for character ‘0’ has integer value

48. The code for character ‘1’ is 49, the code for character ‘2’ is 50, and so on up to the

code for character ‘9’, which has integer value 57. C# allows you to treat a character as

an integer and perform arithmetic on it, but when you do so, C# uses the character’s

code as the value. So the expression ‘0’ + nextDigit will actually result in a value

somewhere between 48 and 55 (remember that nextDigit will be between 0 and 7),

corresponding to the code for the equivalent octal digit.

 The third statement inside the do loop is

char digit = Convert.ToChar(digitCode);

 Chapter 5 Using Compound Assignment and Iteration Statements 97

 In

o

This statement declares a char variable called digit and initializes it to the result of the

Convert.ToChar(digitCode) method call. The Convert.ToChar method takes an integer

holding a character code and returns the corresponding character. So, for example, if

digitCode has the value 54, Convert.ToChar(digitCode) will return the character ‘6’.

To summarize, the fi rst three statements in the do loop have determined the character

representing the least-signifi cant (rightmost) octal digit corresponding to the number

the user typed in. The next task is to prepend this digit to the string being output, like

this:

current = digit + current;

 The next statement inside the do loop is this:

steps.Text += current + “\n”;

 This statement adds to the Steps text box the string containing the digits produced so

far for the octal representation of the number.

The fi nal statement inside the do loop is

amount /= 8;

 This is a compound assignment statement and is equivalent to writing amount =
amount / 8;. If the value of amount is 2693, the value of amount after this statement

runs is 336.

 Finally, the condition in the while clause at the end of the loop is evaluated:

while (amount != 0)

 Because the value of amount is not yet 0, the loop performs another iteration.

 the fi nal exercise, you will use the Visual Studio 2008 debugger to step through the previ-

us do statement to help you understand how it works.

Step through the do statement

1. In the Code and Text Editor window displaying the Window1.xaml.cs fi le, move the

 cursor to the fi rst statement of the showStepsClick method:

int amount = int.Parse(number.Text);

2. Right-click anywhere in the fi rst statement, and then click Run To Cursor.

3. When the form appears, type 2693 in the upper text box, and then click Show Steps.

The program stops, and you are placed in Visual Studio 2008 in debug mode. A yellow

arrow in the left margin of the Code and Text Editor window indicates the current

statement.

Step through the do statement

98 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

4. Display the Debug toolbar if it is not visible. (On the View menu, point to Toolbars, and

then click Debug.)

5. On the Debug toolbar, click the Windows drop-down arrow.

 Note The Windows icon is the rightmost icon in the Debug toolbar.

 The following menu appears:

 Note If you are using Microsoft Visual C# 2008 Express Edition, the shortcut menu that

appears contains a subset of those shown in the following image.

6. On the drop-down menu, click Locals.

 The Locals window appears (if it wasn’t already open). This window displays the name,

value, and type of the local variables in the current method, including the amount local

variable. Notice that the value of amount is currently 0:

 Chapter 5 Using Compound Assignment and Iteration Statements 99

7. On the Debug toolbar, click the Step Into button.

 The debugger runs the statement:

int amount = int.Parse(number.Text);

 The value of amount in the Locals window changes to 2693, and the yellow arrow

moves to the next statement.

8. Click Step Into again.

 The debugger runs the statement:

steps.Text = “”;

 This statement does not affect the Locals window because steps is a control on the form

and not a local variable. The yellow arrow moves to the next statement.

9. Click Step Into.

 The debugger runs the statement:

string current = “”;

 The yellow arrow moves to the opening brace at the start of the do loop.

10. Click Step Into.

 The yellow arrow moves to the fi rst statement inside the do loop. The do loop contains

three local variables of its own: nextDigit, digitCode, and digit. Notice that these local

variables appear in the Locals window, and that the value of all three variables is 0.

11. Click Step Into.

 The debugger runs the statement:

int nextDigit = amount % 8;

 The value of nextDigit in the Locals window changes to 5. This is the remainder after

dividing 2693 by 8.

12. Click Step Into.

 The debugger runs the statement:

int digitCode = ‘0’ + nextDigit;

 The value of digitCode in the Locals window changes to 53. This is the character code of

‘5’ (48 + 5).

100 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

13. Click Step Into.

 The debugger runs the statement:

char digit = Convert.ToChar(digitCode);

 The value of digit changes to ‘5’ in the Locals window. The Locals window shows char
values using both the underlying numeric value (in this case, 53) and also the character

representation (‘5’).

 Note that in the Locals window, the value of the current variable is “”.

14. Click Step Into.

 The debugger runs the statement:

current = current + digit;

 The value of current changes to “5” in the Locals window.

15. Click Step Into.

 The debugger runs the statement:

steps.Text += current + “\n”;

 This statement displays the text “5” in the steps text box, followed by a newline char-

acter to cause subsequent output to be displayed on the next line in the text box. (The

form is currently hidden behind Visual Studio, so you won’t be able to see it.)

16. Click Step Into.

 The debugger runs the statement:

amount /= 8;

 The value of amount changes to 336 in the Locals window. The yellow arrow moves to

the brace at the end of the do loop.

17. Click Step Into.

 The yellow arrow moves to the while statement.

18. Click Step Into.

 The debugger runs the statement:

while (amount != 0);

 The value of amount is 336, and the expression 336 != 0 evaluates to true, so the do

loop performs another iteration. The yellow arrow jumps back to the opening brace at

the start of the do loop.

19. Click Step Into.

 The yellow arrow moves to the fi rst statement inside the do loop again.

 Chapter 5 Using Compound Assignment and Iteration Statements 101

20. Repeatedly click Step Into to step through the next three iterations of the do loop, and

watch how the values of the variables change in the Locals window.

21. At the end of the fourth iteration of the loop, the value of amount is now 0 and the

value of current is “5205”. The yellow arrow is on the continuation condition of the do

loop:

while (amount != 0);

 The value of amount is now 0, so the expression amount != 0 will evaluate to false, and

the do loop will terminate.

22. Click Step Into.

 The debugger runs the statement:

while (amount != 0);

 As predicted, the do loop terminates, and the yellow arrow moves to the closing brace

at the end of the showStepsClick method.

23. Click the Continue button on the Debug toolbar.

 The form appears, displaying the four steps used to create the octal representation of

2693: “5”, “05”, “205”, and “5205”.

24. Close the form to return to the Visual Studio 2008 programming environment.

 Congratulations! You have successfully written meaningful while and do statements and used

the Visual Studio 2008 debugger to step through the do statement.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 6.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

102 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Chapter 5 Quick Reference
 To Do this

 Add an amount to a variable Use the compound addition operator. For example:

variable += amount;

 Subtract an amount from a variable Use the compound subtraction operator. For example:

variable -= amount;

 Run one or more statements while a

condition is true

Use a while statement. For example:

int i = 0;
while (i < 10)
{
 Console.WriteLine(i);
 i++;
}

Alternatively, use a for statement. For example:

for (int i = 0; i < 10; i++)
{
 Console.WriteLine(i);
}

 Repeatedly execute statements one

or more times

Use a do statement. For example:

int i = 0;
do
{
 Console.WriteLine(i);
 i++;
}
while (i < 10);

Chapter 6

 Managing Errors and Exceptions
 After completing this chapter, you will be able to:

 Handle exceptions by using the try, catch, and fi nally statements.

 Control integer overfl ow by using the checked and unchecked keywords.

 Raise exceptions from your own methods by using the throw keyword.

 Ensure that code always runs, even after an exception has occurred, by using a

fi nally block.

 You have now seen the core Microsoft Visual C# statements you need to know to read and

write methods; declare variables; use operators to create values; write if and switch state-

ments to run code selectively; and write while, for, and do statements to run code repeatedly.

However, the previous chapters haven’t considered the possibility (or probability) that things

can go wrong. It is very diffi cult to ensure that a piece of code always works as expected.

Failures can occur for a large number of reasons, many of which are beyond your control as a

programmer. Any applications that you write must be capable of detecting failures and han-

dling them in a graceful manner. In this fi nal chapter of Part I, “Introducing Microsoft Visual

C# and Microsoft Visual Studio 2008,” you’ll learn how C# throws exceptions to signal that an

error has occurred and how to use the try, catch, and fi nally statements to catch and handle

the errors that these exceptions represent. By the end of this chapter, you’ll have a solid

foundation in C#, on which you will build in Part II, “Understanding the C# Language.”

Coping with Errors
 It’s a fact of life that bad things sometimes happen. Tires get punctured, batteries run down,

screwdrivers are never where you left them, and users of your applications behave in an

unpredictable manner. Errors can occur at almost any stage when a program runs, so how

do you detect them and attempt to recover? Over the years, a number of mechanisms have

evolved. A typical approach adopted by older systems such as UNIX involved arranging for

the operating system to set a special global variable whenever a method failed. Then, after

each call to a method, you checked the global variable to see whether the method succeed-

ed. C# and most other modern object-oriented languages don’t handle errors in this way. It’s

just too painful. They use exceptions instead. If you want to write robust C# programs, you

need to know about exceptions.
 103

104 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Trying Code and Catching Exceptions
 C# makes it easy to separate the error handling code from the code that implements the

main fl ow of the program by using exceptions and exception handlers. To write exception-

aware programs, you need to do two things:

 1. Write your code inside a try block (try is a C# keyword). When the code runs, it

attempts to execute all the statements inside the try block, and if none of the state-

ments generates an exception, they all run, one after the other, to completion.

However, if an error condition occurs, execution jumps out of the try block and into

another piece of code designed to catch and handle the exception—a catch handler.

 2. Write one or more catch handlers (catch is another C# keyword) immediately after the

try block to handle any possible error conditions. A catch handler is intended to catch

and handle a specifi c type of exception, and you can have multiple catch handlers after

a try block, each one designed to trap and process a specifi c exception so that you can

provide different handlers for the different errors that could arise in the try block. If any

one of the statements inside the try block causes an error, the runtime generates and

throws an exception. The runtime then examines the catch handlers after the try block

and transfers control directly to the fi rst matching handler.

 Here’s an example of code in a try block that attempts to convert strings that a user has

typed in some text boxes on a form to integer values, call a method to calculate a value, and

write the result to another text box. Converting a string to an integer requires that the string

contain a valid representation and not some arbitrary sequence of characters. If the string

contains invalid characters, the int.Parse method throws a FormatException, and execution

transfers to the corresponding catch handler. When the catch handler fi nishes, the program

continues with the fi rst statement after the handler:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (FormatException fEx)
{
 // Handle the exception
 ...
}

 Chapter 6 Managing Errors and Exceptions 105
Handling an Exception
 A catch handler uses syntax similar to that used by a method parameter to specify the

exception to be caught. In the preceding example, when a FormatException is thrown,

the fEx variable is populated with an object containing the details of the exception. The

FormatException type has a number of properties that you can examine to determine the

exact cause of the exception. Many of these properties are common to all exceptions. For

example, the Message property contains a text description of the error that caused the ex-

ception. You can use this information when handling the exception, perhaps recording the

details to a log fi le or displaying a meaningful message to the user and asking the user to

try again.

Unhandled Exceptions
 What happens if a try block throws an exception and there is no corresponding catch

handler? In the previous example, it is possible that the lhsOperand text box contains the

string representation of a valid integer, but the integer that it represents is outside the range

of valid integers supported by C# (for example, “2147483648”). In this case, the int.Parse

statement will throw an Overfl owException, which will not be caught by the FormatException

catch handler. If this occurs, if the try block is part of a method, the method immediately

exits and execution returns to the calling method. If the calling method uses a try block, the

runtime attempts to locate a matching catch handler after the try block in the calling method

and execute it. If the calling method does not use a try block, or there is no matching catch

handler, the calling method immediately exits and execution returns to its caller, where the

process is repeated. If a matching catch handler is eventually found, the handler runs and ex-

ecution continues with the fi rst statement after the catch handler in the catching method.

 Important Notice that after catching an exception, execution continues in the method

containing the catch block that caught the exception. If the exception occurred in a method

other than the one containing the catch handler, control does not return to the method that

caused the exception.

 If, after cascading back through the list of calling methods, the runtime is unable to fi nd a

matching catch handler, the program terminates with an unhandled exception. If you are

running the application in Microsoft Visual Studio 2008 in debug mode (you selected Start
Debugging on the Debug menu to run the application), the following information dialog box

appears and the application drops into the debugger, allowing you to determine the cause of

the exception:

106 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Using Multiple catch Handlers
 The previous discussion highlights how different errors throw different kinds of exceptions

to represent different kinds of failures. To cope with these situations, you can supply multiple

catch handlers, one after the other, like this:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (FormatException fEx)
{
 //...
}
catch (OverflowException oEx)
{
 //...
}

Catching Multiple Exceptions
 The exception-catching mechanism provided by C# and the Microsoft .NET Framework is

quite comprehensive. Many different exceptions are defi ned in the .NET Framework, and any

 Chapter 6 Managing Errors and Exceptions 107
programs you write will be able to throw most of them! It is highly unlikely that you will want

to write catch handlers for every possible exception that your code can throw. So how do you

ensure that your programs catch and handle all possible exceptions?

 The answer to this question lies in the way the different exceptions are related to one

another. Exceptions are organized into families called inheritance hierarchies. (You will

learn about inheritance in Chapter 12, “Working with Inheritance.”) FormatException and

Overfl owException both belong to a family called SystemException, as do a number of other

exceptions. Rather than catching each of these exceptions individually, you can create a

handler that catches SystemException. SystemException is a member of a family simply called

Exception, which is the great-granddaddy of all exceptions. If you catch Exception, the handler

traps every possible exception that can occur.

 Note The Exception family includes a wide variety of exceptions, many of which are intended for

use by various parts of the .NET Framework. Some of these are somewhat esoteric, but it is still

useful to understand how to catch them.

 The next example shows how to catch all possible system exceptions:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}
catch (Exception ex) // this is a general catch handler
{
 //...
}

 Tip If you want to catch Exception, you can actually omit its name from the catch handler

because it is the default exception:

catch
{
 // ...
}

 However, this is not always recommended. The exception object passed in to the catch handler

can contain useful information concerning the exception, which is not accessible when using this

version of the catch construct.

 There is one fi nal question you should be asking at this point: What happens if the

same exception matches multiple catch handlers at the end of a try block? If you catch

108 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

FormatException and Exception in two different handlers, which one will run (or will

both execute)?

 When an exception occurs, the fi rst handler found by the runtime that matches the excep-

tion is used, and the others are ignored. What this means is that if you place a handler for

Exception before a handler for FormatException, the FormatException handler will never run.

Therefore, you should place more-specifi c catch handlers above a general catch handler after

a try block. If none of the specifi c catch handlers matches the exception, the general catch

handler will.

In the following exercise, you will write a try block and catch an exception.

Write a statement

1. Start Visual Studio 2008 if it is not already running.

2. Open the MathsOperators solution located in the \Microsoft Press\Visual CSharp Step

By Step\Chapter 6\MathsOperators folder in your Documents folder.

 This is a variation on the program that you fi rst saw in Chapter 2, “Working with

Variables, Operators, and Expressions.” It was used to demonstrate the different

arithmetic operators.

3. On the Debug menu, click Start Without Debugging.

 The form appears. You are now going to enter some text that is deliberately not valid in

the left operand text box. This operation will demonstrate the lack of robustness in the

current version of the program.

4. Type John in the left operand text box, and then click Calculate.

 A dialog box reports an unhandled exception; the text you entered in the left operand

text box caused the application to fail.

 Note The Debug button does not appear if you are using Microsoft Visual C# 2008

Express Edition.

 You might see a different version of this dialog box (shown later) depending on how

you have confi gured problem reporting in Control Panel. If you see this dialog box,

simply click the Close the program link whenever the instructions in the following steps

refer to the Close Program button, and click the Debug the program link whenever

Write a statement

 Chapter 6 Managing Errors and Exceptions 109

the instructions refer to the Debug button. (If you are using Windows XP rather than

Windows Vista, you will see a different dialog box with Debug, Send Error Report, and

Don’t Send buttons. Click the Don’t Send button to close the program.)

5. If you are using Visual Studio 2008, click Debug. In the Visual Studio Just-In-Time
Debugger dialog box, in the Possible Debuggers list box, select MathsOperators –
Microsoft Visual Studio: Visual Studio 2008, and then click Yes:

6. If you are using Visual C# 2008 Express Edition, click Close Program. On the

Debug menu, click Start Debugging. Type John in the left operand text box, and

then click Calculate.

7. Whether you are using Visual Studio 2008 or Visual C# 2008 Express Edition, the Visual

Studio 2008 debugger starts and highlights the line of code that caused the exception

and displays some additional information about the exception:

110 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

 You can see that the exception was thrown by the call to int.Parse inside the

calculateClick method. The problem is that this method is unable to parse the text

“John” into a valid number.

Note You can view the code that caused an exception only if you actually have the source

code available on your computer.

8. On the Debug menu, click Stop Debugging.

9. Display the code for the fi le Window1.xaml.cs in the Code and Text Editor window, and

locate the calculateClick method.

10. Add a try block (including braces) around the four statements inside this method, as

shown in bold type here:

try
{
 int leftHandSide = int.Parse(lhsOperand.Text);
 int rightHandSide = int.Parse(rhsOperand.Text);
 int answer = doCalculation(leftHandSide, rightHandSide);
 result.Text = answer.ToString();
}

11. Add a catch block immediately after the closing brace for this new try block, as follows:

catch (FormatException fEx)
{

 Chapter 6 Managing Errors and Exceptions 111

 result.Text = fEx.Message;
}

 This catch handler catches the FormatException thrown by int.Parse and then displays

in the result text box at the bottom of the form the text in the exception’s Message

property.

 12. On the Debug menu, click Start Without Debugging.

 13. Type John in the left operand text box, and then click Calculate.

 The catch handler successfully catches the FormatException, and the message “Input

string was not in a correct format” is written to the Result text box. The application is

now a bit more robust.

 14. Replace John with the number 10, type Sharp in the right operand text box, and then

click Calculate.

 Notice that because the try block surrounds the statements that parse both text boxes,

the same exception handler handles user input errors in both text boxes.

 15. Click Quit to return to the Visual Studio 2008 programming environment.

Using Checked and Unchecked Integer Arithmetic
 In Chapter 2, you learned how to use binary arithmetic operators such as + and * on primi-

tive data types such as int and double. You also saw that the primitive data types have a fi xed

size. For example, a C# int is 32 bits. Because int has a fi xed size, you know exactly the range

of value that it can hold: it is –2147483648 to 2147483647.

 Tip If you want to refer to the minimum or maximum value of int in code, you can use the int.
MinValue or int.MaxValue property.

112 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 The fi xed size of the int type creates a problem. For example, what happens if you add 1 to

an int whose value is currently 2147483647? The answer is that it depends on how the ap-

plication is compiled. By default, the C# compiler generates code that allows the calculation

to overfl ow silently. In other words, you get the wrong answer. (In fact, the calculation wraps

around to the largest negative integer value, and the result generated is –2147483648.) The

reason for this behavior is performance: integer arithmetic is a common operation in almost

every program, and adding the overhead of overfl ow checking to each integer expression

could lead to very poor performance. In many cases, the risk is acceptable because you know

(or hope!) that your int values won’t reach their limits. If you don’t like this approach, you can

turn on overfl ow checking.

 Tip You can activate and disable overfl ow checking in Visual Studio 2008 by setting the project

properties. On the Project menu, click YourProject Properties (where YourProject is the name of

your project). In the project properties dialog box, click the Build tab. Click the Advanced button

in the lower-right corner of the page. In the Advanced Build Settings dialog box, select or clear

the Check for arithmetic overfl ow/underfl ow check box.

 Regardless of how you compile an application, you can use the checked and unchecked

keywords to turn on and off integer arithmetic overfl ow checking selectively in parts of an

application that you think need it. These keywords override the compiler option specifi ed for

the project.

Writing Checked Statements
 A checked statement is a block preceded by the checked keyword. All integer arithmetic in a

checked statement always throws an Overfl owException if an integer calculation in the block

overfl ows, as shown in this example:

int number = int.MaxValue;
checked
{
 int willThrow = number++;
 Console.WriteLine(“this won’t be reached”);
}

 Important Only integer arithmetic directly inside the checked block is subject to overfl ow

checking. For example, if one of the checked statements is a method call, checking does not

apply to code that runs in the method that is called.

 Chapter 6 Managing Errors and Exceptions 113

You can also use the unchecked keyword to create an unchecked block statement. All integer

arithmetic in an unchecked block is not checked and never throws an Overfl owException. For

example:

int number = int.MaxValue;
unchecked
{
 int wontThrow = number++;
 Console.WriteLine(“this will be reached”);
}

Writing Checked Expressions
 You can also use the checked and unchecked keywords to control overfl ow checking on inte-

ger expressions by preceding just the individual parenthesized expression with the checked or

unchecked keyword, as shown in this example:

int wontThrow = unchecked(int.MaxValue + 1);
int willThrow = checked(int.MaxValue + 1);

 The compound operators (such as += and -=) and the increment (++) and decrement (--)

operators are arithmetic operators and can be controlled by using the checked and un-
checked keywords. Remember, x += y; is the same as x = x + y;.

Important You cannot use the checked and unchecked keywords to control fl oating-point (non-

integer) arithmetic. The checked and unchecked keywords apply only to integer arithmetic using

data types such as int and long. Floating-point arithmetic never throws Overfl owException—not

even when you divide by 0.0. (The .NET Framework has a representation for infi nity.)

In the following exercise, you will see how to perform checked arithmetic when using Visual

Studio 2008.

Use checked expressions

 1. Return to Visual Studio 2008.

 2. On the Debug menu, click Start Without Debugging.

You will now attempt to multiply two large values.

 3. Type 9876543 in the left operand text box, type 9876543 in the right operand text

box, select the Multiplication option, and then click Calculate.

The value –1195595903 appears in the Result text box on the form. This is a negative

value, which cannot possibly be correct. This value is the result of a multiplication

operation that silently overfl owed the 32-bit limit of the int type.

Use checked expressions

114 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 4. Click Quit, and return to the Visual Studio 2008 programming environment.

 5. In the Code and Text Editor window displaying Window1.xaml.cs, locate the

multiplyValues method. It looks like this:

private int multiplyValues(int leftHandSide, int rightHandSide)
{
 expression.Text = leftHandSide.ToString() + “ * “ + rightHandSide.ToString();
 return leftHandSide * rightHandSide;
}

 The return statement contains the multiplication operation that is silently overfl owing.

 6. Edit the return statement so that the return value is checked, like this:

return checked(leftHandSide * rightHandSide);

 The multiplication is now checked and will throw an Overfl owException rather than

silently returning the wrong answer.

 7. Locate the calculateClick method.

 8. Add the following catch handler immediately after the existing FormatException catch

handler in the calculateClick method:

catch (OverflowException oEx)
{
 result.Text = oEx.Message;
}

 Tip The logic of this catch handler is the same as that for the FormatException catch

handler. However, it is still worth keeping these handlers separate rather than simply

writing a generic Exception catch handler because you might decide to handle these

exceptions differently in the future.

 9. On the Debug menu, click Start Without Debugging to build and run the application.

 10. Type 9876543 in the left operand text box, type 9876543 in the right operand text

box, select the Multiplication option, and then click Calculate.

 The second catch handler successfully catches the Overfl owException and displays the

message “Arithmetic operation resulted in an overfl ow” in the Result text box.

 11. Click Quit to return to the Visual Studio 2008 programming environment.

Throwing Exceptions
 Suppose you are implementing a method called monthName that accepts a single int
argument and returns the name of the corresponding month. For example, monthName(1)
returns “January”, monthName(2) returns “February”, and so on. The question is: What should

 Chapter 6 Managing Errors and Exceptions 115

the method return when the integer argument is less than 1 or greater than 12? The best

answer is that the method shouldn’t return anything at all; it should throw an exception.

The .NET Framework class libraries contain lots of exception classes specifi cally designed

for situations such as this. Most of the time, you will fi nd that one of these classes describes

your exceptional condition. (If not, you can easily create your own exception class, but you

need to know a bit more about the C# language before you can do that.) In this case, the

 existing .NET Framework ArgumentOutOfRangeException class is just right. You can throw an

exception by using the throw statement, as shown in the following example:

public static string monthName(int month)
{
 switch (month)
 {
 case 1 :
 return “January”;
 case 2 :
 return “February”;
 ...
 case 12 :
 return “December”;
 default :
 throw new ArgumentOutOfRangeException(“Bad month”);
 }
}

The throw statement needs an exception object to throw. This object contains the details of

the exception, including any error messages. This example uses an expression that creates

a new ArgumentOutOfRangeException object. The object is initialized with a string that will

populate its Message property by using a constructor. Constructors are covered in detail in

Chapter 7, “Creating and Managing Classes and Objects.”

 In the following exercises, you will add to the MathsOperators project code for throwing an

exception.

Throw your own exception

1. Return to Visual Studio 2008.

2. On the Debug menu, click Start Without Debugging.

3. Type 24 in the left operand text box, type 36 in the right operand text box, and then

click Calculate.

 The value 0 appears in the Result text box. The fact that you have not selected an

operator option is not immediately obvious. It would be useful to write a diagnostic

message in the Result text box.

4. Click Quit to return to the Visual Studio 2008 programming environment.

Throw your own exception

116 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008

5. In the Code and Text Editor window displaying Window1.xaml.cs, locate and examine

the doCalculation method. It looks like this:

private int doCalculation(int leftHandSide, int rightHandSide) {
 int result = 0;

 if (addition.IsChecked.HasValue && addition.IsChecked.Value)
 result = addValues(leftHandSide, rightHandSide);
 else if (subtraction.IsChecked.HasValue && subtraction.IsChecked.Value)
 result = subtractValues(leftHandSide, rightHandSide);
 else if (multiplication.IsChecked.HasValue && multiplication.IsChecked.Value)
 result = multiplyValues(leftHandSide, rightHandSide);
 else if (division.IsChecked.HasValue && division.IsChecked.Value)
 result = divideValues(leftHandSide, rightHandSide);
 else if (remainder.IsChecked.HasValue && remainder.IsChecked.Value)
 result = remainderValues(leftHandSide, rightHandSide);

 return result;
}

 The addition, subtraction, multiplication, division, and remainder fi elds are the radio

buttons that appear on the form. Each radio button has a property called IsChecked

that indicates whether the user has selected it. The IsChecked property is an example

of a nullable value, which means it can either contain a specifi c value or be in an unde-

fi ned state. (You learn more about nullable values in Chapter 8, “Understanding Values

and References.”) The IsChecked.HasValue property indicates whether the radio button

is in a defi ned state, and if it is, the IsChecked.Value property indicates what this state

is. The IsChecked.Value property is a Boolean that has the value true if the radio button

is selected or false otherwise. The cascading if statement examines each radio button

in turn to fi nd which one is selected. (The radio buttons are mutually exclusive, so the

user can select only one radio button at most.) If none of the buttons is selected, none

of the if statements will be true and the result variable will remain at its initial value (0).

This variable holds the value that is returned by the method.

 You could try to solve the problem by adding one more else statement to the if-else

cascade to write a message to the result text box on the form. However, this solution is

not a good idea because it is not really the purpose of this method to output messages.

It is better to separate the detection and signaling of an error from the catching and

handling of that error.

6. Add another else statement to the list of if-else statements (immediately before the

return statement), and throw an InvalidOperationException exactly as follows:

else
 throw new InvalidOperationException(“no operator selected”);

7. On the Debug menu, click Start Without Debugging to build and run the application.

8. Type 24 in the left operand text box, type 36 in the right operand text box, and then

click Calculate.

 Chapter 6 Managing Errors and Exceptions 117
An exception dialog box appears. The application has thrown an exception, but your

code does not catch it yet.

 9. Click Close program.

The application terminates, and you return to Visual Studio 2008.

Now that you have written a throw statement and verifi ed that it throws an exception, you

will write a catch handler to handle this exception.

Catch your own exception

 1. In the Code and Text Editor window displaying Window1.xaml.cs, locate the

calculateClick method.

 2. Add the following catch handler immediately below the existing two catch handlers in

the calculateClick method:

catch (InvalidOperationException ioEx)
{
 result.Text = ioEx.Message;
}

This code catches the InvalidOperationException that is thrown when no operator radio

button is selected.

 3. On the Debug menu, click Start Without Debugging.

 4. Type 24 in the left operand text box, type 36 in the right operand text box, and then

click Calculate.

 The message “no operator selected” appears in the Result text box.

 5. Click Quit.

The application is now a lot more robust than it was. However, several exceptions could still

arise that would not be caught and that might cause the application to fail. For example, if

you attempt to divide by 0, an unhandled DivideByZeroException will be thrown. (Integer divi-

sion by 0 does throw an exception, unlike fl oating-point division by 0.) One way to solve this

is to write an ever larger number of catch handlers inside the calculateClick method. However,

a better solution is to add a general catch handler that catches Exception at the end of the list

of catch handlers. This will trap all unhandled exceptions.

Tip The decision of whether to catch all unhandled exceptions explicitly in a method depends

on the nature of the application you are building. In some cases, it makes sense to catch

exceptions as close as possible to the point at which they occur. In other situations, it is more

useful to let an exception propagate back to the method that invoked the routine that threw the

exception.

Catch your own exception

118 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
Catch unhandled exceptions

 1. In the Code and Text Editor window displaying Window1.xaml.cs, locate the

calculateClick method.

 2. Add the following catch handler to the end of the list of existing catch handlers:

catch (Exception ex)
{
 result.Text = ex.Message;
}

 This catch handler will catch all hitherto unhandled exceptions, whatever their specifi c

type.

 3. On the Debug menu, click Start Without Debugging.

 You will now attempt to perform some calculations known to cause exceptions and

confi rm that they are all handled correctly.

 4. Type 24 in the left operand text box, type 36 in the right operand text box, and then

click Calculate.

 Confi rm that the diagnostic message “no operator selected” still appears in the Result
text box. This message was generated by the InvalidOperationException handler.

 5. Type John in the left operand text box, and then click Calculate.

 Confi rm that the diagnostic message “Input string was not in a correct format” appears

in the Result text box. This message was generated by the FormatException handler.

 6. Type 24 in the left operand text box, type 0 in the right operand text box, select the

Divide radio button, and then click Calculate.

 Confi rm that the diagnostic message “Attempted to divide by zero” appears in the

Result text box. This message was generated by the general Exception handler.

 7. Click Quit.

Using a fi nally Block
 It is important to remember that when an exception is thrown, it changes the fl ow of

execution through the program. This means you can’t guarantee that a statement will always

run when the previous statement fi nishes because the previous statement might throw an

exception. Look at the following example. It’s very easy to assume that the call to reader.Close

will always occur. After all, it’s right there in the code:

TextReader reader = src.OpenText();
string line;
while ((line = reader.ReadLine()) != null)
{

Catch unhandled exceptions

 Chapter 6 Managing Errors and Exceptions 119
 source.Text += line + “\n”;
}
reader.Close();

 Sometimes it’s not an issue if one particular statement does not run, but on many occasions

it can be a big problem. If the statement releases a resource that was acquired in a previous

statement, failing to execute this statement results in the resource being retained. This exam-

ple is just such a case: If the call to src.OpenText succeeds, it acquires a resource (a fi le handle)

and you must ensure that you call reader.Close to release the resource. If you don’t, sooner or

later you’ll run out of fi le handles and be unable to open more fi les. (If you fi nd fi le handles

too trivial, think of database connections instead.)

 The way to ensure that a statement is always run, whether or not an exception has been

thrown, is to write that statement inside a fi nally block. A fi nally block occurs immediately

after a try block or immediately after the last catch handler after a try block. As long as the

program enters the try block associated with a fi nally block, the fi nally block will always be

run, even if an exception occurs. If an exception is thrown and caught locally, the exception

handler executes fi rst, followed by the fi nally block. If the exception is not caught locally (the

runtime has to search through the list of calling methods to fi nd a handler), the fi nally block

runs fi rst. In any case, the fi nally block always executes.

 The solution to the reader.Close problem is as follows:

TextReader reader = null;
try
{
 reader = src.OpenText();
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 source.Text += line + “\n”;
 }
}
finally
{
 if (reader != null)
 {
 reader.Close();
 }
}

 Even if an exception is thrown, the fi nally block ensures that the reader.Close statement

always executes. You’ll see another way to solve this problem in Chapter 14, “Using Garbage

Collection and Resource Management.”

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 7.

120 Part I Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 6 Quick Reference
 To Do this

 Throw an exception Use a throw statement. For example:

throw new FormatException(source);

 Ensure that integer arithmetic

is always checked for overfl ow

Use the checked keyword. For example:

int number = Int32.MaxValue;
checked
{
 number++;
}

 Catch a specifi c exception Write a catch handler that catches the specifi c exception class. For

example:

try
{
 ...
}
catch (FormatException fEx)
{
 ...
}

 Catch all exceptions in a

single catch handler

Write a catch handler that catches Exception. For example:

try
{
 ...
}
catch (Exception ex)
{
 ...
}

 Ensure that some code will

always be run, even if an

exception is thrown

Write the code inside a fi nally block. For example:

try
{
 ...
}
finally
{
 // always run
}

Microsoft Visual C# 2008 Step by Step

Part II

Understanding the C# Language
In this part:
Chapter 7. Creating and Managing Classes and Objects 123
Chapter 8. Understanding Values and References . 145
Chapter 9. Creating Value Types with Enumerations and Structures 167
Chapter 10. Using Arrays and Collections . 185
Chapter 11. Understanding Parameter Arrays . 207
Chapter 12. Working with Inheritance . 217
Chapter 13. Creating Interfaces and Defi ning Abstract Classes 239
Chapter 14. Using Garbage Collection and Resource Management 257
 121

Chapter 7

Creating and Managing Classes
and Objects

 After completing this chapter, you will be able to:

 Defi ne a class containing a related set of methods and data items.

 Control the accessibility of members by using the public and private

keywords.

 Create objects by using the new keyword to invoke a constructor.

 Write and call your own constructors.

 Create methods and data that can be shared by all instances of the same class by

using the static keyword.

 In Part I, “Introducing Microsoft Visual C# and Microsoft Visual Studio 2008,” you learned

how to declare variables, use operators to create values, call methods, and write many of the

statements you need when implementing a method. You now know enough to progress to

the next stage—combining methods and data into your own classes.

 The Microsoft .NET Framework contains thousands of classes, and you have used a number

of them already, including Console and Exception. Classes provide a convenient mechanism

for modeling the entities manipulated by applications. An entity can represent a specifi c item,

such as a customer, or something more abstract, such as a transaction. Part of the design

process of any system is concerned with determining the entities that are important and then

performing an analysis to see what information they need to hold and what functions they

should perform. You store the information that a class holds as fi elds and use methods to

implement the operations that a class can perform.

 The chapters in Part II, “Understanding the C# Language,” provide you with all you need to

know to create your own classes.

Understanding Classifi cation
 Class is the root word of the term classifi cation. When you design a class, you systemati-

cally arrange information into a meaningful entity. This arranging is an act of classifi cation

and is something that everyone does—not just programmers. For example, all cars share

common behaviors (they can be steered, stopped, accelerated, and so on) and common at-

tributes (they have a steering wheel, an engine, and so on). People use the word car to mean
 123

124 Part II Understanding the C# Language
objects that share these common behaviors and attributes. As long as everyone agrees

on what a word means, this system works well; you can express complex but precise ideas

in a concise form. Without classifi cation, it’s hard to imagine how people could think or

communicate at all.

 Given that classifi cation is so deeply ingrained in the way we think and communicate, it

makes sense to try to write programs by classifying the different concepts inherent in a

problem and its solution and then modeling these classes in a programming language. This

is exactly what you can do with modern object-oriented programming languages, such as

Microsoft Visual C#.

The Purpose of Encapsulation
 Encapsulation is an important principle when defi ning classes. The idea is that a program that

uses a class should not have to worry how that class actually works internally; the program

simply creates an instance of a class and calls the methods of that class. As long as those

methods do what they say they will do, the program does not care how they are implement-

ed. For example, when you call the Console.WriteLine method, you don’t want to be bothered

with all the intricate details of how the Console class physically arranges for data to be writ-

ten to the screen. A class might need to maintain all sorts of internal state information to

perform its various methods. This additional state information and activity is hidden from the

program that is using the class. Therefore, encapsulation is sometimes referred to as informa-

tion hiding. Encapsulation actually has two purposes:

 To combine methods and data inside a class; in other words, to support classifi cation

 To control the accessibility of the methods and data; in other words, to control the use

of the class

Defi ning and Using a Class
 In C#, you use the class keyword to defi ne a new class. The data and methods of the class oc-

cur in the body of the class between a pair of braces. Here is a C# class called Circle that con-

tains one method (to calculate the circle’s area) and one piece of data (the circle’s radius):

class Circle
{
 double Area()
 {
 return Math.PI * radius * radius;
 }

 int radius;
}

 Chapter 7 Creating and Managing Classes and Objects 125
 Note The Math class contains methods for performing mathematical calculations and fi elds

containing mathematical constants. The Math.PI fi eld contains the value

3.14159265358979323846, which is an approximation of the value of pi.

 The body of a class contains ordinary methods (such as Area) and fi elds (such as radius)—
remember that variables in a class are called fi elds. You’ve already seen how to declare vari-

ables in Chapter 2, “Working with Variables, Operators, and Expressions,” and how to write

methods in Chapter 3, “Writing Methods and Applying Scope”; in fact, there’s almost no new

syntax here.

 Using the Circle class is similar to using other types that you have already met; you create a

variable specifying Circle as its type, and then you initialize the variable with some valid data.

Here is an example:

Circle c; // Create a Circle variable
c = new Circle(); // Initialize it

 Note the use of the new keyword. Previously, when you initialized a variable such as an int or

a fl oat, you simply assigned it a value:

int i;
i = 42;

 You cannot do the same with variables of class types. One reason is that C# just doesn’t pro-

vide the syntax for assigning literal class values to variables. (What is the Circle equivalent

of 42?) Another reason concerns the way in which memory for variables of class types is al-

located and managed by the runtime—this is discussed further in Chapter 8, “Understanding

Values and References.” For now, just accept that the new keyword creates a new instance of

a class (more commonly called an object).

 You can, however, directly assign an instance of a class to another variable of the same type,

like this:

Circle c;
c = new Circle();
Circle d;
d = c;

However, this is not as straightforward as it fi rst appears, for reasons that I cover in Chapter 8.

 Important Don’t get confused between the terms class and object. A class is the defi nition of a

type. An object is an instance of that type, created when the program runs.

126 Part II Understanding the C# Language
Controlling Accessibility
 Surprisingly, the Circle class is currently of no practical use. When you encapsulate your meth-

ods and data inside a class, the class forms a boundary to the outside world. Fields (such as

radius) and methods (such as Area) defi ned in the class can be seen by other methods inside

the class but not by the outside world—they are private to the class. So, although you can

create a Circle object in a program, you cannot access its radius fi eld or call its Area method,

which is why the class is not of much use—yet! However, you can modify the defi nition of a

fi eld or method with the public and private keywords to control whether it is accessible from

the outside:

 A method or fi eld is said to be private if it is accessible only from the inside of the class.

To declare that a method or fi eld is private, you write the keyword private before its

declaration. This is actually the default, but it is good practice to state explicitly that

fi elds and methods are private to avoid any confusion.

 A method or fi eld is said to be public if it is accessible from both the inside and the

outside of the class. To declare that a method or fi eld is public, you write the keyword

public before its declaration.

 Here is the Circle class again. This time Area is declared as a public method and radius is
declared as a private fi eld:

class Circle
{
 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private int radius;
}

 Note C++ programmers should note that there is no colon after the public and private

keywords. You must repeat the keyword for every fi eld and method declaration.

 Note that radius is declared as a private fi eld; it is not accessible from outside the class.

However, radius is accessible from inside the Circle class. This is why the Area method can

access the radius fi eld; Area is inside the Circle class, so the body of Area has access to radius.
This means that the class is still of limited value because there is no way of initializing the

radius fi eld. To fi x this, you can use a constructor.

 Tip The fi elds in a class are automatically initialized to 0, false, or null depending on their type.

However, it is still good practice to provide an explicit means of initializing fi elds.

 Chapter 7 Creating and Managing Classes and Objects 127
Naming and Accessibility
 The following recommendations relate to the naming conventions for fi elds and

methods based on the accessibility of class members:

 Identifi ers that are public should start with a capital letter. For example,

Area starts with “A” (not “a”) because it’s public. This system is known as the

PascalCase naming scheme (it was fi rst used in the Pascal language).

 Identifi ers that are not public (which include local variables) should start with

a lowercase letter. For example, radius starts with “r” (not “R”) because it’s

private. This system is known as the camelCase naming scheme.

 There’s only one exception to this rule: class names should start with a capital let-

ter, and constructors must match the name of their class exactly; therefore, a private

constructor must start with a capital letter.

 Important Don’t declare two public class members whose names differ only in case. If you do,

your class will not be usable from other languages that are not case sensitive, such as Microsoft

Visual Basic.

Working with Constructors
 When you use the new keyword to create an object, the runtime has to construct that object

by using the defi nition of the class. The runtime has to grab a piece of memory from the

operating system, fi ll it with the fi elds defi ned by the class, and then invoke a constructor to

perform any initialization required.

 A constructor is a special method that runs automatically when you create an instance of a

class. It has the same name as the class, and it can take parameters, but it cannot return a

value (not even void). Every class must have a constructor. If you don’t write one, the compiler

automatically generates a default constructor for you. (However, the compiler-generated

default constructor doesn’t actually do anything.) You can write your own default constructor

quite easily—just add a public method with the same name as the class that does not return

a value. The following example shows the Circle class with a default constructor that initializes

the radius fi eld to 0:

class Circle
{
 public Circle() // default constructor
 {
 radius = 0;
 }

128 Part II Understanding the C# Language
 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private int radius;
}

 Note In C# parlance, the default constructor is a constructor that does not take any parameters.

It does not matter whether the compiler generates it or you write it; it is still the default con-

structor. You can also write nondefault constructors (constructors that do take parameters), as

you will see in the upcoming section titled “Overloading Constructors.”.

 Note that the constructor is marked as public. If this keyword is omitted, the constructor

will be private (just like any other methods and fi elds). If the constructor is private, it cannot

be used outside the class, which prevents you from being able to create Circle objects from

methods that are not part of the Circle class. You might therefore think that private construc-

tors are not that valuable. However, they do have their uses, but they are beyond the scope

of the current discussion.

 You can now use the Circle class and exercise its Area method. Notice how you use dot

notation to invoke the Area method on a Circle object:

Circle c;
c = new Circle();
double areaOfCircle = c.Area();

Overloading Constructors
 You’re almost fi nished, but not quite. You can now declare a Circle variable, point it to a

newly created Circle object, and then call its Area method. However, there is still one last

problem. The area of all Circle objects will always be 0 because the default constructor sets

the radius to 0 and it stays at 0; the radius fi eld is private, and there is no way of changing its

value after it has been initialized. One way to solve this problem is to realize that a construc-

tor is just a special kind of method and that it—like all methods—can be overloaded. Just as

there are several versions of the Console.WriteLine method, each of which takes different pa-

rameters, so too you can write different versions of a constructor. You can add a constructor

to the Circle class, with the radius as its parameter, like this:

class Circle
{

 public Circle() // default constructor
 {
 radius = 0;
 }

 Chapter 7 Creating and Managing Classes and Objects 129
 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private int radius;
}

 Note The order of the constructors in a class is immaterial; you can defi ne constructors in

whatever order you feel most comfortable with.

 You can then use this constructor when creating a new Circle object, like this:

Circle c;
c = new Circle(45);

 When you build the application, the compiler works out which constructor it should call

based on the parameters that you specify to the new operator. In this example, you passed an

int, so the compiler generates code that invokes the constructor that takes an int parameter.

 You should be aware of a quirk of the C# language: if you write your own constructor for a

class, the compiler does not generate a default constructor. Therefore, if you’ve written your

own constructor that accepts one or more parameters and you also want a default construc-

tor, you’ll have to write the default constructor yourself.

Partial Classes
 A class can contain a number of methods, fi elds, and constructors, as well as other

items discussed in later chapters. A highly functional class can become quite large. With

C#, you can split the source code for a class into separate fi les so that you can organize

the defi nition of a large class into smaller, easier to manage pieces. This feature is used

by Microsoft Visual Studio 2008 for Windows Presentation Foundation (WPF) applica-

tions, where the source code that the developer can edit is maintained in a separate

fi le from the code that is generated by Visual Studio whenever the layout of a form

changes.

130 Part II Understanding the C# Language

 When you split a class across multiple fi les, you defi ne the parts of the class by using

the partial keyword in each fi le. For example, if the Circle class is split between two fi les

called circ1.cs (containing the constructors) and circ2.cs (containing the methods and

fi elds), the contents of circ1.cs look like this:

partial class Circle
{
 public Circle() // default constructor
 {
 radius = 0;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 }
}

 The contents of circ2.cs look like this:

partial class Circle
{
 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private int radius;
}

 When you compile a class that has been split into separate fi les, you must provide all

the fi les to the compiler.

 In the following exercise, you will declare a class that models a point in two-dimensional

space. The class will contain two private fi elds for holding the x- and y-coordinates of a point

and will provide constructors for initializing these fi elds. You will create instances of the class

by using the new keyword and calling the constructors.

Write constructors and create objects

1. Start Visual Studio 2008 if it is not already running.

2. Open the Classes project located in the \Microsoft Press\Visual CSharp Step by Step\

Chapter 7\Classes folder in your Documents folder.

3. In Solution Explorer, double-click the fi le Program.cs to display it in the Code and Text
Editor window.

Write constructors and create objects

 Chapter 7 Creating and Managing Classes and Objects 131
 4. Locate the Main method in the Program class.

 The Main method calls the Entrance method, wrapped in a try block and followed by a

catch handler. With this try/catch block, you can write the code that would typically go

inside Main in the Entrance method instead, safe in the knowledge that it will catch and

handle any exceptions.

 5. Display the fi le Point.cs in the Code and Text Editor window.

 This fi le defi nes a class called Point, which you will use to represent the location of a

point defi ned by a pair of x- and y-coordinates. The Point class is currently empty.

 6. Return to the Program.cs fi le, and locate the Entrance method of the Program class. Edit

the body of the Entrance method, replacing the // to do comment with the following

statement:

Point origin = new Point();

 7. On the Build menu, click Build Solution.

 The code builds without error because the compiler automatically generates the code

for a default constructor for the Point class. However, you cannot see the C# code

for this constructor because the compiler does not generate any source language

statements.

 8. Return to the Point class in the fi le Point.cs. Replace the // to do comment with a pub-
lic constructor that accepts two int arguments called x and y and that calls the Console.
WriteLine method to display the values of these arguments to the console, as shown in

bold type in the following code example. The Point class should look like this:

class Point
{
 public Point(int x, int y)
 {
 Console.WriteLine(“x:{0}, y:{1}”, x, y);
 }
}

 Note Remember that the Console.WriteLine method uses {0} and {1} as placeholders. In

the statement shown, {0} will be replaced with the value of x, and {1} will be replaced with

the value of y when the program runs.

 9. On the Build menu, click Build Solution.

 The compiler now reports an error:

‘Classes.Point’ does not contain a constructor that takes ‘0 ‘ arguments

132 Part II Understanding the C# Language

 The call to the default constructor in Entrance no longer works because there is no

longer a default constructor. You have written your own constructor for the Point class,

so the compiler no longer generates the default constructor. You will now fi x this by

writing your own default constructor.

10. Edit the Point class, and add a public default constructor that calls Console.WriteLine to

write the string “default constructor called” to the console, as shown in bold type in the

following code example. The Point class should now look like this:

class Point
{
 public Point()
 {
 Console.WriteLine(“default constructor called”);
 }

 public Point(int x, int y)
 {
 Console.WriteLine(“x:{0}, y:{1}”, x, y);
 }
}

11. On the Build menu, click Build Solution.

 The program should now build successfully.

12. In the Program.cs fi le, edit the body of the Entrance method. Declare a variable called

bottomRight of type Point, and initialize it to a new Point object by using the construc-

tor with two arguments, as shown in bold type in the following code. Supply the values

1024 and 1280, representing the coordinates at the lower-right corner of the screen

based on the resolution 1024 × 1280. The Entrance method should now look like this:

static void Entrance()
{
 Point origin = new Point();
 Point bottomRight = new Point(1024, 1280);
}

13. On the Debug menu, click Start Without Debugging.

 The program builds and runs, displaying the following messages to the console:

default constructor called
x:1024, y:1280

14. Press the Enter key to end the program and return to Visual Studio 2008.

 You will now add two int fi elds to the Point class to represent the x- and y-coordinates

of a point, and you will modify the constructors to initialize these fi elds.

 Chapter 7 Creating and Managing Classes and Objects 133

15. Edit the Point class in the Point.cs fi le, and add two private instance fi elds called x and

y of type int, as shown in bold type in the following code. The Point class should now

look like this:

class Point
{
 public Point()
 {
 Console.WriteLine(“default constructor called”);
 }

 public Point(int x, int y)
 {
 Console.WriteLine(“x:{0}, y:{1}”, x, y);
 }

 private int x, y;
}

 You will now edit the second Point constructor to initialize the x and y fi elds to the

values of the x and y parameters. There is a potential trap when you do this. If you are

not careful, the constructor will look like this:

public Point(int x, int y) // Don’t type this!
{
 x = x;
 y = y;
}

 Although this code will compile, these statements appear to be ambiguous. How does

the compiler know in the statement x = x; that the fi rst x is the fi eld and the second x

is the parameter? It doesn’t! A method parameter with the same name as a fi eld hides

the fi eld for all statements in the method. All this constructor actually does is assign the

parameters to themselves; it does not modify the fi elds at all. This is clearly not what

you want.

 The solution is to use the this keyword to qualify which variables are parameters and

which are fi elds. Prefi xing a variable with this means “the fi eld in this object.”

16. Modify the Point constructor that takes two parameters, and replace the Console.
WriteLine statement with the following code shown in bold type:

public Point(int x, int y)
{
 this.x = x;
 this.y = y;
}

134 Part II Understanding the C# Language

17. Edit the default Point constructor to initialize the x and y fi elds to –1, as follows in bold

type. Note that although there are no parameters to cause confusion, it is still good

practice to qualify the fi eld references with this:

public Point()
{
 this.x = -1;
 this.y = -1;
}

18. On the Build menu, click Build Solution. Confi rm that the code compiles without errors

or warnings. (You can run it, but it does not produce any output yet.)

Methods that belong to a class and that operate on the data belonging to a particular in-

stance of a class are called instance methods. (There are other types of methods that you will

meet later in this chapter.) In the following exercise, you will write an instance method for the

Point class, called DistanceTo, that calculates the distance between two points.

Write and call instance methods

1. In the Classes project in Visual Studio 2008, add the following public instance method

called DistanceTo to the Point class between the constructors and the private variables.

The method accepts a single Point argument called other and returns a double.

 The DistanceTo method should look like this:

class Point
{
 ...

 public double DistanceTo(Point other)
 {
 }
 ...
}

 In the following steps, you will add code to the body of the DistanceTo instance method

to calculate and return the distance between the Point object being used to make the

call and the Point object passed as a parameter. To do this, you must calculate the dif-

ference between the x-coordinates and the y-coordinates.

2. In the DistanceTo method, declare a local int variable called xDiff, and initialize it to the

difference between this.x and other.x, as shown here in bold type:

public double DistanceTo(Point other)
{
 int xDiff = this.x – other.x;
}

Write and call instance methods

 Chapter 7 Creating and Managing Classes and Objects 135

3. Declare another local int variable called yDiff, and initialize it to the difference between

this.y and other.y, as shown here in bold type:

public double DistanceTo(Point other)
{
 int xDiff = this.x – other.x;
 int yDiff = this.y - other.y;
}

 To calculate the distance, you can use the Pythagorean theorem. Work out the square

root of the sum of the square of xDiff and the square of yDiff. The System.Math class

provides the Sqrt method that you can use to calculate square roots.

4. Add the return statement shown in bold type in the following code to the end of the

DistanceTo method to perform the calculation:

public double DistanceTo(Point other)
{
 int xDiff = this.x - other.x;
 int yDiff = this.y - other.y;
 return Math.Sqrt((xDiff * xDiff) + (yDiff * yDiff));
}

 You will now test the DistanceTo method.

5. Return to the Entrance method in the Program class. After the statements that declare

and initialize the origin and bottomRight Point variables, declare a variable called dis-
tance of type double. Initialize this double variable to the result obtained when you call

the DistanceTo method on the origin object, passing the bottomRight object to it as an

argument.

 The Entrance method should now look like this:

static void Entrance()
{
 Point origin = new Point();
 Point bottomRight = new Point(1024, 1280);
 double distance = origin.DistanceTo(bottomRight);
}

 Note IntelliSense should display the DistanceTo method when you type the period

character after origin.

6. Add to the Entrance method another statement that writes the value of the distance

variable to the console by using the Console.WriteLine method.

 The completed Entrance method should look like this:

static void Entrance()
{
 Point origin = new Point();
 Point bottomRight = new Point(1024, 1280);

136 Part II Understanding the C# Language
 double distance = origin.DistanceTo(bottomRight);
 Console.WriteLine(“Distance is: {0}”, distance);
}

 7. On the Debug menu, click Start Without Debugging.

 8. Confi rm that the value 1640.60537607311 is written to the console window.

 9. Press Enter to close the application and return to Visual Studio 2008.

Understanding static Methods and Data
 In the preceding exercise, you used the Sqrt method of the Math class; similarly, when look-

ing at the Circle class, you read the PI fi eld of the Math class. If you think about it, the way

in which you called the Sqrt method or read the PI fi eld was slightly odd. You invoked the

method on the class itself, not on an object of type Math. It is like trying to write Point.
DistanceTo rather than origin.DistanceTo in the code you added in the preceding exercise. So

what’s happening, and how does this work?

 You will often fi nd that not all methods naturally belong to an instance of a class; they are

utility methods inasmuch as they provide a useful function that is independent of any specifi c

class instance. The Sqrt method is just such an example. If Sqrt were an instance method of

Math, you’d have to create a Math object to call Sqrt on:

Math m = new Math();
double d = m.Sqrt(42.24);

 This would be cumbersome. The Math object would play no part in the calculation of the

square root. All the input data that Sqrt needs is provided in the parameter list, and the result

is passed back to the caller by using the method’s return value. Objects are not really needed

here, so forcing Sqrt into an instance straitjacket is just not a good idea. As well as the Sqrt
method and the PI fi eld, the Math class contains many other mathematical utility methods,

such as Sin, Cos, Tan, and Log.

 In C#, all methods must be declared inside a class. However, if you declare a method or a

fi eld as static, you can call the method or access the fi eld by using the name of the class. No

instance is required. This is how the Sqrt method of the real Math class is declared:

class Math
{
 public static double Sqrt(double d) { ... }
 ...
}

 When you defi ne a static method, it does not have access to any instance fi elds defi ned for

the class; it can use only fi elds that are marked as static. Furthermore, it can directly invoke

 Chapter 7 Creating and Managing Classes and Objects 137

only other methods in the class that are marked as static; nonstatic (instance) methods re-

quire you fi rst to create an object on which to call them.

Creating a Shared Field
 As mentioned in the preceding section, you can also use the static keyword when defi ning a

fi eld. With this feature, you can create a single fi eld that is shared among all objects created

from a single class. (Nonstatic fi elds are local to each instance of an object.) In the following

example, the static fi eld NumCircles in the Circle class is incremented by the Circle construc-

tor every time a new Circle object is created:

class Circle
{
 public Circle() // default constructor
 {
 radius = 0;
 NumCircles++;
 }

 public Circle(int initialRadius) // overloaded constructor
 {
 radius = initialRadius;
 NumCircles++;
 }

 ...
 private int radius;
 public static int NumCircles = 0;
}

 All Circle objects share the same NumCircles fi eld, so the statement NumCircles++; incre-

ments the same data every time a new instance is created. You access the NumCircles fi eld by

specifying the Circle class rather than a Circle object. For example:

Console.WriteLine(“Number of Circle objects: {0}”, Circle.NumCircles);

 Tip static methods are also called class methods. However, static fi elds aren’t usually called class
fi elds; they’re just called static fi elds (or sometimes static variables).

Creating a static Field by Using the const Keyword
 By prefi xing the fi eld with the const keyword, you can declare that a fi eld is static but that

its value can never change. const is short for “constant.” A const fi eld does not use the static

keyword in its declaration but is nevertheless static. However, for reasons that are beyond

the scope of this book, you can declare a fi eld as const only when the fi eld is an enumeration,

a numeric type such as int or double, or a string. (You learn about enumerations in Chapter

138 Part II Understanding the C# Language

9, “Creating Value Types with Enumerations and Structs.”) For example, here’s how the Math

class declares PI as a const fi eld:

class Math
{
 ...
 public const double PI = 3.14159265358979323846;
}

static Classes
Another feature of the C# language is the ability to declare a class as static. A static

class can contain only static members. (All objects that you create using the class share

a single copy of these members.) The purpose of a static class is purely to act as a

holder of utility methods and fi elds. A static class cannot contain any instance data or

methods, and it does not make sense to try to create an object from a static class by

using the new operator. In fact, you can’t actually create an instance of an object using

a static class by using new even if you want to. (The compiler will report an error if you

try.) If you need to perform any initialization, a static class can have a default construc-

tor as long as it is also declared as static. Any other types of constructor are illegal and

will be reported as such by the compiler.

 If you were defi ning your own version of the Math class, one containing only static

members, it could look like this:

public static class Math
{
 public static double Sin(double x) {...}
 public static double Cos(double x) {...}
 public static double Sqrt(double x) {...}
 ...
}

Note, however, that the real Math class is not defi ned this way because it actually does

have some instance methods.

In the fi nal exercise in this chapter, you will add a private static fi eld to the Point class and ini-

tialize the fi eld to 0. You will increment this count in both constructors. Finally, you will write

a public static method to return the value of this private static fi eld. With this fi eld, you can

fi nd out how many Point objects have been created.

Write static members, and call static methods

1. Using Visual Studio 2008, display the Point class in the Code and Text Editor window.

Write static members, and call c static methodsc

 Chapter 7 Creating and Managing Classes and Objects 139

2. Add a private static fi eld called objectCount of type int to the end of the Point class.

Initialize it to 0 as you declare it, like this:

class Point
{
 ...;
 private static int objectCount = 0;
}

Note You can write the keywords private and static in any order. The preferred order is

private fi rst, static second.

3. Add a statement to both Point constructors to increment the objectCount fi eld, as

shown in bold type in the following code example.

 Each time an object is created, its constructor is called. As long as you increment the

objectCount in each constructor (including the default constructor), objectCount will

hold the number of objects created so far. This strategy works only because object-
Count is a shared static fi eld. If objectCount were an instance fi eld, each object would

have its own personal objectCount fi eld that would be set to 1.

 The Point class should now look like this:

class Point
{
 public Point()
 {
 this.x = -1;
 this.y = -1;
 objectCount++;
 }

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 objectCount++;
 }

 private int x, y;
 private static int objectCount = 0;
}

 Notice that you cannot prefi x static fi elds and methods with the this keyword because

they do not belong to the current instance of the class. (They do not actually belong to

any instance.)

 The question now is this: How can users of the Point class fi nd out how many Point
objects have been created? At the moment, the objectCount fi eld is private and not

available outside the class. A poor solution would be to make the objectCount fi eld

140
publicly accessible. This strategy would break the encapsulation of the class; you would

then have no guarantee that its value was correct because anyone could change the

value in the fi eld. A much better idea is to provide a public static method that returns

the value of the objectCount fi eld. This is what you will do now.

4. Add a public static method to the Point class called ObjectCount that returns an int but

does not take any parameters. In this method, return the value of the objectCount fi eld,

as follows in bold type:

class Point
{
 ...
 public static int ObjectCount()
 {
 return objectCount;
 }
 ...
}

5. Display the Program class in the Code and Text Editor window, and locate the Entrance

method.

6. Add a statement to the Entrance method to write the value returned from the

ObjectCount method of the Point class to the screen, as shown in bold type in the

following code example. The Entrance method should look like this:

static void Entrance()
{
 Point origin = new Point();
 Point bottomRight = new Point(600, 800);
 double distance = origin.distanceTo(bottomRight);
 Console.WriteLine(“Distance is: {0}”, distance);
 Console.WriteLine(“No of Point objects: {0}”, Point.ObjectCount());
}

 The ObjectCount method is called by referencing Point, the name of the class, and not

the name of a Point variable (such as origin or bottomRight). Because two Point objects

have been created by the time ObjectCount is called, the method should return the

value 2.

7. On the Debug menu, click Start Without Debugging.

 Confi rm that the value 2 is written to the console window (after the message displaying

the value of the distance variable).

8. Press Enter to fi nish the program and return to Visual Studio 2008.

 Congratulations. You have successfully created a class and used constructors to initialize the

fi elds in a class. You have created instance and static methods, and you have called both of

these types of methods. You have also implemented instance and static fi elds. You have seen

 Part II Understanding the C# Language

 Chapter 7 Creating and Managing Classes and Objects 141
how to make fi elds and methods accessible by using the public keyword and how to hide

them using the private keyword.

Anonymous Classes
 An anonymous class is a class that does not have a name. This sounds rather strange

but is actually quite handy in some situations that you will see later in this book, espe-

cially when using query expressions. (You learn about query expressions in Chapter 20,

“Querying In-Memory Data by Using Query Expressions.”) For the time being, just ac-

cept the fact that they are useful.

 You create an anonymous class simply by using the new keyword and a pair of braces

defi ning the fi elds and values that you want the class to contain, like this:

myAnonymousObject = new { Name = “John”, Age = 42 };

 This class contains two public fi elds called Name (initialized to the string “John”) and

Age (initialized to the integer 42). The compiler infers the types of the fi elds from the

types of the data you specify to initialize them.

 When you defi ne an anonymous class, the compiler generates its own name for the

class, but it won’t tell you what it is. Anonymous classes therefore raise a potentially

interesting conundrum: If you don’t know the name of the class, how can you create an

object of the appropriate type and assign an instance of the class to it? In the code ex-

ample shown earlier, what should the type of the variable myAnonymousObject be? The

answer is that you don’t know—that is the point of anonymous classes! However, this

is not a problem if you declare myAnonymousObject as an implicitly typed variable by

using the var keyword, like this:

var myAnonymousObject = new { Name = “John”, Age = 42 };

 Remember that the var keyword causes the compiler to create a variable of the same

type as the expression used to initialize it. In this case, the type of the expression is

whatever name the compiler happens to generate for the anonymous class.

 You can access the fi elds in the object by using the familiar dot notation, like this:

Console.WriteLine(“Name: {0} Age: {1}”, myAnonymousObject.Name, myAnonymousObject.
Age};

 You can even create other instances of the same anonymous class but with different

values:

var anotherAnonymousObject = new { Name = “Diana”, Age = 43 };

142 Part II Understanding the C# Language
 The C# compiler uses the names, types, number, and order of the fi elds to determine

whether two instances of an anonymous class have the same type. In this case, variables

myAnonymousObject and anotherAnonymousObject have the same number of fi elds,

with the same name and type, in the same order, so both variables are instances of the

same anonymous class. This means that you can perform assignment statements such

as this:

anotherAnonymousObject = myAnonymousObject;

 Note Be warned that this assignment statement might not accomplish what you expect.

You’ll learn more about assigning object variables in Chapter 8, “Understanding Values and

References.”

 There are quite a lot of restrictions on the contents of an anonymous class. Anonymous

classes can contain only public fi elds, the fi elds must all be initialized, they cannot be

static, and you cannot specify any methods.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 8.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Microsoft Visual C# 2008 Express Edition)

and save the project.

Chapter 7 Quick Reference
 To Do this

 Declare a class Write the keyword class, followed by the name of the class, followed by an

opening and closing brace. The methods and fi elds of the class are declared

between the opening and closing braces. For example:

class Point
{
 ...
}

 Chapter 7 Creating and Managing Classes and Objects 143
 Declare a constructor Write a method whose name is the same as the name of the class and that

has no return type (not even void). For example:

class Point
{
 public Point(int x, int y)
 {
 ...
 }
}

 Call a constructor Use the new keyword, and specify the constructor with an appropriate set

of parameters. For example:

Point origin = new Point(0, 0);

 Declare a static

method

Write the keyword static before the declaration of the method. For

example:

class Point
{
 public static int ObjectCount()
 {
 ...
 }
}

 Call a static method Write the name of the class, followed by a period, followed by the name of

the method. For example:

int pointsCreatedSoFar = Point.ObjectCount();

 Declare a static fi eld Write the keyword static before the declaration of the fi eld. For example:

class Point
{
 ...
 private static int objectCount;
}

 Declare a const fi eld Write the keyword const before the declaration of the fi eld, and omit the

static keyword. For example:

class Math
{
 ...
 public const double PI = ...;
}

 Access a static fi eld Write the name of the class, followed by a period, followed by the name of

the static fi eld. For example:

double area = Math.PI * radius * radius;

Chapter 8

Understanding Values and
References

 After completing this chapter, you will be able to:

 Explain the differences between a value type and a reference type.

 Modify the way in which arguments are passed as method parameters by using the ref
and out keywords.

 Box a value by initializing or assigning a variable of type object.

 Unbox a value by casting the object reference that refers to the boxed value.

 In Chapter 7, “Creating and Managing Classes and Objects,” you learned how to declare

your own classes and how to create objects by using the new keyword. You also saw how

to initialize an object by using a constructor. In this chapter, you will learn about how

the characteristics of the primitive types, such as int, double, and char, differ from the

characteristics of class types.

Copying Value Type Variables and Classes
 Collectively, the types such as int, fl oat, double, and char are called value types. When you

declare a variable as a value type, the compiler generates code that allocates a block of

memory big enough to hold a corresponding value. For example, declaring an int variable

causes the compiler to allocate 4 bytes of memory (32 bits). A statement that assigns a value

(such as 42) to the int causes the value to be copied into this block of memory.

 Class types, such as Circle (described in Chapter 7), are handled differently. When you declare

a Circle variable, the compiler does not generate code that allocates a block of memory big

enough to hold a Circle; all it does is allot a small piece of memory that can potentially hold

the address of (or a reference to) another block of memory containing a Circle. (An address

specifi es the location of an item in memory.) The memory for the actual Circle object is al-

located only when the new keyword is used to create the object. A class is an example of a

reference type. Reference types hold references to blocks of memory.

 Note Most of the primitive types of the C# language are value types except for string, which is a

reference type. The description of reference types such as classes in this chapter applies to the

string type as well. In fact, the string keyword in C# is just an alias for the System.String class.
 145

146 Part II Understanding the C# Language
 You need to fully understand the difference between value types and reference types.

Consider the situation in which you declare a variable named i as an int and assign it the

value 42. If you declare another variable called copyi as an int and then assign i to copyi, copyi
will hold the same value as i (42). However, even though copyi and i happen to hold the same

value, there are still two blocks of memory containing the value 42: one block for i and the

other block for copyi. If you modify the value of i, the value of copyi does not change. Let’s

see this in code:

int i = 42; // declare and initialize i
int copyi = i; // copyi contains a copy of the data in i
i++; // incrementing i has no effect on copyi

 The effect of declaring a variable c as a Circle (the name of a class) is very different. When you

declare c as a Circle, c can refer to a Circle object. If you declare refc as another Circle, it can

also refer to a Circle object. If you assign c to refc, refc will refer to the same Circle object that

c does; there is only one Circle object, and refc and c both refer to it. What has happened

here is that the compiler has allocated two blocks of memory, one for c and one for refc, but

the address contained in each block points to the same location in memory that stores the

actual Circle object. Let’s see this in code:

Circle c = new Circle(42);
Circle refc = c;

 The following graphic illustrates both examples. The at sign (@) in the Circle objects

represents a reference to an address in memory:

 The difference explained here is very important. In particular, it means that the behavior

of method parameters depends on whether they are value types or reference types. You’ll

explore this difference in the following exercise.

 Chapter 8 Understanding Values and References 147
Note If you actually want to copy the contents of the c variable into refc rather than just

copying the reference, you must make refc refer to a new instance of the Circle class and

then copy the data fi eld by fi eld from c into refc, like this:

Circle refc = new Circle();
refc.radius = c.radius; // Don’t try this

 However, if any members of the Circle class are private (like the radius fi eld), you will not be able

to copy this data. Instead, you should make the data in the private fi elds accessible by expos-

ing them as properties. You will learn how to do this in Chapter 15, “Implementing Properties to

Access Fields.”

Use value parameters and reference parameters

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the Parameters project located in the \Microsoft Press\Visual CSharp Step by

Step\Chapter 8\Parameters folder in your Documents folder.

 The project contains three C# code fi les named Pass.cs, Program.cs, and WrappedInt.cs.

 3. Display the Pass.cs fi le in the Code and Text Editor window. Add a public static method

called Value to the Pass class, replacing the // to do comment, as shown in bold type

in the following code example. This method should accept a single int parameter (a

value type) called param and have the return type void. The body of the Value method

should simply assign 42 to param.

namespace Parameters
{
 class Pass
 {
 public static void Value(int param)
 {
 param = 42;
 }
 }
}

 4. Display the Program.cs fi le in the Code and Text Editor window, and then locate the

Entrance method of the Program class.

 The Entrance method is called by the Main method when the program starts running.

As explained in Chapter 7, the method call is wrapped in a try block and followed by a

catch handler.

 5. Add four statements to the Entrance method to perform the following tasks:

 Declare a local int variable called i, and initialize it to 0.

 Write the value of i to the console by using Console.WriteLine.

 Call Pass.Value, passing i as an argument.

 Write the value of i to the console again.

Use value parameters and reference parameters

148 Part II Understanding the C# Language

 With the calls to Console.WriteLine before and after the call to Pass.Value, you can see

whether the call to Pass.Value actually modifi es the value of i. The completed Entrance

method should look exactly like this:

static void Entrance()
{
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(i);
 Console.WriteLine(i);
}

6. On the Debug menu, click Start Without Debugging to build and run the program.

7. Confi rm that the value 0 is written to the console window twice.

 The assignment statement inside the Pass.Value method that updates the parameter

uses a copy of the argument passed in, and the original argument i is completely

unaffected.

8. Press the Enter key to close the application.

 You will now see what happens when you pass an int parameter that is wrapped inside

a class.

9. Display the WrappedInt.cs fi le in the Code and Text Editor window. Add a public instance

fi eld called Number of type int to the WrappedInt class, as shown in bold type here.

namespace Parameters
{
 class WrappedInt
 {
 public int Number;
 }
}

10. Display the Pass.cs fi le in the Code and Text Editor window. Add a public static method

called Reference to the Pass class. This method should accept a single WrappedInt
parameter called param and have the return type void. The body of the Reference
method should assign 42 to param.Number, like this:

public static void Reference(WrappedInt param)
{
 param.Number = 42;
}

11. Display the Program.cs fi le in the Code and Text Editor window. Add four more state-

ments to the Entrance method to perform the following tasks:

 Declare a local WrappedInt variable called wi, and initialize it to a new WrappedInt
object by calling the default constructor.

 Write the value of wi.Number to the console.

 Chapter 8 Understanding Values and References 149

 Call the Pass.Reference method, passing wi as an argument.

 Write the value of wi.Number to the console again.

 As before, with the calls to Console.WriteLine, you can see whether the call to Pass.
Reference modifi es the value of wi.Number. The Entrance method should now look

exactly like this (the new statements are shown in bold type):

static void Entrance()
{
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(i);
 Console.WriteLine(i);

 WrappedInt wi = new WrappedInt();
 Console.WriteLine(wi.Number);
 Pass.Reference(wi);
 Console.WriteLine(wi.Number);
}

12. On the Debug menu, click Start Without Debugging to build and run the application.

 As before, the fi rst two values written to the console window are 0 and 0, before and

after the call to Pass.Value. However, the next two values correspond to the value of

wi.Number before and after Pass.Reference, and you should see that the values 0 and

42 are written to the console window.

13. Press the Enter key to close the application and return to Visual Studio 2008.

 In the previous exercise, the value of wi.Number is initialized to 0 by the compiler-generated

default constructor. The wi variable contains a reference to the newly created WrappedInt
object (which contains an int). The wi variable is then copied as an argument to the Pass.
Reference method. Because WrappedInt is a class (a reference type), wi and param both refer

to the same WrappedInt object. Any changes made to the contents of the object through

the param variable in the Pass.Reference method are visible by using the wi variable when

the method completes. The following diagram illustrates what happens when a WrappedInt
object is passed as an argument to the Pass.Reference method:

150 Part II Understanding the C# Language
Understanding Null Values and Nullable Types
 When you declare a variable, it is always a good idea to initialize it. With value types, it is

common to see code such as this:

int i = 0;
double d = 0.0;

 Remember that to initialize a reference variable such as a class, you can create a new instance

of the class and assign the reference variable to the new object, like this:

Circle c = new Circle(42);

 This is all very well, but what if you don’t actually want to create a new object—perhaps the

purpose of the variable is simply to store a reference to an existing object. In the following

code example, the Circle variable copy is initialized, but later it is assigned a reference to an-

other instance of the Circle class:

Circle c = new Circle(42);
Circle copy = new Circle(99); // Some random value, for initializing copy
...
copy = c; // copy and c refer to the same object

 After assigning c to copy, what happens to the original Circle object with a radius of 99

that you used to initialize copy? Nothing refers to it anymore. In this situation, the runtime

can reclaim the memory by performing an operation known as garbage collection. You

will learn about garbage collection in Chapter 14, “Using Garbage Collection and Resource

Management.” The important thing to understand for now is that garbage collection is a

 potentially expensive operation.

 You could argue that if a variable is going to be assigned a reference to another object at

some point in a program, there is no point initializing it. But this is poor programming prac-

tice and can lead to problems in your code. For example, you will inevitably meet the situ-

ation where you want to refer a variable to an object only if that variable does not already

contain a reference:

Circle c = new Circle(42);
Circle copy; // Uninitialized !!!
...
if (copy == // what goes here?)
 copy = c; // copy and c refer to the same object

 The purpose of the if statement is to test the copy variable to see whether it is initialized,

but to which value should you compare this variable? The answer is to use a special value

called null.

 Chapter 8 Understanding Values and References 151
 In C#, you can assign the null value to any reference variable. The null value simply means

that the variable does not refer to an object in memory. You can use it like this:

Circle c = new Circle(42);
Circle copy = null; // Initialized
...
if (copy == null)
 copy = c; // copy and c refer to the same object

Using Nullable Types
 The null value is useful for initializing reference types, but null is itself a reference, and you

cannot assign it to a value type. The following statement is therefore illegal in C#:

int i = null; // illegal

 However, C# defi nes a modifi er that you can use to declare that a variable is a nullable value

type. A nullable value type behaves in a similar manner to the original value type, but you

can assign the null value to it. You use the question mark (?)to indicate that a value type is

nullable, like this:

int? i = null; // legal

 You can ascertain whether a nullable variable contains null by testing it in the same way as a

reference type:

if (i == null)
 ...

 You can assign an expression of the appropriate value type directly to a nullable variable. The

following examples are all legal:

int? i = null;
int j = 99;
i = 100; // Copy a value type constant to a nullable type
i = j; // Copy a value type variable to a nullable type

 You should note that the converse is not true. You cannot assign a nullable value to an

 ordinary value type variable, so given the defi nitions of variables i and j from the preceding

example, the following statement is not allowed:

j = i; // Illegal

 This also means that you cannot use a nullable variable as a parameter to a method that

expects an ordinary value type. If you recall, the Pass.Value method from the preceding

 exercise expects an ordinary int parameter, so the following method call will not compile:

int? i = 99;
Pass.Value(i); // Compiler error

152 Part II Understanding the C# Language
Understanding the Properties of Nullable Types
 Nullable types expose a pair of properties that you can use and that you have already met

in Chapter 6, “Managing Errors and Exceptions.” The HasValue property indicates whether a

nullable type contains a value or is null, and you can retrieve the value of a non-null nullable

type by reading the Value property, like this:

int? i = null;
...
if (!i.HasValue)
 i = 99;
else
 Console.WriteLine(i.Value);

 Recall from Chapter 4, “Using Decision Statements,” that the NOT operator (!) negates a

Boolean value. This code fragment tests the nullable variable i, and if it does not have a value

(it is null), it assigns it the value 99; otherwise, it displays the value of the variable. In this

example, using the HasValue property does not provide any benefi t over testing for a null
value directly. Additionally, reading the Value property is a long-winded way of reading the

contents of the variable. However, these apparent shortcomings are caused by the fact that

int? is a very simple nullable type. You can create more complex value types and use them to

declare nullable variables where the advantages of using the HasValue and Value properties

become more apparent. You will see some examples in Chapter 9, “Creating Value Types with

Enumerations and Structures.”

 Note The Value property of a nullable type is read-only. You can use this property to read the

value of a variable but not to modify it. To update a nullable variable, use an ordinary assignment

statement.

Using ref and out Parameters
 Ordinarily, when you pass an argument to a method, the corresponding parameter is initial-

ized with a copy of the argument. This is true regardless of whether the parameter is a value

type (such as an int), a nullable type (such as int?), or a reference type (such as a WrappedInt).
This arrangement means it’s impossible for any change to the parameter to affect the value

of the argument passed in. For example, in the following code, the value output to the con-

sole is 42 and not 43. The DoWork method increments a copy of the argument (arg) and not
the original argument:

static void DoWork(int param)
{
 param++;
}

 Chapter 8 Understanding Values and References 153
static void Main()
{
 int arg = 42;
 DoWork(arg);
 Console.WriteLine(arg); // writes 42, not 43
}

 In the preceding exercise, you saw that if the parameter to a method is a reference type, any

changes made by using that parameter change the data referenced by the argument passed

in. The key point is that, although the data that was referenced changed, the parameter itself

did not—it still references the same object. In other words, although it is possible to modify

the object that the argument refers to through the parameter, it’s not possible to modify the

argument itself (for example, to set it to refer to a completely different object). Most of the

time, this guarantee is very useful and can help to reduce the number of bugs in a program.

Occasionally, however, you might want to write a method that actually needs to modify an

argument. C# provides the ref and out keywords so that you can do this.

Creating ref Parameters
 If you prefi x a parameter with the ref keyword, the parameter becomes an alias for (or a

reference to) the actual argument rather than a copy of the argument. When using a ref pa-

rameter, anything you do to the parameter you also do to the original argument because

the parameter and the argument both reference the same object. When you pass an argu-

ment to a ref parameter, you must also prefi x the argument with the ref keyword. This syntax

provides a useful visual indication that the argument might change. Here’s the preceding

example again, this time modifi ed to use the ref keyword:

static void DoWork(ref int param) // using ref
{
 param++;
}

static void Main()
{
 int arg = 42;
 DoWork(ref arg); // using ref
 Console.WriteLine(arg); // writes 43
}

 This time, you pass to the DoWork method a reference to the original argument rather than a

copy of the original argument, so any changes the method makes by using this reference also

change the original argument. That’s why the value 43 is displayed on the console.

 The rule that you must assign a value to a variable before you can use the variable still

 applies to ref arguments. For example, in the following example, arg is not initialized, so this

154 Part II Understanding the C# Language
code will not compile. This failure is because param++ inside DoWork is really arg++, and

arg++ is allowed only if arg has a defi ned value:

static void DoWork(ref int param)
{
 param++;
}

static void Main()
{
 int arg; // not initialized
 DoWork(ref arg);
 Console.WriteLine(arg);
}

Creating out Parameters
 The compiler checks whether a ref parameter has been assigned a value before calling the

method. However, there may be times when you want the method to initialize the parameter.

With the out keyword, you can do this.

 The out keyword is very similar to the ref keyword. You can prefi x a parameter with the out
keyword so that the parameter becomes an alias for the argument. As when using ref, any-

thing you do to the parameter, you also do to the original argument. When you pass an

 argument to an out parameter, you must also prefi x the argument with the out keyword.

 The keyword out is short for output. When you pass an out parameter to a method, the

method must assign a value to it. The following example does not compile because DoWork

does not assign a value to param:

static void DoWork(out int param)
{
 // Do nothing
}

 However, the following example does compile because DoWork assigns a value to param.

static void DoWork(out int param)
{
 param = 42;
}

 Because an out parameter must be assigned a value by the method, you’re allowed to call the

method without initializing its argument. For example, the following code calls DoWork to

initialize the variable arg, which is then displayed on the console:

static void DoWork(out int param)
{
 param = 42;
}

 Chapter 8 Understanding Values and References 155

static void Main()
{
 int arg; // not initialized
 DoWork(out arg);
 Console.WriteLine(arg); // writes 42
}

You will examine ref parameters in the next exercise.

Use ref parameters

1. Return to the Parameters project in Visual Studio 2008.

2. Display the Pass.cs fi le in the Code and Text Editor window.

3. Edit the Value method to accept its parameter as a ref parameter.

 The Value method should look like this:

class Pass
{
 public static void Value(ref int param)
 {
 param = 42;
 }
 ...
}

4. Display the Program.cs fi le in the Code and Text Editor window.

5. Edit the third statement of the Entrance method so that the Pass.Value method call

passes its argument as a ref parameter.

 The Entrance method should now look like this:

class Application
{
 static void Entrance()
 {
 int i = 0;
 Console.WriteLine(i);
 Pass.Value(ref i);
 Console.WriteLine(i);
 ...
 }
}

6. On the Debug menu, click Start Without Debugging to build and run the program.

 This time, the fi rst two values written to the console window are 0 and 42. This result

shows that the call to the Pass.Value method has successfully modifi ed the argument i.

7. Press the Enter key to close the application and return to Visual Studio 2008.

Use ref parametersf

156 Part II Understanding the C# Language
 Note You can use the ref and out modifi ers on reference type parameters as well as on

value type parameters. The effect is exactly the same. The parameter becomes an alias for

the argument. If you reassigned the parameter to a newly constructed object, you would

also actually be reassigning the argument to the newly constructed object.

How Computer Memory Is Organized
 Computers use memory to hold programs being executed and the data that these programs

use. To understand the differences between value and reference types, it is helpful to under-

stand how data is organized in memory.

 Operating systems and runtimes frequently divide the memory used for holding data in two

separate chunks, each of which is managed in a distinct manner. These two chunks of memo-

ry are traditionally called the stack and the heap. The stack and the heap serve very different

purposes:

 When you call a method, the memory required for its parameters and its local variables

is always acquired from the stack. When the method fi nishes (because it either returns

or throws an exception), the memory acquired for the parameters and local variables is

automatically released back to the stack and is available for reuse when another meth-

od is called.

 When you create an object (an instance of a class) by using the new keyword, the mem-

ory required to build the object is always acquired from the heap. You have seen that

the same object can be referenced from several places by using reference variables.

When the last reference to an object disappears, the memory used by the object be-

comes available for reuse (although it might not be reclaimed immediately). Chapter 14

includes a more detailed discussion of how heap memory is reclaimed.

 Note All value types are created on the stack. All reference types (objects) are created on the

heap (although the reference itself is on the stack). Nullable types are actually reference types,

and they are created on the heap.

 The names stack and heap come from the way in which the runtime manages the memory:

 Stack memory is organized like a stack of boxes piled on top of one another. When a

method is called, each parameter is put in a box that is placed on top of the stack. Each

local variable is likewise assigned a box, and these are placed on top of the boxes al-

ready on the stack. When a method fi nishes, all its boxes are removed from the stack.

 Chapter 8 Understanding Values and References 157

 Heap memory is like a large pile of boxes strewn around a room rather than stacked

neatly on top of each other. Each box has a label indicating whether it is in use. When

a new object is created, the runtime searches for an empty box and allocates it to the

object. The reference to the object is stored in a local variable on the stack. The run-

time keeps track of the number of references to each box (remember that two variables

can refer to the same object). When the last reference disappears, the runtime marks

the box as not in use, and at some point in the future it will empty the box and make it

available for reuse.

Using the Stack and the Heap
 Now let’s examine what happens when the following Method is called:

void Method(int param)
{
 Circle c;
 c = new Circle(param);
 ...
}

 Suppose the value passed into param is the value 42. When the method is called, a block of

memory (just enough for an int) is allocated from the stack and initialized with the value 42.

As execution moves inside the method, another block of memory big enough to hold a refer-

ence (a memory address) is also allocated from the stack but left uninitialized (this is for the

Circle variable, c). Next, another piece of memory big enough for a Circle object is allocated

from the heap. This is what the new keyword does. The Circle constructor runs to convert this

raw heap memory to a Circle object. A reference to this Circle object is stored in the variable

c. The following graphic illustrates the situation:

 At this point, you should note two things:

 Although the object is stored on the heap, the reference to the object (the variable c) is

stored on the stack.

 Heap memory is not infi nite. If heap memory is exhausted, the new operator will throw

an OutOfMemoryException and the object will not be created.

158 Part II Understanding the C# Language
 Note The Circle constructor could also throw an exception. If it does, the memory allocated to

the Circle object will be reclaimed and the value returned by the constructor will be null.

 When the method ends, the parameters and local variables go out of scope. The memory

acquired for c and for param is automatically released back to the stack. The runtime notes

that the Circle object is no longer referenced and at some point in the future will arrange for

its memory to be reclaimed by the heap (see Chapter 14).

The System.Object Class
 One of the most important reference types in the Microsoft .NET Framework is the Object
class in the System namespace. To fully appreciate the signifi cance of the System.Object class

requires that you understand inheritance, which is described in Chapter 12, “Working with

Inheritance.” For the time being, simply accept that all classes are specialized types of System.
Object and that you can use System.Object to create a variable that can refer to any refer-

ence type. System.Object is such an important class that C# provides the object keyword as an

alias for System.Object. In your code, you can use object or you can write System.Object; they

mean exactly the same thing.

 Tip Use the object keyword in preference to System.Object. It’s more direct, and it’s consistent

with other keywords that are synonyms for classes (such as string for System.String and some oth-

ers that you’ll discover in Chapter 9).

 In the following example, the variables c and o both refer to the same Circle object. The fact

that the type of c is Circle and the type of o is object (the alias for System.Object) in effect

provides two different views of the same item in memory:

Circle c;
c = new Circle(42);
object o;
o = c;

 Chapter 8 Understanding Values and References 159
Boxing
 As you have just seen, variables of type object can refer to any object of any reference type.

However, variables of type object can also refer to a value type. For example, the following

two statements initialize the variable i (of type int, a value type) to 42 and then initialize the

variable o (of type object, a reference type) to i:

int i = 42;
object o = i;

 The second statement requires a little explanation to appreciate what is actually happen-

ing. Remember that i is a value type and that it exists in the stack. If the reference inside o

referred directly to i, the reference would refer to the stack. However, all references must

refer to objects on the heap; creating references to items on the stack could seriously com-

promise the robustness of the runtime and create a potential security fl aw, so it is not al-

lowed. Therefore, the runtime allocates a piece of memory from the heap, copies the value

of integer i to this piece of memory, and then refers the object o to this copy. This automatic

copying of an item from the stack to the heap is called boxing. The following graphic shows

the result:

 Important If you modify the original value of a variable, the value on the heap will not change.

Likewise, if you modify the value on the heap, the original value of the variable will not change.

Unboxing
 Because a variable of type object can refer to a boxed copy of a value, it’s only reasonable

to allow you to get at that boxed value through the variable. You might expect to be able to

access the boxed int value that a variable o refers to by using a simple assignment statement

such as this:

 int i = o;

160 Part II Understanding the C# Language
 However, if you try this syntax, you’ll get a compile-time error. If you think about it, it’s pretty

sensible that you can’t use the int i = o; syntax. After all, o could be referencing abso-

lutely anything and not just an int. Consider what would happen in the following code if this

statement were allowed:

Circle c = new Circle();
int i = 42;
object o;

o = c; // o refers to a circle
i = o; // what is stored in i?

 To obtain the value of the boxed copy, you must use what is known as a cast, an operation

that checks whether it is safe to convert one type to another and then does the conversion.

You prefi x the object variable with the name of the type in parentheses, as in this example:

int i = 42;
object o = i; // boxes
i = (int)o; // compiles okay

 The effect of this cast is subtle. The compiler notices that you’ve specifi ed the type int in

the cast. Next, the compiler generates code to check what o actually refers to at run time.

It could be absolutely anything. Just because your cast says o refers to an int, that doesn’t

mean it actually does. If o really does refer to a boxed int and everything matches, the cast

succeeds and the compiler-generated code extracts the value from the boxed int. (In this

example, the boxed value is then stored in i.) This is called unboxing. The following diagram

shows what is happening:

 However, if o does not refer to a boxed int, there is a type mismatch, causing the cast to fail.

The compiler-generated code throws an InvalidCastException at run time. Here’s an example

of an unboxing cast that fails:

Circle c = new Circle(42);
object o = c; // doesn’t box because Circle is a reference variable
int i = (int)o; // compiles okay but throws an exception at run time

 Chapter 8 Understanding Values and References 161

 You will use boxing and unboxing in later exercises. Keep in mind that boxing and unboxing

are expensive operations because of the amount of checking required and the need to allo-

cate additional heap memory. Boxing has its uses, but injudicious use can severely impair the

performance of a program. You will see an alternative to boxing in Chapter 18, “Introducing

Generics.”

Casting Data Safely
 By using a cast, you can specify that, in your opinion, the data referenced by an object has

a specifi c type and that it is safe to reference the object by using that type. The key phrase

here is “in your opinion.” The C# compiler will trust you when it builds your application, but

the runtime is more suspicious and will actually check that this is the case when your applica-

tion runs. If the type of object in memory does not match the cast, the runtime will throw an

InvalidCastException, as described in the preceding section. You should be prepared to catch

this exception and handle it appropriately if it occurs.

 However, catching an exception and attempting to recover in the event that the type of

an object is not what you expected it to be is a rather cumbersome approach. C# provides

two more very useful operators that can help you perform casting in a much more elegant

 manner, the is and as operators.

The is Operator
 You can use the is operator to verify that the type of an object is what you expect it to be,

like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)

162 Part II Understanding the C# Language
{
 WrappedInt temp = (WrappedInt)o; // This is safe; o is a WrappedInt
 ...
}

 The is operator takes two operands: a reference to an object on the left and the name of a

type on the right. If the type of the object referenced on the heap has the specifi ed type, is
evaluates to true; otherwise, it evaluates to false. The preceding code attempts to cast the

reference to the object variable o only if it knows that the cast will succeed.

The as Operator
 The as operator fulfi lls a similar role to is but in a slightly truncated manner. You use the as
operator like this:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
 ... // Cast was successful

 Like the is operator, the as operator takes an object and a type as its operands. The run-

time attempts to cast the object to the specifi ed type. If the cast is successful, the result is

returned, and, in this example, it is assigned to the WrappedInt variable temp. If the cast is

 unsuccessful, the as operator evaluates to the null value and assigns that to temp instead.

 There is a little more to the is and as operators than described here, and you will meet them

again in Chapter 12, “Working with Inheritance.”

Pointers and Unsafe Code
 This section is purely for your information and is aimed at developers who are familiar

with C or C++. If you are new to programming, feel free to skip this section!

 If you have already written programs in languages such as C or C++, much of the dis-

cussion in this chapter concerning object references might be familiar. Although neither

C nor C++ has explicit reference types, both languages have a construct that provides

similar functionality—pointers.

 A pointer is a variable that holds the address of, or a reference to, an item in memory

(on the heap or on the stack). A special syntax is used to identify a variable as a pointer.

For example, the following statement declares the variable pi as a pointer to an integer:

int *pi;

 Chapter 8 Understanding Values and References 163
 Although the variable pi is declared as a pointer, it does not actually point anywhere

until you initialize it. For example, to use pi to point to the integer variable i, you can

use the following statements, and the address operator (&), which returns the address

of a variable:

int *pi;
int i = 99;
...
pi = &i;

 You can access and modify the value held in the variable i through the pointer variable

pi like this:

*pi = 100;

 This code updates the value of the variable i to 100 because pi points to the same

memory location as the variable i.

 One of the main problems that developers learning C and C++ have is understanding

the syntax used by pointers. The * operator has at least two meanings (in addition to

being the arithmetic multiplication operator), and there is often great confusion about

when to use & rather than *. The other issue with pointers is that it is very easy to point

somewhere invalid, or to forget to point somewhere at all, and then try to reference

the data pointed to. The result will be either garbage or a program that fails with an

error because the operating system detects an attempt to access an illegal address in

memory. There is also a whole range of security fl aws in many existing systems result-

ing from the mismanagement of pointers; some environments (not Microsoft Windows)

fail to enforce checks that a pointer does not refer to memory that belongs to another

process, opening up the possibility that confi dential data could be compromised.

 Reference variables were added to C# to avoid all these problems. If you really want

to, you can continue to use pointers in C#, but you must mark the code as unsafe. The

 unsafe keyword can be used to mark a block of code, or an entire method, as shown

here:

public static void Main(string [] args)
{
 int x = 99, y = 100;
 unsafe
 {
 swap (&x, &y);
 }
 Console.WriteLine(“x is now {0}, y is now {1}”, x, y);
}

164 Part II Understanding the C# Language
public static unsafe void swap(int *a, int *b)
{
 int temp;
 temp = *a;
 *a = *b;
 *b = temp;
}

 When you compile programs containing unsafe code, you must specify the /unsafe

option.

 Unsafe code also has a bearing on how memory is managed; objects created in unsafe

code are said to be unmanaged. We discuss this issue in more detail in Chapter 14.

 In this chapter, you have learned some important differences between value types that hold

their value directly on the stack and reference types that refer indirectly to their objects on

the heap. You have also learned how to use the ref and out keywords on method parameters

to gain access to the arguments. You have seen how assigning a value (such as the int 42) to

a variable of the System.Object class creates a boxed copy of the value on the heap and then

causes the System.Object variable to refer to this boxed copy. You have also seen how assign-

ing a variable of a value type (such as an int) to a variable of the System.Object class copies (or

unboxes) the value in the System.Object class to the memory used by the int.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 9.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 8 Quick Reference
 To Do this

 Copy a value type variable Simply make the copy. Because the variable is a value type, you

will have two copies of the same value. For example:

int i = 42;
int copyi = i;

 Copy a reference type variable Simply make the copy. Because the variable is a reference type,

you will have two references to the same object. For example:

Circle c = new Circle(42);
Circle refc = c;

 Chapter 8 Understanding Values and References 165
 Declare a variable that can hold a

value type or the null value

Declare the variable using the ? modifi er with the type. For

example:

int? i = null;

 Pass an argument to a ref
parameter

Prefi x the argument with the ref keyword. This makes the

parameter an alias for the actual argument rather than a copy of

the argument. For example:

static void Main()
{
 int arg = 42;
 DoWork(ref arg);
 Console.WriteLine(arg);
}

 Pass an argument to an out
parameter

Prefi x the argument with the out keyword. This makes the

parameter an alias for the actual argument rather than a copy of

the argument. For example:

static void Main()
{
 int arg = 42;
 DoWork(out arg);
 Console.WriteLine(arg);
}

 Box a value Initialize or assign a variable of type object to the value. For

example:

Object o = 42;

 Unbox a value Cast the object reference that refers to the boxed value to the

type of the value variable. For example:

int i = (int)o;

 Cast an object safely Use the is operator to test whether the cast is valid. For example:

WrappedInt wi = new WrappedInt();
...
object o = wi;
if (o is WrappedInt)
{
 WrappedInt temp = (WrappedInt)o;
 ...
}

Alternatively, use the as operator to perform the cast, and test

whether the result is null. For example:

WrappedInt wi = new WrappedInt();
...
object o = wi;
WrappedInt temp = o as WrappedInt;
if (temp != null)
 ...

Chapter 9

Creating Value Types with
Enumerations and Structures

 After completing this chapter, you will be able to:

 Declare an enumeration type.

 Create and use an enumeration type.

 Declare a structure type.

 Create and use a structure type.

 In Chapter 8, “Understanding Values and References,” you learned about the two funda-

mental kinds of types that exist in Microsoft Visual C#: value types and reference types. A

value type variable holds its value directly on the stack, whereas a reference type variable

holds a reference to an object on the heap. In Chapter 7, “Creating and Managing Classes

and Objects,” you learned how to create your own reference types by defi ning classes. In this

chapter, you’ll learn how to create your own value types.

 C# supports two kinds of value types: enumerations and structures. We’ll look at each of

them in turn.

Working with Enumerations
 Suppose you want to represent the seasons of the year in a program. You could use the in-

tegers 0, 1, 2, and 3 to represent spring, summer, fall, and winter, respectively. This system

would work, but it’s not very intuitive. If you used the integer value 0 in code, it wouldn’t be

obvious that a particular 0 represented spring. It also wouldn’t be a very robust solution. For

example, if you declare an int variable named season, there is nothing to stop you from as-

signing it any legal integer value apart from 0, 1, 2, or 3. C# offers a better solution. You can

create an enumeration (sometimes called an enum type), whose values are limited to a set of

symbolic names.

Declaring an Enumeration
 You defi ne an enumeration by using the enum keyword, followed by a set of symbols

identifying the legal values that the type can have, enclosed between braces. Here’s how to
 167

168 Part II Understanding the C# Language
declare an enumeration named Season whose literal values are limited to the symbolic names

Spring, Summer, Fall, and Winter:

enum Season { Spring, Summer, Fall, Winter }

Using an Enumeration
 Once you have declared an enumeration, you can use it in exactly the same way as any other

type. If the name of your enumeration is Season, you can create variables of type Season,

fi elds of type Season, and parameters of type Season, as shown in this example:

enum Season { Spring, Summer, Fall, Winter }

class Example
{
 public void Method(Season parameter)
 {
 Season localVariable;
 ...
 }

 private Season currentSeason;
}

 Before you can use the value of an enumeration variable, it must be assigned a value. You

can assign to an enumeration variable only a value that is defi ned by the enumeration. For

example:

Season colorful = Season.Fall;
Console.WriteLine(colorful); // writes out ‘Fall’

 Note Like all value types, you can create a nullable version of an enumeration variable by using

the ? modifi er. You can then assign the null value, as well the values defi ned by the enumeration,

to the variable:

Season? colorful = null;

 Notice that you have to write Season.Fall rather than just Fall. All enumeration literal names

are scoped by their enumeration. This is useful because it allows different enumerations to

coincidentally contain literals with the same name. Also, notice that when you display an enu-

meration variable by using Console.WriteLine, the compiler generates code that writes out the

name of the literal whose value matches the value of the variable.

 If needed, you can explictly convert an enumeration variable to a string that represents its

current value by using the built-in ToString method that all enumerations automatically con-

tain. For example:

 Chapter 9 Creating Value Types with Enumerations and Structs 169
string name = colorful.ToString();
Console.WriteLine(name); // also writes out ‘Fall’

 Many of the standard operators that you can use on integer variables can also be used on

enumeration variables (except the bitwise and shift operators, which are covered in Chapter

16, “Using Indexers”). For example, you can compare two enumeration variables of the same

type for equality by using the equality operator (==), and you can even perform arithmetic

on an enumeration variable (although the result might not always be meaningful!).

Choosing Enumeration Literal Values
 Internally, an enumeration associates an integer value with each element. By default, the

numbering starts at 0 for the fi rst element and goes up in steps of 1. It’s possible to retrieve

the underlying integer value of an enumeration variable. To do this, you must cast it to its

underlying type. Remember from the discussion of unboxing in Chapter 8 that casting a type

converts the data from one type to another as long as the conversion is valid and meaning-

ful. For example, the following code example will write out the value 2 and not the word Fall
(Spring is 0, Summer 1, Fall 2, and Winter 3):

enum Season { Spring, Summer, Fall, Winter }
...
Season colorful = Season.Fall;
Console.WriteLine((int)colorful); // writes out ‘2’

 If you prefer, you can associate a specifi c integer constant (such as 1) with an enumeration

literal (such as Spring), as in the following example:

enum Season { Spring = 1, Summer, Fall, Winter }

 Important The integer value with which you initialize an enumeration literal must be a

compile-time constant value (such as 1).

 If you don’t explicitly give an enumeration literal a constant integer value, the compiler gives

it a value that is 1 greater than the value of the previous enumeration literal except for the

very fi rst enumeration literal, to which the compiler gives the default value 0. In the preced-

ing example, the underlying values of Spring, Summer, Fall, and Winter are 1, 2, 3, and 4.

 You are allowed to give more than one enumeration literal the same underlying value. For

example, in the United Kingdom, Fall is referred to as Autumn. You can cater to both cultures

as follows:

enum Season { Spring, Summer, Fall, Autumn = Fall, Winter }

170 Part II Understanding the C# Language

Choosing an Enumeration’s Underlying Type
 When you declare an enumeration, the enumeration literals are given values of type int.
You can also choose to base your enumeration on a different underlying integer type.

For example, to declare that Season’s underlying type is a short rather than an int, you can

write this:

enum Season : short { Spring, Summer, Fall, Winter }

The main reason for doing this is to save memory; an int occupies more memory than a short,
and if you do not need the entire range of values available to an int, using a smaller data type

can make sense.

 You can base an enumeration on any of the eight integer types: byte, sbyte, short, ushort, int,
uint, long, or ulong. The values of all the enumeration literals must fi t inside the range of the

chosen base type. For example, if you base an enumeration on the byte data type, you can

have a maximum of 256 literals (starting at 0).

Now that you know how to declare an enumeration, the next step is to use it. In the follow-

ing exercise, you will work with a Console application to declare and use an enumeration that

represents the months of the year.

Create and use an enumeration

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the StructsAndEnums project, located in the \Microsoft Press\Visual CSharp Step

by Step\Chapter 9\StructsAndEnums folder in your Documents folder.

3. In the Code and Text Editor window, display the Month.cs fi le.

The source fi le contains an empty namespace named StructsAndEnums.

4. Add an enumeration named Month inside the StructsAndEnums namespace for

 modeling the months of the year, as shown in bold here. The 12 enumeration literals

for Month are January through December.

namespace StructsAndEnums
{
 enum Month
 {
 January, February, March, April,
 May, June, July, August,
 September, October, November, December
 }
}

Create and use an enumeration

 Chapter 9 Creating Value Types with Enumerations and Structs 171

5. Display the Program.cs fi le in the Code and Text Editor window.

 As in the exercises in previous chapters, the Main method calls the Entrance method

and traps any exceptions that occur.

6. In the Code and Text Editor window, add a statement to the Entrance method to declare

a variable named fi rst of type Month and initialize it to Month.January. Add another

statement to write the value of the fi rst variable to the console.

 The Entrance method should look like this:

static void Entrance()
{
 Month first = Month.January;
 Console.WriteLine(first);
}

 Note When you type the period following Month, IntelliSense will automatically display

all the values in the Month enumeration.

7. On the Debug menu, click Start Without Debugging.

 Visual Studio 2008 builds and runs the program. Confi rm that the word January is
 written to the console.

8. Press Enter to close the program and return to the Visual Studio 2008 programming

environment.

9. Add two more statements to the Entrance method to increment the fi rst variable and

display its new value to the console, as shown in bold here:

static void Entrance()
{
 Month first = Month.January;
 Console.WriteLine(first);
 first++;
 Console.WriteLine(first);
}

10. On the Debug menu, click Start Without Debugging.

 Visual Studio 2008 builds and runs the program. Confi rm that the words January and

February are written to the console.

 Notice that performing a mathematical operation (such as the increment operation) on

an enumeration variable changes the internal integer value of the variable. When the

variable is written to the console, the corresponding enumeration value is displayed.

11. Press Enter to close the program and return to the Visual Studio 2008 programming

environment.

172 Part II Understanding the C# Language
 12. Modify the fi rst statement in the Entrance method to initialize the fi rst variable to

Month.December, as shown in bold here:

static void Entrance()
{
 Month first = Month.December;
 Console.WriteLine(first);
 first++;
 Console.WriteLine(first);
}

 13. On the Debug menu, click Start Without Debugging.

 Visual Studio 2008 builds and runs the program. This time the word December
is written to the console, followed by the number 12. Although you can perform

arithmetic on an enumeration, if the results of the operation are outside the range of

values defi ned for the enumerator, all the runtime can do is treat the variable as the

corresponding integer value.

 14. Press Enter to close the program and return to the Visual Studio 2008 programming

environment.

Working with Structures
 You saw in Chapter 8 that classes defi ne reference types that are always created on the heap.

In some cases, the class can contain so little data that the overhead of managing the heap

becomes disproportionate. In these cases, it is better to defi ne the type as a structure. A

structure is a value type. Because structures are stored on the stack, as long as the structure

is reasonably small, the memory management overhead is often reduced.

 A structure can have its own fi elds, methods, and constructors just like a class, but not like an

enumeration.

Common Structure Types
 You might not have realized it, but you have already used structures in previous exer-

cises in this book. In C#, the primitive numeric types int, long, and fl oat are aliases for

the structures System.Int32, System.Int64, and System.Single, respectively. These struc-

tures have fi elds and methods, and you can actually call methods on variables and liter-

als of these types. For example, all of these structures provide a ToString method that

can convert a numeric value to its string representation. The following statements are

all legal statements in C#:

int i = 99;
Console.WriteLine(i.ToString());
Console.WriteLine(55.ToString());
float f = 98.765F;

 Chapter 9 Creating Value Types with Enumerations and Structs 173
Console.WriteLine(f.ToString());
Console.WriteLine(98.765F.ToString());

 You don’t see this use of the ToString method very often, because the Console.WriteLine

method calls it automatically when it is needed. Use of the static methods exposed by

these structures is much more common. For example, in earlier chapters you used the

static int.Parse method to convert a string to its corresponding integer value. What you

are actually doing is invoking the Parse method of the Int32 structure:

string s = “42”;
int i = int.Parse(s); // exactly the same as Int32.Parse

 These structures also include some useful static fi elds. For example, Int32.MaxValue is

the maximum value that an int can hold, and Int32.MinValue is the smallest value you

can store in an int.

 The following table shows the primitive types in C# and their equivalent types in the

Microsoft .NET Framework. Notice that the string and object types are classes (reference

types) rather than structures.

 Keyword Type equivalent Class or structure

 bool System.Boolean Structure

 byte System.Byte Structure

 decimal System.Decimal Structure

 double System.Double Structure

 fl oat System.Single Structure

 int System.Int32 Structure

 long System.Int64 Structure

 object System.Object Class

 sbyte System.SByte Structure

 short System.Int16 Structure

 string System.String Class

 uint System.UInt32 Structure

 ulong System.UInt64 Structure

 ushort System.UInt16 Structure

174 Part II Understanding the C# Language
Declaring a Structure
 To declare your own structure value type, you use the struct keyword followed by the name

of the type, followed by the body of the structure between opening and closing braces. For

example, here is a structure named Time that contains three public int fi elds named hours,
minutes, and seconds:

struct Time
{
 public int hours, minutes, seconds;
}

 As with classes, making the fi elds of a structure public is not advisable in most cases; there

is no way to ensure that public fi elds contain valid values. For example, anyone could set the

value of minutes or seconds to a value greater than 60. A better idea is to make the fi elds

 private and provide your structure with constructors and methods to initialize and manipu-

late these fi elds, as shown in this example:

struct Time
{
 public Time(int hh, int mm, int ss)
 {
 hours = hh % 24;
 minutes = mm % 60;
 seconds = ss % 60;
 }

 public int Hours()
 {
 return hours;
 }
 ...
 private int hours, minutes, seconds;
}

 Note By default, you cannot use many of the common operators on your own structure types.

For example, you cannot use operators such as the equality operator (==) and the inequality

operator (!=) on your own structure type variables. However, you can explicitly declare and

implement operators for your own structure types. The syntax for doing this is covered in

Chapter 21, “Operator Overloading.”

 Use structures to implement simple concepts whose main feature is their value. For example,

an int is a value type because its main feature is its value. If you have two int variables that

contain the same value (such as 42), one is as good as the other. When you copy a value

type variable, you get two copies of the value. In contrast, when you copy a reference type

variable, you get two references to the same object. In summary, use structures for small

 Chapter 9 Creating Value Types with Enumerations and Structs 175
data values where it’s just as or nearly as effi cient to copy the value as it would be to copy

an address. Use classes for more complex data so that you have the option of copying only

the address of the actual value when you want to improve the effi ciency of your code.

Understanding Structure and Class Differences
 A structure and a class are syntactically very similar, but there are a few important differ-

ences. Let’s look at some of these differences:

 You can’t declare a default constructor (a constructor with no parameters) for a struc-

ture. The following example would compile if Time were a class, but because Time is a

structure, it does not:

struct Time
{
 public Time() { ... } // compile-time error
 ...
}

 The reason you can’t declare your own default constructor for a structure is that the

compiler always generates one. In a class, the compiler generates the default con-

structor only if you don’t write a constructor yourself. The compiler-generated default

constructor for a structure always sets the fi elds to 0, false, or null—just as for a class.

Therefore, you should ensure that a structure value created by the default constructor

behaves logically and makes sense with these default values. If you don’t want to use

these default values, you can initialize fi elds to different values by providing a nonde-

fault constructor. However, if you don’t initialize a fi eld in your nondefault structure

constructor, the compiler won’t initialize it for you. This means that you must explic-

itly initialize all the fi elds in all your nondefault structure constructors or you’ll get a

compile-time error. For example, although the following example would compile and

silently initialize seconds to 0 if Time were a class, because Time is a structure, it fails to

compile:

struct Time
{
 public Time(int hh, int mm)
 {
 hours = hh;
 minutes = mm;
 } // compile-time error: seconds not initialized
 ...
 private int hours, minutes, seconds;
}

176 Part II Understanding the C# Language
 In a class, you can initialize instance fi elds at their point of declaration. In a structure,

you cannot. The following example would compile if Time were a class, but because

Time is a structure, it causes a compile-time error:

struct Time
{
 ...
 private int hours = 0; // compile-time error
 private int minutes;
 private int seconds;
}

 The following table summarizes the main differences between a structure and a class.

 Question Structure Class

 Is this a value type or a reference type? A structure is a value

type.

A class is a reference type.

 Do instances live on the stack or the heap? Structure instances

are called values and

live on the stack.

Class instances are called

 objects and live on the

heap.

 Can you declare a default constructor? No Yes

 If you declare your own constructor, will

the compiler still generate the default

constructor?

Yes No

 If you don’t initialize a fi eld in your own

constructor, will the compiler automati-

cally initialize it for you?

No Yes

 Are you allowed to initialize instance fi elds

at their point of declaration?

No Yes

 There are other differences between classes and structures concerning inheritance. These

 differences are covered in Chapter 12, “Working with Inheritance.” Now that you know how

to declare structures, the next step is to use them to create values.

Declaring Structure Variables
 After you have defi ned a structure type, you can use it in exactly the same way as any other

type. For example, if you have defi ned the Time structure, you can create variables, fi elds,

and parameters of type Time, as shown in this example:

struct Time
{
 ...
 private int hours, minutes, seconds;
}

 Chapter 9 Creating Value Types with Enumerations and Structs 177
class Example
{
 public void Method(Time parameter)
 {
 Time localVariable;
 ...
 }

 private Time currentTime;
}

 Note You can create a nullable version of a structure variable by using the ? modifi er. You can

then assign the null value to the variable:

Time? currentTime = null;

Understanding Structure Initialization
 Earlier in this chapter, you saw how the fi elds in a structure are initialized by using a

 constructor. However, because structures are value types, you can create structure variables

without calling a constructor, as shown in the following example:

Time now;

 In this example, the variable is created but its fi elds are left in their uninitialized state. Any

 attempt to access the values in these fi elds will result in a compiler error. The following

graphic depicts the state of the fi elds in the now variable:

 If you call a constructor, the various rules of structure constructors described earlier

 guarantee that all the fi elds in the structure will be initialized:

Time now = new Time();

178 Part II Understanding the C# Language
 This time, the default constructor initializes the fi elds in the structure, as shown in the

 following graphic:

 Note that in both cases, the Time variable is created on the stack.

 If you’ve written your own structure constructor, you can also use that to initialize a structure

variable. As explained earlier in this chapter, a structure constructor must always explicitly

initialize all its fi elds. For example:

struct Time
{
 public Time(int hh, int mm)
 {
 hours = hh;
 minutes = mm;
 seconds = 0;
 }
 ...
 private int hours, minutes, seconds;
}

 The following example initializes now by calling a user-defi ned constructor:

Time now = new Time(12, 30);

 The following graphic shows the effect of this example:

 Chapter 9 Creating Value Types with Enumerations and Structs 179

Copying Structure Variables
 You’re allowed to initialize or assign one structure variable to another structure variable, but

only if the structure variable on the right side is completely initialized (that is, if all its fi elds

are initialized). The following example compiles because now is fully initialized. (The graphic

shows the results of performing the assignment.)

Time now = new Time(12, 30);
Time copy = now;

 The following example fails to compile because now is not initialized:

Time now;
Time copy = now; // compile-time error: now has not been assigned

 When you copy a structure variable, each fi eld on the left side is set directly from the cor-

responding fi eld on the right side. This copying is done as a fast, single operation that copies

the contents of the entire structure and that never throws an exception. Compare this be-

havior with the equivalent action if Time were a class, in which case both variables (now and

copy) would end up referencing the same object on the heap.

 Note C++ programmers should note that this copy behavior cannot be customized.

 It’s time to put this knowledge into practice. In the following exercise, you will create and use

a structure to represent a date.

180 Part II Understanding the C# Language

Create and use a structure type

1. In the StructsAndEnums project, display the Date.cs fi le in the Code and Text Editor
window.

2. Add a structure named Date inside the StructsAndEnums namespace.

 This structure should contain three private fi elds: one named year of type int, one

named month of type Month (using the enumeration you created in the preceding

exercise), and one named day of type int. The Date structure should look exactly as

follows:

struct Date
{
 private int year;
 private Month month;
 private int day;
}

 Consider the default constructor that the compiler will generate for Date. This con-

structor will set the year to 0, the month to 0 (the value of January), and the day to 0.

The year value 0 is not valid (there was no year 0), and the day value 0 is also not valid

(each month starts on day 1). One way to fi x this problem is to translate the year and

day values by implementing the Date structure so that when the year fi eld holds the

value Y, this value represents the year Y + 1900 (you can pick a different century if you

prefer), and when the day fi eld holds the value D, this value represents the day D + 1.

The default constructor will then set the three fi elds to values that represent the date 1

January 1900.

3. Add a public constructor to the Date structure. This constructor should take three

 parameters: an int named ccyy for the year, a Month named mm for the month, and an

int named dd for the day. Use these three parameters to initialize the corresponding

fi elds. A year fi eld of Y represents the year Y + 1900, so you need to initialize the year
fi eld to the value ccyy – 1900. A day fi eld of D represents the day D + 1, so you need to

initialize the day fi eld to the value dd – 1.

 The Date structure should now look like this (the constructor is shown in bold):

 struct Date
{
 public Date(int ccyy, Month mm, int dd)
 {
 this.year = ccyy - 1900;
 this.month = mm;
 this.day = dd - 1;
 }

 private int year;
 private Month month;
 private int day;
}

Create and use a structure type

 Chapter 9 Creating Value Types with Enumerations and Structs 181

4. Add a public method named ToString to the Date structure after the constructor. This

method takes no arguments and returns a string representation of the date. Remember,

the value of the year fi eld represents year + 1900, and the value of the day fi eld repre-

sents day + 1.

 Note The ToString method is a little different from the methods you have seen so far.

Every type, including structures and classes that you defi ne, automatically has a ToString

method whether or not you want it. Its default behavior is to convert the data in a variable

to a string representation of that data. Sometimes, the default behavior is meaningful; oth-

er times, it is less so. For example, the default behavior of the ToString method generated

for the Date class simply generates the string “StructsAndEnums.Date”. To quote Zaphod

Beeblebrox in The Restaurant at the End of the Universe (Douglas Adams, Del Rey, 2005),

this is “shrewd, but dull.” You need to defi ne a new version of this method that overrides

the default behavior by using the override keyword. Overriding methods are discussed in

more detail in Chapter 12.

 The ToString method should look like this:

public override string ToString()
{
 return this.month + “ “ + (this.day + 1) + “ “ + (this.year + 1900);
}

 Note The + signs inside the parentheses are the arithmetic addition operator. The others

are the string concatenation operator. Without the parentheses, all occurrences of the +

sign would be treated as the string concatenation operator because the expression being

evaluated is a string. It can be a little confusing when the same symbol in a single expres-

sion denotes different operators!

5. Display the Program.cs fi le in the Code and Text Editor window.

6. Add a statement to the end of the Entrance method to declare a local variable named

defaultDate, and initialize it to a Date value constructed by using the default Date con-

structor. Add another statement to Entrance to write the defaultDate variable to the

console by calling Console.WriteLine.

Note The Console.WriteLine method automatically calls the ToString method of its

argument to format the argument as a string.

182 Part II Understanding the C# Language

 The Entrance method should now look like this:

static void Entrance()
{
 ...
 Date defaultDate = new Date();
 Console.WriteLine(defaultDate);
}

7. On the Debug menu, click Start Without Debugging to build and run the program.

Verify that the date January 1 1900 is written to the console. (The original output of the

Entrance method will be displayed fi rst.)

8. Press the Enter key to return to the Visual Studio 2008 programming environment.

9. In the Code and Text Editor window, return to the Entrance method, and add two

more statements. The fi rst statement should declare a local variable named halloween

and initialize it to October 31 2008. The second statement should write the value of

 halloween to the console.

 The Entrance method should now look like this:

static void Entrance()
{
 ...
 Date halloween = new Date(2008, Month.October, 31);
 Console.WriteLine(halloween);
}

 Note When you type the new keyword, IntelliSense will automatically detect that there

are two constructors available for the Date type.

10. On the Debug menu, click Start Without Debugging. Confi rm that the date October 31
2008 is written to the console below the previous information.

11. Press Enter to close the program.

 You have successfully used the enum and struct keywords to declare your own value types

and then used these types in code.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 10.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

 Chapter 9 Creating Value Types with Enumerations and Structs 183
Chapter 9 Quick Reference
 To Do this

 Declare an enumeration Write the keyword enum, followed by the name of the type, followed

by a pair of braces containing a comma-separated list of the

enumeration literal names. For example:

enum Season { Spring, Summer, Fall, Winter }

 Declare an enumeration variable Write the name of the enumeration on the left followed by the name

of the variable, followed by a semicolon. For example:

Season currentSeason;

 Assign an enumeration variable

to a value

Write the name of the enumeration literal in combination with the

name of the enumeration to which it belongs. For example:

currentSeason = Spring; // error
currentSeason = Season.Spring; // correct

 Declare a structure type Write the keyword struct, followed by the name of the structure type,

followed by the body of the structure (the constructors, methods, and

fi elds). For example:

struct Time
{
 public Time(int hh, int mm, int ss)
 { ... }
 ...
 private int hours, minutes, seconds;
}

 Declare a structure variable Write the name of the structure type, followed by the name of the

variable, followed by a semicolon. For example:

Time now;

 Initialize a structure variable

to a value

Initialize the variable to a structure value created by calling the struc-

ture constructor. For example:

Time lunch = new Time(12, 30, 0);

Chapter 10

Using Arrays and Collections
 After completing this chapter, you will be able to:

 Declare, initialize, copy, and use array variables.

 Declare, initialize, copy, and use variables of various collection types.

 You have already seen how to create and use variables of many different types. However, all

the examples of variables you have seen so far have one thing in common—they hold infor-

mation about a single item (an int, a fl oat, a Circle, a Time, and so on). What happens if you

need to manipulate sets of items? One solution would be to create a variable for each item

in the set, but this leads to a number of further questions: How many variables do you need?

How should you name them? If you need to perform the same operation on each item in the

set (such as increment each variable in a set of integers), how would you avoid very repetitive

code? This solution assumes that you know, when you write the program, how many items

you will need, but how often is this the case? For example, if you are writing an application

that reads and processes records from a database, how many records are in the database,

and how likely is this number to change?

 Arrays and collections provide mechanisms that solve the problems posed by these

questions.

What Is an Array?
 An array is an unordered sequence of elements. All the elements in an array have the same

type (unlike the fi elds in a structure or class, which can have different types). The elements

of an array live in a contiguous block of memory and are accessed by using an integer index

(unlike fi elds in a structure or class, which are accessed by name).

Declaring Array Variables
 You declare an array variable by specifying the name of the element type, followed by a pair

of square brackets, followed by the variable name. The square brackets signify that the vari-

able is an array. For example, to declare an array of int variables named pins, you would write:

int[] pins; // Personal Identification Numbers

 Microsoft Visual Basic programmers should note that you use square brackets and not

 parentheses. C and C++ programmers should note that the size of the array is not part of the
 185

186 Part II Understanding the C# Language
declaration. Java programmers should note that you must place the square brackets before

the variable name.

 Note You are not restricted to primitive types as array elements. You can also create arrays of

structures, enumerations, and classes. For example, you can create an array of Time structures

like this:

Time[] times;

 Tip It is often useful to give array variables plural names, such as places (where each element is a

Place), people (where each element is a Person), or times (where each element is a Time).

Creating an Array Instance
 Arrays are reference types, regardless of the type of their elements. This means that an array

variable refers to the contiguous block of memory holding the array elements on the heap

(just as a class variable refers to an object on the heap) and does not hold its array elements

directly on the stack (as a structure does). (To review values and references and the differenc-

es between the stack and the heap, see Chapter 8, “Understanding Values and References.”)

Remember that when you declare a class variable, memory is not allocated for the object

until you create the instance by using new. Arrays follow the same rules—when you declare

an array variable, you do not declare its size. You specify the size of an array only when you

actually create an array instance.

 To create an array instance, you use the new keyword followed by the name of the element

type, followed by the size of the array you’re creating between square brackets. Creating an

array also initializes its elements by using the now familiar default values (0, null, or false, de-

pending on whether the type is numeric, a reference, or a Boolean, respectively). For exam-

ple, to create and initialize a new array of four integers for the pins variable declared earlier,

you write this:

pins = new int[4];

 The following graphic illustrates the effects of this statement:

 Chapter 10 Using Arrays and Collections 187

 The size of an array instance does not have to be a constant; it can be calculated at run time,

as shown in this example:

int size = int.Parse(Console.ReadLine());
int[] pins = new int[size];

 You’re allowed to create an array whose size is 0. This might sound bizarre, but it’s useful in

situations where the size of the array is determined dynamically and could be 0. An array of

size 0 is not a null array.

 It’s also possible to create multidimensional arrays. For example, to create a two-dimensional

array, you create an array that requires two integer indexes. Detailed discussion of multidi-

mensional arrays is beyond the scope of this book, but here’s an example:

int[,] table = new int[4,6];

Initializing Array Variables
 When you create an array instance, all the elements of the array instance are initialized to a

default value depending on their type. You can modify this behavior and initialize the ele-

ments of an array to specifi c values if you prefer. You achieve this by providing a comma-

separated list of values between a pair of braces. For example, to initialize pins to an array of

four int variables whose values are 9, 3, 7, and 2, you would write this:

int[] pins = new int[4]{ 9, 3, 7, 2 };

 The values between the braces do not have to be constants. They can be values calculated at

run time, as shown in this example:

Random r = new Random();
int[] pins = new int[4]{ r.Next() % 10, r.Next() % 10,
 r.Next() % 10, r.Next() % 10 };

 Note The System.Random class is a pseudorandom number generator. The Next method returns

a nonnegative random integer in the range 0 to Int32.MaxValue by default. The Next method is

overloaded, and other versions enable you to specify the minimum value and maximum value

of the range. The default constructor for the Random class seeds the random number genera-

tor with a time-dependent seed value, which reduces the possibility of the class duplicating a

sequence of random numbers. An overloaded version of the constructor enables you to provide

your own seed value. That way you can generate a repeatable sequence of random numbers for

testing purposes.

188 Part II Understanding the C# Language
 The number of values between the braces must exactly match the size of the array instance

being created:

int[] pins = new int[3]{ 9, 3, 7, 2 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7 }; // compile-time error
int[] pins = new int[4]{ 9, 3, 7, 2 }; // okay

 When you’re initializing an array variable, you can actually omit the new expression and the

size of the array. The compiler calculates the size from the number of initializers and gener-

ates code to create the array. For example:

int[] pins = { 9, 3, 7, 2 };

 If you create an array of structures, you can initialize each structure in the array by calling the

structure constructor, as shown in this example:

Time[] schedule = { new Time(12,30), new Time(5,30) };

Creating an Implicitly Typed Array
 The element type when you declare an array must match the type of elements that you

 attempt to store in the array. For example, if you declare pins to be an array of int, as shown

in the preceding examples, you cannot store a double, string, struct, or anything that is not an

int in this array. If you specify a list of initializers when declaring an array, you can let the C#

compiler infer the actual type of the elements in the array for you, like this:

var names = new[]{“John”, “Diana”, “James”, “Francesca”};

 In this example, the C# compiler determines that the names variable is an array of strings. It is

worth pointing out a couple of syntactic quirks in this declaration. First, you omit the square

brackets from the type; the names variable in this example is declared simply as var, and not

var[]. Second, you must specify the new operator and square brackets before the initializer

list.

 If you use this syntax, you must ensure that all the initializers have the same type. This next

example will cause the compile-time error “No best type found for implicitly typed array”:

var bad = new[]{“John”, “Diana”, 99, 100};

 However, in some cases, the compiler will convert elements to a different type if doing so

makes sense. In the following code, the numbers array is an array of double because the con-

stants 3.5 and 99.999 are both double, and the C# compiler can convert the integer values 1

and 2 to double values:

var numbers = new[]{1, 2, 3.5, 99.999};

 Chapter 10 Using Arrays and Collections 189
 Generally, it is best to avoid mixing types and hoping that the compiler will convert them for

you.

 Implicitly typed arrays are most useful when you are working with anonymous types,

 described in Chapter 7, “Creating and Managing Classes and Objects.” The following code

creates an array of anonymous objects, each containing two fi elds specifying the name and

age of the members of my family (yes, I am younger than my wife):

var names = new[] { new { Name = “John”, Age = 42 },
 new { Name = “Diana”, Age = 43 },
 new { Name = “James”, Age = 15 },
 new { Name = “Francesca”, Age = 13 } };

 The fi elds in the anonymous types must be the same for each element of the array.

Accessing an Individual Array Element
 To access an individual array element, you must provide an index indicating which element

you require. For example, you can read the contents of element 2 of the pins array into an int
variable by using the following code:

int myPin;
myPin = pins[2];

 Similarly, you can change the contents of an array by assigning a value to an indexed

element:

myPin = 1645;
pins[2] = myPin;

 Array indexes are zero-based. The initial element of an array lives at index 0 and not index 1.

An index value of 1 accesses the second element.

 All array element access is bounds-checked. If you specify an index that is less

than 0 or greater than or equal to the length of the array, the compiler throws an

IndexOutOfRangeException, as in this example:

try
{
 int[] pins = { 9, 3, 7, 2 };
 Console.WriteLine(pins[4]); // error, the 4th and last element is at index 3
}
catch (IndexOutOfRangeException ex)
{
 ...
}

190 Part II Understanding the C# Language
Iterating Through an Array
 Arrays have a number of useful built-in properties and methods. (All arrays inherit meth-

ods and properties from the System.Array class in the Microsoft .NET Framework.) You can

examine the Length property to discover how many elements an array contains and iterate

through all the elements of an array by using a for statement. The following sample code

writes the array element values of the pins array to the console:

int[] pins = { 9, 3, 7, 2 };
for (int index = 0; index < pins.Length; index++)
{
 int pin = pins[index];
 Console.WriteLine(pin);
}

 Note Length is a property and not a method, which is why there are no parentheses when you

call it. You will learn about properties in Chapter 15, “Implementing Properties to Access Fields.”

 It is common for new programmers to forget that arrays start at element 0 and that the last

element is numbered Length – 1. C# provides the foreach statement to enable you to iterate

through the elements of an array without worrying about these issues. For example, here’s

the preceding for statement rewritten as an equivalent foreach statement:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

 The foreach statement declares an iteration variable (in this example, int pin) that automati-

cally acquires the value of each element in the array. The type of this variable must match

the type of the elements in the array. The foreach statement is the preferred way to iter-

ate through an array; it expresses the intention of the code directly, and all of the for loop

scaffolding drops away. However, in a few cases, you’ll fi nd that you have to revert to a for
statement:

 A foreach statement always iterates through the whole array. If you want to iterate

through only a known portion of an array (for example, the fi rst half) or to bypass cer-

tain elements (for example, every third element), it’s easier to use a for statement.

 A foreach statement always iterates from index 0 through index Length – 1. If you want

to iterate backward, it’s easier to use a for statement.

 If the body of the loop needs to know the index of the element rather than just the

value of the element, you’ll have to use a for statement.

 Chapter 10 Using Arrays and Collections 191
 If you need to modify the elements of the array, you’ll have to use a for statement. This

is because the iteration variable of the foreach statement is a read-only copy of each

element of the array.

 You can declare the iteration variable as a var and let the C# compiler work out the type of

the variable from the type of the elements in the array. This is especially useful if you don’t

actually know the type of the elements in the array, such as when the array contains anony-

mous objects. The following example demonstrates how you can iterate through the array of

family members shown earlier:

var names = new[] { new { Name = “John”, Age = 42 },
 new { Name = “Diana”, Age = 43 },
 new { Name = “James”, Age = 15 },
 new { Name = “Francesca”, Age = 13 } };
foreach (var familyMember in names)
{
 Console.WriteLine(“Name: {0}, Age: {1}”, familyMember.Name, familyMember.Age);
}

Copying Arrays
 Arrays are reference types. (Remember that an array is an instance of the System.Array class.)

An array variable contains a reference to an array instance. This means that when you copy

an array variable, you end up with two references to the same array instance—for example:

int[] pins = { 9, 3, 7, 2 };
int[] alias = pins; // alias and pins refer to the same array instance

 In this example, if you modify the value at pins[1], the change will also be visible by reading

alias[1].

 If you want to make a copy of the array instance (the data on the heap) that an array vari-

able refers to, you have to do two things. First you need to create a new array instance of the

same type and the same length as the array you are copying, as in this example:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[4];

 This works, but if you later modify the code to change the length of the original array, you

must remember to also change the size of the copy. It’s better to determine the length of an

array by using its Length property, as shown in this example:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];

 The values inside copy are now all initialized to their default value, 0.

192 Part II Understanding the C# Language
 The second thing you need to do is set the values inside the new array to the same values as

the original array. You could do this by using a for statement, as shown in this example:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
for (int i = 0; i < copy.Length; i++)
{
 copy[i] = pins[i];
}

 Copying an array is actually a common requirement of many applications—so much so that

the System.Array class provides some useful methods that you can employ to copy an array

rather than writing your own code. For example, the CopyTo method copies the contents of

one array into another array given a specifi ed starting index:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
pins.CopyTo(copy, 0);

 Another way to copy the values is to use the System.Array static method named Copy. As

with CopyTo, you must initialize the target array before calling Copy:

int[] pins = { 9, 3, 7, 2 };
int[] copy = new int[pins.Length];
Array.Copy(pins, copy, copy.Length);

 Yet another alternative is to use the System.Array instance method named Clone. You can call

this method to create an entire array and copy it in one action:

int[] pins = { 9, 3, 7, 2 };
int[] copy = (int[])pins.Clone();

 Note The Clone method actually returns an object, which is why you must cast it to an array of

the appropriate type when you use it. Furthermore, all four ways of copying shown earlier create

a shallow copy of an array—if the elements in the array being copied contain references, the for
loop as coded and the three preceding methods simply copy the references rather than the ob-

jects being referred to. After copying, both arrays refer to the same set of objects. If you need to

create a deep copy of such an array, you must use appropriate code in a for loop.

What Are Collection Classes?
 Arrays are useful, but they have their limitations. Fortunately, arrays are only one way to

 collect elements of the same type. The Microsoft .NET Framework provides several classes

that also collect elements together in other specialized ways. These are the collection classes,

and they live in the System.Collections namespace and sub-namespaces.

 Chapter 10 Using Arrays and Collections 193
 The basic collection classes accept, hold, and return their elements as objects—that is, the

element type of a collection class is an object. To understand the implications of this, it is

helpful to contrast an array of int variables (int is a value type) with an array of objects (object
is a reference type). Because int is a value type, an array of int variables holds its int values

directly, as shown in the following graphic:

 Now consider the effect when the array is an array of objects. You can still add integer values

to this array. (In fact, you can add values of any type to it.) When you add an integer value, it

is automatically boxed, and the array element (an object reference) refers to the boxed copy

of the integer value. (For a refresher on boxing, refer to Chapter 8.) This is illustrated in the

following graphic:

 The element type of all the collection classes shown in this chapter is an object. This means

that when you insert a value into a collection, it is always boxed, and when you remove a

value from a collection, you must unbox it by using a cast. The following sections provide a

very quick overview of four of the most useful collection classes. Refer to the Microsoft .NET

Framework Class Library documentation for more details on each class.

 Note There are collection classes that don’t always use object as their element type and that can

hold value types as well as references, but you need to know a bit more about C# before we can

talk about them. You will meet these collection classes in Chapter 18, “Introducing Generics.”

194 Part II Understanding the C# Language
The ArrayList Collection Class
 ArrayList is a useful class for shuffl ing elements around in an array. There are certain

 occasions when an ordinary array can be too restrictive:

 If you want to resize an array, you have to create a new array, copy the elements

 (leaving out some if the new array is smaller), and then update any references to the

original array so that they refer to the new array.

 If you want to remove an element from an array, you have to move all the trailing

 elements up by one place. Even this doesn’t quite work, because you end up with two

copies of the last element.

 If you want to insert an element into an array, you have to move elements down by one

place to make a free slot. However, you lose the last element of the array!

 Here’s how you can overcome these restrictions using the ArrayList class:

 You can remove an element from an ArrayList by using its Remove method. The

ArrayList automatically reorders its elements.

 You can add an element to the end of an ArrayList by using its Add method. You supply

the element to be added. The ArrayList resizes itself if necessary.

 You can insert an element into the middle of an ArrayList by using its Insert method.

Again, the ArrayList resizes itself if necessary.

 You can reference an existing element in an ArrayList object by using ordinary array

notation, with square brackets and the index of the element.

 Note As with arrays, if you use foreach to iterate through an ArrayList, you cannot use the

 iteration variable to modify the contents of the ArrayList. Additionally, you cannot call the

Remove, Add, or Insert method in a foreach loop that iterates through an ArrayList.

 Here’s an example that shows how you can create, manipulate, and iterate through the

 contents of an ArrayList:

using System;
using System.Collections;
...
ArrayList numbers = new ArrayList();
...
// fill the ArrayList
foreach (int number in new int[12]{10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1})
{
 numbers.Add(number);
}
...
// insert an element in the penultimate position in the list, and move the last item up

Chapter 10 Using Arrays and Collections 195

// (the first parameter is the position;
// the second parameter is the value being inserted)
numbers.Insert(numbers.Count-1, 99);

// remove first element whose value is 7 (the 4th element, index 3)
numbers.Remove(7);
// remove the element that’s now the 7th element, index 6 (10)
numbers.RemoveAt(6);
...
// iterate remaining 10 elements using a for statement
for (int i = 0; i < numbers.Count; i++)
{
 int number = (int)numbers[i]; // notice the cast, which unboxes the value
 Console.WriteLine(number);
}
...
// iterate remaining 10 using a foreach statement
foreach (int number in numbers) // no cast needed
{
 Console.WriteLine(number);
}

 The output of this code is shown here:

10
9
8
7
6
5
4
3
2
99
1
10
9
8
7
6
5
4
3
2
99
1

 Note The way you determine the number of elements for an ArrayList is different from query-

ing the number of items in an array. When using an ArrayList, you examine the Count property,

and when using an array, you examine the Length property.

196 Part II Understanding the C# Language
The Queue Collection Class
 The Queue class implements a fi rst-in, fi rst-out (FIFO) mechanism. An element is inserted into

the queue at the back (the enqueue operation) and is removed from the queue at the front

(the dequeue operation).

 Here’s an example of a queue and its operations:

using System;
using System.Collections;
...
Queue numbers = new Queue();
...
// fill the queue
foreach (int number in new int[4]{9, 3, 7, 2})
{
 numbers.Enqueue(number);
 Console.WriteLine(number + “ has joined the queue”);
}
...
// iterate through the queue
foreach (int number in numbers)
{
 Console.WriteLine(number);
}
...
// empty the queue
while (numbers.Count > 0)
{
 int number = (int)numbers.Dequeue(); // cast required to unbox the value
 Console.WriteLine(number + “ has left the queue”);
}

 The output from this code is:

9 has joined the queue
3 has joined the queue
7 has joined the queue
2 has joined the queue
9
3
7
2
9 has left the queue
3 has left the queue
7 has left the queue
2 has left the queue

 Chapter 10 Using Arrays and Collections 197
The Stack Collection Class
 The Stack class implements a last-in, fi rst-out (LIFO) mechanism. An element joins the stack at

the top (the push operation) and leaves the stack at the top (the pop operation). To visualize

this, think of a stack of dishes: new dishes are added to the top and dishes are removed from

the top, making the last dish to be placed on the stack the fi rst one to be removed. (The dish

at the bottom is rarely used and will inevitably require washing before you can put any food

on it as it will be covered in grime!) Here’s an example:

using System;
using System.Collections;
...
Stack numbers = new Stack();
...
// fill the stack
foreach (int number in new int[4]{9, 3, 7, 2})
{
 numbers.Push(number);
 Console.WriteLine(number + “ has been pushed on the stack”);
}
...
// iterate through the stack
foreach (int number in numbers)
{
 Console.WriteLine(number);
}
...
// empty the stack
while (numbers.Count > 0)
{
 int number = (int)numbers.Pop();
 Console.WriteLine(number + “ has been popped off the stack”);
}

 The output from this program is:

9 has been pushed on the stack
3 has been pushed on the stack
7 has been pushed on the stack
2 has been pushed on the stack
2
7
3
9
2 has been popped off the stack
7 has been popped off the stack
3 has been popped off the stack
9 has been popped off the stack

198 Part II Understanding the C# Language
The Hashtable Collection Class
 The array and ArrayList types provide a way to map an integer index to an element. You

provide an integer index inside square brackets (for example, [4]), and you get back the ele-

ment at index 4 (which is actually the fi fth element). However, sometimes you might want to

provide a mapping where the type you map from is not an int but rather some other type,

such as string, double, or Time. In other languages, this is often called an associative array. The

Hashtable class provides this functionality by internally maintaining two object arrays, one for

the keys you’re mapping from and one for the values you’re mapping to. When you insert a

key/value pair into a Hashtable, it automatically tracks which key belongs to which value and

enables you to retrieve the value that is associated with a specifi ed key quickly and easily.

There are some important consequences of the design of the Hashtable class:

 A Hashtable cannot contain duplicate keys. If you call the Add method to add a key

that is already present in the keys array, you’ll get an exception. You can, however, use

the square brackets notation to add a key/value pair (as shown in the following ex-

ample), without danger of an exception, even if the key has already been added. You

can test whether a Hashtable already contains a particular key by using the ContainsKey

method.

 Internally, a Hashtable is a sparse data structure that operates best when it has plenty

of memory to work in. The size of a Hashtable in memory can grow quite quickly as

you insert more elements.

 When you use a foreach statement to iterate through a Hashtable, you get back

a DictionaryEntry. The DictionaryEntry class provides access to the key and value

 elements in both arrays through the Key property and the Value properties.

 Here is an example that associates the ages of members of my family with their names and

then prints the information:

using System;
using System.Collections;
...
Hashtable ages = new Hashtable();
...
// fill the Hashtable
ages[“John”] = 42;
ages[“Diana”] = 43;
ages[“James”] = 15;
ages[“Francesca”] = 13;
...
// iterate using a foreach statement
// the iterator generates a DictionaryEntry object containing a key/value pair
foreach (DictionaryEntry element in ages)
{
 string name = (string)element.Key;
 int age = (int)element.Value;
 Console.WriteLine(“Name: {0}, Age: {1}”, name, age);
}

 Chapter 10 Using Arrays and Collections 199
 The output from this program is:

Name: James, Age: 15
Name: John, Age: 42
Name: Francesca, Age: 13
Name: Diana, Age: 43

The SortedList Collection Class
 The SortedList class is very similar to the Hashtable class in that it enables you to associate

keys with values. The main difference is that the keys array is always sorted. (It is called a

SortedList, after all.)

 When you insert a key/value pair into a SortedList, the key is inserted into the keys array at

the correct index to keep the keys array sorted. The value is then inserted into the values

 array at the same index. The SortedList class automatically ensures that keys and values are

kept synchronized, even when you add and remove elements. This means that you can insert

key/value pairs into a SortedList in any sequence; they are always sorted based on the value

of the keys.

 Like the Hashtable class, a SortedList cannot contain duplicate keys. When you use a foreach

statement to iterate through a SortedList, you get back a DictionaryEntry. However, the

DictionaryEntry objects will be returned sorted by the Key property.

 Here is the same example that associates the ages of members of my family with their names

and then prints the information, but this version has been adjusted to use a SortedList rather

than a Hashtable:

using System;
using System.Collections;
...
SortedList ages = new SortedList();
...
// fill the SortedList
ages[“John”] = 42;
ages[“Diana”] = 43;
ages[“James”] = 15;
ages[“Francesca”] = 13;
...
// iterate using a foreach statement
// the iterator generates a DictionaryEntry object containing a key/value pair
foreach (DictionaryEntry element in ages)
{
 string name = (string)element.Key;
 int age = (int)element.Value;
 Console.WriteLine(“Name: {0}, Age: {1}”, name, age);
}

200 Part II Understanding the C# Language
 The output from this program is sorted alphabetically by the names of my family members:

Name: Diana, Age: 43
Name: Francesca, Age: 13
Name: James, Age: 15
Name: John, Age: 42

Using Collection Initializers
 The examples in the preceding subsections have shown you how to add individual elements

to a collection by using the method most appropriate to that collection (Add for an ArrayList,
Enqueue for a Queue, Push for a Stack, and so on). You can also initialize some collection

types when you declare them, using a syntax very similar to that supported by arrays. For

example, the following statement creates and initializes the numbers ArrayList object shown

earlier, demonstrating an alternative technique to repeatedly calling the Add method:

ArrayList numbers = new ArrayList(){10, 9, 8, 7, 7, 6, 5, 10, 4, 3, 2, 1};

 Internally, the C# compiler actually converts this initialization to a series of calls to the Add

method. Consequently, you can use this syntax only for collections that actually support the

Add method. (The Stack and Queue classes do not.)

 For more complex collections such as Hashtable that take key/value pairs, you can specify

each key/value pair as an anonymous type in the initializer list, like this:

Hashtable ages = new Hashtable(){{“John”, 42}, {“Diana”, 43}, {“James”, 15}, {“Francesca”,
13}};

 The fi rst item in each pair is the key, and the second is the value.

Comparing Arrays and Collections
 Here’s a summary of the important differences between arrays and collections:

 An array declares the type of the elements that it holds, whereas a collection doesn’t.

This is because the collections store their elements as objects.

 An array instance has a fi xed size and cannot grow or shrink. A collection can dynami-

cally resize itself as required.

 An array can have more than one dimension. A collection is linear.

 Note The items in a collection can be other collections, enabling you to mimic a

 multidimensional array, although a collection containing other collections can be somewhat

 confusing to use.

 Chapter 10 Using Arrays and Collections 201

Using Collection Classes to Play Cards
The next exercise presents a Microsoft Windows Presentation Foundation (WPF) applica-

tion that simulates dealing a pack of cards to four players. Cards will either be in the pack or

be in one of four hands dealt to the players. The pack and hands of cards are implemented

as ArrayList objects. You might think that these should be implemented as an array—after

all, there are always 52 cards in a pack and 13 cards in a hand. This is true, but it overlooks

the fact that when you deal the cards to players’ hands, the cards are no longer in the pack.

If you use an array to implement a pack, you’ll have to record how many slots in the array

actually hold a PlayingCard and how many have been dealt to players. Similarly, when you

return cards from a player’s hand to the pack, you’ll have to record which slots in the hand no

 longer contain a PlayingCard.

You will study the code and then write two methods: one to shuffl e a pack of cards and one

to return the cards in a hand to the pack.

Deal the cards

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the Cards project, located in the \Microsoft Press\Visual CSharp Step by Step\

Chapter 10\Cards folder in your Documents folder.

3. On the Debug menu, click Start Without Debugging.

Visual Studio 2008 builds and runs the program. The form displays the cards in the

hands of the four players (North, South, West, and East). There are also two buttons:

one to deal the cards and one to return the cards to the pack.

4. On the form, click Deal.

The 52 cards in the pack are dealt to the four hands, 13 cards per hand, as shown here:

As you can see, the cards have not yet been shuffl ed. You will implement the Shuffl e

method in the next exercise.

Deal the cards

202 Part II Understanding the C# Language

5. Click Return to Pack.

 Nothing happens because the method to return the cards to the pack has also not yet

been written.

6. Click Deal again.

 This time the cards in each of the hands disappear, because before the cards are dealt,

each hand is reset. Because there are no cards left in the pack (the method to return

cards to the pack has not been written yet either), there is nothing to deal.

7. Close the form to return to the Visual Studio 2008 programming environment.

Now that you know which parts are missing from this application, you will add them.

Shuffl e the pack

1. Display the Pack.cs fi le in the Code and Text Editor window.

2. Scroll through the code, and examine it.

 The Pack class represents a pack of cards. It contains a private ArrayList fi eld named

cards. Notice also that the Pack class has a constructor that creates and adds the 52

playing cards to the ArrayList by using the Accept method defi ned by this class. The

methods in this class constitute the typical operations that you would perform on a

pack of cards (Shuffl e, Deal).

3. Display the PlayingCard.cs fi le in the Code and Text Editor window, and examine its

contents.

 Playing cards are represented by the PlayingCard class. A playing card exposes two

fi elds of note: suit (which is an enumerated type and is one of Clubs, Diamonds, Hearts,
or Spades) and pips (which indicates the numeric value of the card).

4. Return to the Pack.cs fi le and locate the Shuffl e method in the Pack class.

 The method is not currently implemented. There are a number of ways you can simu-

late shuffl ing a pack of cards. Perhaps the simplest technique is to choose each card in

sequence and swap it with another card selected at random. The .NET Framework con-

tains a class named Random that you can use to generate random integer numbers.

5. Declare a local variable of type Random named random, and initialize it to a newly

 created Random object by using the default Random constructor, as shown here in

bold. The Shuffl e method should look like this:

public void Shuffle()
{
 Random random = new Random();
}

6. Add a for statement with an empty body that iterates an int i from 0 up to the number

of elements inside the cards ArrayList, as shown here in bold:

Shuffl e the pack

 Chapter 10 Using Arrays and Collections 203

public void Shuffle()
{
 Random random = new Random();
 for (int i = 0; i < cards.Count; i++)
 {
 }
}

 The next step is to choose a random index between 0 and cards.Count – 1. You will then

swap the card at index i with the card at this random index. You can generate a positive

random integer by calling the Random.Next instance method. You can specify an upper

limit for the random number generated by Random.Next as a parameter.

 Notice that you have to use a for statement here. A foreach statement would not work

because you need to modify each element in the ArrayList and a foreach loop limits

you to read-only access.

7. Inside the for statement, declare a local variable named cardToSwap, and initialize it to a

random number between 0 and cards.Count – 1 (inclusive), as shown here in bold:

public void Shuffle()
{
 Random random = new Random();
 for (int i = 0; i < cards.Count; i++)
 {
 int cardToSwap = random.Next(cards.Count - 1);
 }
}

 The fi nal step is to swap the card at index i with the card at index cardToSwap. To do

this, you must use a temporary local variable.

8. Add three statements to swap the card at index i with the card at index cardToSwap.

Remember that the elements inside a collection class (such as ArrayList) are of type

 object. Also, notice that you can use regular array notation (square brackets and an

 index) to access existing elements in an ArrayList.

 The Shuffl e method should now look exactly like this (the new statements are shown in

bold):

public void Shuffle()
{
 Random random = new Random();
 for (int i = 0; i < cards.Count; i++)
 {
 int cardToSwap = random.Next(cards.Count - 1);
 object temp = cards[i];
 cards[i] = cards[cardToSwap];
 cards[cardToSwap] = temp;
 }
}

204 Part II Understanding the C# Language

9. On the Debug menu, click Start Without Debugging.

10. On the form, click Deal.

 This time the pack is shuffl ed before dealing, as shown here. (Your screen will differ

slightly each time, because the card order is now random.)

11. Close the form.

 The fi nal step is to add the code to return the cards to the pack so that they can be dealt

again.

Return the cards to the pack

1. Display the Hand.cs fi le in the Code and Text Editor window.

The Hand class, which also contains an ArrayList named cards, represents the cards held

by a player. The idea is that at any one time, each card is either in the pack or in a hand.

2. Locate the ReturnCardsTo method in the Hand class.

 The Pack class has a method named Accept that takes a single parameter of type

PlayingCard. You need to create a loop that goes through the cards in the hand and

passes them back to the pack.

3. Complete the ReturnCardsTo method as shown here in bold:

public void ReturnCardsTo(Pack pack)
{
 foreach (PlayingCard card in cards)
 {
 pack.Accept(card);
 }
 cards.Clear();
}

Return the cards to the pack

 Chapter 10 Using Arrays and Collections 205
 A foreach statement is convenient here because you do not need write access to the

element and you do not need to know the index of the element. The Clear method

removes all elements from a collection. It is important to call cards.Clear after returning

the cards to the pack so that the cards aren’t in both the pack and the hand. The Clear
method of the ArrayList class empties the ArrayList of its contents.

 4. On the Debug menu, click Start Without Debugging.

 5. On the form, click Deal.

 The shuffl ed cards are dealt to the four hands as before.

 6. Click Return to Pack.

 The hands are cleared. The cards are now back in the pack.

 7. Click Deal again.

 The shuffl ed cards are once again dealt to the four hands.

 8. Close the form.

 Note If you click the Deal button twice without clicking Return to Pack, you lose all the

cards. In the real world, you would disable the Deal button until the Return to Pack button

was clicked. In Part IV, “Working with Windows Applications,” we will look at using C# to

write code that modifi es the user interface.

 In this chapter, you have learned how to create and use arrays to manipulate sets of data. You

have also seen how to use some of the common collection classes to store and access data in

memory in different ways.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 11.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

206 Part II Understanding the C# Language
Chapter 10 Quick Reference
 To Do this

 Declare an array variable Write the name of the element type, followed by square

 brackets, followed by the name of the variable, followed by a

semicolon. For example:

bool[] flags;

 Create an instance of an array Write the keyword new, followed by the name of the element

type, followed by the size of the array enclosed in square

 brackets. For example:

bool[] flags = new bool[10];

 Initialize the elements of an array (or of a

collection that supports the Add method)

to specifi c values

For an array, write the specifi c values in a comma-separated list

enclosed in braces. For example:

bool[] flags = { true, false, true, false };

For a collection, use the new operator and the collection type

with the specifi c values in a comma-separated list enclosed in

braces. For example:

ArrayList numbers = new ArrayList(){10, 9, 8, 7, 6, 5};

 Find the number of elements in an array Use the Length property. For example:

int [] flags = ...;
...
int noOfElements = flags.Length;

 Find the number of elements in a

collection

Use the Count property. For example:

ArrayList flags = new ArrayList();
...
int noOfElements = flags.Count;

 Access a single array element Write the name of the array variable, followed by the integer

index of the element enclosed in square brackets. Remember,

array indexing starts at 0, not 1. For example:

bool initialElement = flags[0];

 Iterate through the elements of an ar-

ray or a collection

Use a for statement or a foreach statement. For example:

bool[] flags = { true, false, true, false };
for (int i = 0; i < flags.Length; i++)
{
 Console.WriteLine(flags[i]);
}

foreach (bool flag in flags)
{
 Console.WriteLine(flag);
}

Chapter 11

Understanding Parameter Arrays
 After completing this chapter, you will be able to:

 Write a method that can accept any number of arguments by using the params
keyword.

 Write a method that can accept any number of arguments of any type by using the

params keyword in combination with the object type.

 Parameter arrays are useful if you want to write methods that can take any number of

 arguments, possibly of different types, as parameters. If you are familiar with object-oriented

concepts, you might well be grinding your teeth in frustration at this sentence. After all, the

object-oriented approach to solving this problem is to defi ne overloaded methods.

 Overloading is the technical term for declaring two or more methods with the same name in

the same scope. Being able to overload a method is very useful in cases where you want to

perform the same action on arguments of different types. The classic example of overloading

in Microsoft Visual C# is Console.WriteLine. The WriteLine method is overloaded numerous

times so that you can pass any primitive type argument:

class Console
{
 public static void WriteLine(int parameter)
 ...
 public static void WriteLine(double parameter)
 ...
 public static void WriteLine(decimal parameter)
 ...
}

 As useful as overloading is, it doesn’t cover every case. In particular, overloading doesn’t

 easily handle a situation in which the type of parameters doesn’t vary but the number of

 parameters does. For example, what if you want to write many values to the console? Do you

have to provide versions of Console.WriteLine that can take two parameters, other versions

that can take three parameters, and so on? That would quickly get tedious. And doesn’t the

massive duplication of all these overloaded methods worry you? It should. Fortunately, there

is a way to write a method that takes a variable number of arguments (a variadic method):

you can use a parameter array (a parameter declared with the params keyword).

 To understand how params arrays solve this problem, it helps to fi rst understand the uses

and shortcomings of plain arrays.
 207

208 Part II Understanding the C# Language
Using Array Arguments
 Suppose you want to write a method to determine the minimum value in a set of values

passed as parameters. One way would be to use an array. For example, to fi nd the smallest

of several int values, you could write a static method named Min with a single parameter

 representing an array of int values:

class Util
{
 public static int Min(int[] paramList)
 {
 if (paramList == null || paramList.Length == 0)
 {
 throw new ArgumentException(“Util.Min: not enough arguments”);
 }
 int currentMin = paramList [0];
 foreach (int i in paramList)
 {
 if (i < currentMin)
 {
 currentMin = i;
 }
 }
 return currentMin;
 }
}

 Note The ArgumentException class is specifi cally designed to be thrown by a method if the

 arguments supplied do not meet the requirements of the method.

 To use the Min method to fi nd the minimum of two int values, you would write this:

int[] array = new int[2];
array[0] = first;
array[1] = second;
int min = Util.Min(array);

 And to use the Min method to fi nd the minimum of three int values, you would write this:

int[] array = new int[3];
array[0] = first;
array[1] = second;
array[2] = third;
int min = Util.Min(array);

 You can see that this solution avoids the need for a large number of overloads, but it does so

at a price: you have to write additional code to populate the array that you pass in. However,

you can get the compiler to write some of this code for you by using the params keyword to

declare a params array.

 Chapter 11 Understanding Parameter Arrays 209
Declaring a params Array
 You use the params keyword as an array parameter modifi er. For example, here’s Min again,

this time with its array parameter declared as a params array:

class Util
{
 public static int Min(params int[] paramList)
 {
 // code exactly as before
 }
}

 The effect of the params keyword on the Min method is that it allows you to call it by using

any number of integer arguments. For example, to fi nd the minimum of two integer values,

you would write this:

int min = Util.Min(first, second);

 The compiler translates this call into code similar to this:

int[] array = new int[2];
array[0] = first;
array[1] = second;
int min = Util.Min(array);

 To fi nd the minimum of three integer values, you would write the code shown here, which is

also converted by the compiler to the corresponding code that uses an array:

int min = Util.Min(first, second, third);

 Both calls to Min (one call with two arguments and another with three arguments) resolve

to the same Min method with the params keyword. And as you can probably guess, you can

call this Min method with any number of int arguments. The compiler just counts the number

of int arguments, creates an int array of that size, fi lls the array with the arguments, and then

calls the method by passing the single array parameter.

 Note C and C++ programmers might recognize params as a type-safe equivalent of the varargs
macros from the header fi le stdarg.h.

 There are several points worth noting about params arrays:

 You can’t use the params keyword on multidimensional arrays. The code in the

 following example will not compile:

// compile-time error
public static int Min(params int[,] table)
...

210 Part II Understanding the C# Language
 You can’t overload a method based solely on the params keyword. The params
 keyword does not form part of a method’s signature, as shown in this example:

// compile-time error: duplicate declaration
public static int Min(int[] paramList)
...
public static int Min(params int[] paramList)
...

 You’re not allowed to specify the ref or out modifi er with params arrays, as shown in

this example:

// compile-time errors
public static int Min(ref params int[] paramList)
...
public static int Min(out params int[] paramList)
...

 A params array must be the last parameter. (This means that you can have only one

params array per method.) Consider this example:

// compile-time error
public static int Min(params int[] paramList, int i)
...

 A non-params method always takes priority over a params method. This means that if

you want to, you can still create an overloaded version of a method for the common

cases. For example:

public static int Min(int leftHandSide, int rightHandSide)
...
public static int Min(params int[] paramList)
...

 The fi rst version of the Min method is used when called using two int arguments. The

second version is used if any other number of int arguments is supplied. This includes

the case where the method is called with no arguments.

 Adding the non-params array method might be a useful optimization technique

 because the compiler won’t have to create and populate so many arrays.

 The compiler detects and rejects any potentially ambiguous overloads. For example,

the following two Min methods are ambiguous; it’s not clear which one should be

called if you pass two int arguments:

// compile-time error
public static int Min(params int[] paramList)
...
public static int Min(int, params int[] paramList)
...

 Chapter 11 Understanding Parameter Arrays 211
Using params object[]
 A parameter array of type int is very useful because it enables you to pass any number of

int arguments in a method call. However, what if not only the number of arguments varies

but also the argument type? C# has a way to solve this problem, too. The technique is based

on the facts that object is the root of all classes and that the compiler can generate code

that converts value types (things that aren’t classes) to objects by using boxing, as described

in Chapter 8, “Understanding Values and References.” You can use a parameters array of

type object to declare a method that accepts any number of object arguments, allowing the

 arguments passed in to be of any type. Look at this example:

class Black
{
 public static void Hole(params object [] paramList)
 ...
}

 I’ve called this method Black.Hole, not because it swallows every argument, but because no

argument can escape from it:

 You can pass the method no arguments at all, in which case the compiler will pass an

object array whose length is 0:

Black.Hole();
// converted to Black.Hole(new object[0]);

 Tip It’s perfectly safe to attempt to iterate through a zero-length array by using a foreach

statement.

 You can call the Black.Hole method by passing null as the argument. An array is a

 reference type, so you’re allowed to initialize an array with null:

Black.Hole(null);

 You can pass the Black.Hole method an actual array. In other words, you can manually

create the array normally created by the compiler:

object[] array = new object[2];
array[0] = "forty two";
array[1] = 42;
Black.Hole(array);

 You can pass the Black.Hole method any other arguments of different types, and these

arguments will automatically be wrapped inside an object array:

Black.Hole("forty two", 42);
//converted to Black.Hole(new object[]{"forty two", 42});

212 Part II Understanding the C# Language

The Console.WriteLine Method
 The Console class contains many overloads for the WriteLine method. One of these

overloads looks like this:

public static void WriteLine(string format, params object[] arg);

This overload enables the WriteLine method to support a format string argument that

contains placeholders, each of which can be replaced at run time with a variable of any

type. Here’s an example of a call to this method that you have seen several times in ear-

lier chapters:

Console.WriteLine(“Name:{0}, Age:{1}”, name, age);

The compiler resolves this call into the following:

Console.WriteLine(“Name:{0}, Age:{1}”, new object[2]{name, age});

Using a params Array
In the following exercise, you will implement and test a static method named Util.Sum. The

purpose of this method is to calculate the sum of a variable number of int arguments passed

to it, returning the result as an int. You will do this by writing Util.Sum to take a params int[]
parameter. You will implement two checks on the params parameter to ensure that the Util.
Sum method is completely robust. You will then call the Util.Sum method with a variety of

different arguments to test it.

Write a params array method

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the ParamsArray project, located in the \Microsoft Press\Visual CSharp Step by

Step\Chapter 11\ ParamArrays folder in your Documents folder.

3. Display the Util.cs fi le in the Code and Text Editor window.

The Util.cs fi le contains an empty class named Util in the ParamsArray namespace.

4. Add a public static method named Sum to the Util class.

The Sum method returns an int and accepts a params array of int values. The Sum

method should look like this:

public static int Sum(params int[] paramList)
{
}

The fi rst step in implementing the Sum method is to check the paramList param-

eter. Apart from containing a valid set of integers, it could also be null or it could be

an array of zero length. In both of these cases, it is diffi cult to calculate the sum, so

the best option is to throw an ArgumentException. (You could argue that the sum of

the integers in a zero-length array is 0, but we will treat this situation as an exception in

this example.)

Write a params array method

 Chapter 11 Understanding Parameter Arrays 213

5. Add code to Sum that throws an ArgumentException if paramList is null.

 The Sum method should now look like this:

public static int Sum(params int[] paramList)
{
 if (paramList == null)
 {
 throw new ArgumentException(“Util.Sum: null parameter list”);
 }
}

6. Add code to the Sum method that throws an ArgumentException if the length of array

is 0, as shown in bold here:

public static int Sum(params int[] paramList)
{
 if (paramList == null)
 {
 throw new ArgumentException(“Util.Sum: null parameter list”);
 }

 if (paramList.Length == 0)
 {
 throw new ArgumentException(“Util.Sum: empty parameter list”);
 }
}

 If the array passes these two tests, the next step is to add all the elements inside the

array together.

7. You can use a foreach statement to add all the elements together. You will need a local

variable to hold the running total. Declare an integer variable named sumTotal and ini-

tialize it to 0 following the code from the preceding step. Add a foreach statement to

the Sum method to iterate through the paramList array. The body of this foreach loop

should add each element in the array to sumTotal. At the end of the method, return the

value of sumTotal by using a return statement.

class Util
{
 public static int Sum(params int[] paramList)
 {
 ...
 int sumTotal = 0;
 foreach (int i in paramList)
 {
 sumTotal += i;
 }
 return sumTotal;
 }
}

8. On the Build menu, click Build Solution. Confi rm that your solution builds without any

errors.

214 Part II Understanding the C# Language

Test the Util.Sum method

1. Display the Program.cs fi le in the Code and Text Editor window.

2. In the Code and Text Editor window, locate the Entrance method in the Program class.

3. Add the following statement to the Entrance method:

Console.WriteLine(Util.Sum(null));

4. On the Debug menu, click Start Without Debugging.

 The program builds and runs, writing the following message to the console:

Exception: Util.Min: null parameter list

 This confi rms that the fi rst check in the method works.

5. Press the Enter key to close the program and return to Visual Studio 2008.

6. In the Code and Text Editor window, change the call to Console.WriteLine in Entrance as

shown here:

Console.WriteLine(Util.Sum());

 This time, the method is being called without any arguments. The compiler will

 translate the empty argument list into an empty array.

7. On the Debug menu, click Start Without Debugging.

 The program builds and runs, writing the following message to the console:

Exception: Util.Min: empty parameter list

 This confi rms that the second check in the method works.

8. Press the Enter key to close the program and return to Visual Studio 2008.

9. Change the call to Console.WriteLine in Entrance as follows:

Console.WriteLine(Util.Sum(10, 9, 8, 7, 6, 5, 4, 3, 2, 1));

10. On the Debug menu, click Start Without Debugging.

 The program builds, runs, and writes 55 to the console.

11. Press Enter to close the application.

 In this chapter, you have learned how to use a params array to defi ne a method that can take

any number of arguments. You have also seen how to use a params array of object types to

create a method that accepts any number of arguments of any type.

Test the Util.Sum method

 Chapter 11 Understanding Parameter Arrays 215
 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 12.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 11 Quick Reference
 To Do this

 Write a method that accepts any

 number of arguments of a given

type

Write a method whose parameter is a params array of the given

type. For example, a method that accepts any number of bool
arguments would be declared like this:

someType Method(params bool[] flags)
{
 ...
}

 Write a method that accepts any

number of arguments of any type

Write a method whose parameter is a params array whose ele-

ments are of type object. For example:

someType Method(params object[] paramList)
{
 ...
}

Chapter 12

Working with Inheritance
 After completing this chapter, you will be able to:

 Create a derived class that inherits features from a base class.

 Control method hiding and overriding by using the new, virtual, and override

keywords.

 Limit accessibility within an inheritance hierarchy by using the protected keyword.

 Defi ne extension methods as an alternative mechanism to using inheritance.

 Inheritance is a key concept in the world of object orientation. You can use inheritance as

a tool to avoid repetition when defi ning different classes that have a number of features in

common and are quite clearly related to each other. Perhaps they are different classes of

the same type, each with its own distinguishing feature—for example, managers, manual
workers, and all employees of a factory. If you were writing an application to simulate the fac-

tory, how would you specify that managers and manual workers have a number of features

that are the same but also have other features that are different? For example, they all have

an employee reference number, but managers have different responsibilities and perform

 different tasks than manual workers.

 This is where inheritance proves useful.

What Is Inheritance?
 If you ask several experienced programmers what they understand by the term inheritance,

you will typically get different and confl icting answers. Part of the confusion stems from the

fact that the word inheritance itself has several subtly different meanings. If someone be-

queaths something to you in a will, you are said to inherit it. Similarly, we say that you inherit

half of your genes from your mother and half of your genes from your father. Both of these

uses of the word inheritance have very little to do with inheritance in programming.

 Inheritance in programming is all about classifi cation—it’s a relationship between classes. For

example, when you were at school, you probably learned about mammals, and you learned

that horses and whales are examples of mammals. Each has every attribute that a mammal

does (it breathes air, it suckles its young, it is warm-blooded, and so on), but each also has its

own special features (a horse has hooves, unlike a whale).

 How could you model a horse and a whale in a program? One way would be to create two

distinct classes named Horse and Whale. Each class could implement the methods that are
 217

218 Part II Understanding the C# Language
unique to that type of mammal, such as Trot (for a horse) or Swim (for a whale) in its own way.

How would you handle methods that are common to a horse and a whale, such as Breathe

or SuckleYoung? You could add duplicate methods with these names to both classes, but this

situation becomes a maintenance nightmare, especially if you also decide to start modeling

other types of mammal, such as Human or Aardvark.

 In C#, you can use class inheritance to address these issues. A horse, a whale, a human, and

an aardvark are all types of mammal, so create a class named Mammal that provides the

common functionality exhibited by these types. You can then declare that the Horse, Whale,

Human, and Aardvark classes all inherit from Mammal. These classes would then automatical-

ly provide the functionality of the Mammal class (Breathe, SuckleYoung, and so on), but you

could also add the functionality peculiar to a particular type of mammal to the correspond-

ing class—the Trot method for the Horse class and the Swim method for the Whale class. If

you need to modify the way in which a common method such as Breathe works, you need to

change it in only one place, the Mammal class.

Using Inheritance
 This section covers the essential inheritance-related syntax that you need to understand in

order to create classes that inherit from other classes in C#.

Base Classes and Derived Classes
 The syntax for declaring a class that inherits from another class is as follows:

class DerivedClass : BaseClass {
 ...
}

 The derived class inherits from the base class, and the methods in the base class also become

part of the derived class. In C#, a class is allowed to derive from, at most, one other class; a

class is not allowed to derive from two or more classes. However, unless DerivedClass is de-

clared as sealed, you can create further derived classes that inherit from DerivedClass using

the same syntax. (You will learn about sealed classes in Chapter 13, “Creating Interfaces and

Defi ning Abstract Classes.”)

class DerivedSubClass : DerivedClass {
 ...
}

 Important You cannot use inheritance with structures. A structure cannot inherit from a class

or another structure.

 Chapter 12 Working with Inheritance 219
 In the example described earlier, you could declare the Mammal class as shown here. The

methods Breathe and SuckleYoung are common to all mammals.

class Mammal
{
 public void Breathe()
 {
 ...
 }

 public void SuckleYoung()
 {
 ...
 }
 ...
}

 You could then defi ne classes for each different type of mammal, adding additional methods

as necessary. For example:

class Horse : Mammal
{
 ...
 public void Trot()
 {
 ...
 }

}

class Horse : Whale
{
 ...
 public void Swim()
 {
 ...
 }

}

 Note C++ programmers should notice that you do not and cannot explicitly specify whether

the inheritance is public, private, or protected. C# inheritance is always implicitly public. Java

 programmers should note the use of the colon and that there is no extends keyword.

 Remember that the System.Object class is the root class of all classes. All classes implicitly

derive from the System.Object class. Consequently, the C# compiler silently rewrites the

Mammal class as the following code (which you can write explicitly if you really want to):

class Mammal : System.Object
{
 ...
}

220 Part II Understanding the C# Language
 Any methods in the System.Object class are automatically passed down the chain of

 inheritance to classes that derive from Mammal, such as Horse and Whale. What this means

in practical terms is that all classes that you defi ne automatically inherit all the features of

the System.Object class. This includes methods such as ToString (fi rst discussed in Chapter 2,

“Working with Variables, Operators, and Expressions”), which is used to convert an object to a

string, typically for display purposes.

Calling Base Class Constructors
 A derived class automatically contains all fi elds from the base class. These fi elds usually

 require initialization when an object is created. You usually perform this kind of initialization

in a constructor. Remember that all classes have at least one constructor. (If you don’t provide

one, the compiler generates a default constructor for you.) It is good practice for a construc-

tor in a derived class to call the constructor for its base class as part of the initialization. You

can specify the base keyword to call a base class constructor when you defi ne a constructor

for an inheriting class, as shown in this example:

class Mammal // base class
{
 public Mammal(string name) // constructor for base class
 {
 ...
 }
 ...
}

class Horse : Mammal // derived class
{
 public Horse(string name)
 : base(name) // calls Mammal(name)
 {
 ...
 }
 ...
}

 If you don’t explicitly call a base class constructor in a derived class constructor, the compiler

attempts to silently insert a call to the base class’s default constructor before executing the

code in the derived class constructor. Taking the earlier example, the compiler will rewrite

this:

class Horse : Mammal
{
 public Horse(string name)
 {
 ...
 }
 ...
}

 Chapter 12 Working with Inheritance 221
 As this:

class Horse : Mammal
{
 public Horse(string name)
 : base()
 {
 ...
 }
 ...
}

 This works if Mammal has a public default constructor. However, not all classes have a public

default constructor (Mammal doesn’t!), in which case forgetting to call the correct base class

constructor results in a compile-time error.

Assigning Classes
 In previous examples in this book, you have seen how to declare a variable by using a class

type and then how to use the new keyword to create an object. You have also seen how the

type-checking rules of C# prevent you from assigning an object of one type to a variable

declared as a different type. For example, given the defi nitions of the Mammal, Horse, and

Whale classes shown here, the code that follows these defi nitions is illegal:

class Mammal
{
 ...
}
class Horse : Mammal
{
 ...
}

class Whale : Mammal
{
 ...
}
...
Horse myHorse = new Horse(“Neddy”); // constructor shown earlier expects a name!
Whale myWhale = myHorse; // error – different types

 However, it is possible to refer to an object from a variable of a different type as long as the

type used is a class that is higher up the inheritance hierarchy. So the following statements

are legal:

Horse myHorse = new Horse(“Neddy”);
Mammal myMammal = myHorse; // legal, Mammal is the base class of Horse

 If you think about it in logical terms, all Horses are Mammals, so you can safely assign an

object of type Horse to a variable of type Mammal. The inheritance hierarchy means that you

222 Part II Understanding the C# Language
can think of a Horse simply as a special type of Mammal (it has everything that a Mammal
has) with a few extra bits (defi ned by any methods and fi elds you add to the Horse class). You

can also make a Mammal variable refer to a Whale object. There is one signifi cant limitation,

however—when referring to a Horse or Whale object using a Mammal variable, you can ac-

cess only methods and fi elds that are defi ned by the Mammal class. Any additional methods

defi ned by the Horse or Whale class are not visible through the Mammal class:

Horse myHorse = new Horse(“Neddy”);
Mammal myMammal = myHorse;
myMammal.Breathe(); // OK - Breathe is part of the Mammal class
myMammal.Trot(); // error - Trot is not part of the Mammal class

 Note This explains why you can assign almost anything to an object variable. Remember that

object is an alias for System.Object and all classes inherit from System.Object either directly or

indirectly.

 Be warned that the converse situation is not true. You cannot unreservedly assign a Mammal
object to a Horse variable:

Mammal myMammal = myMammal(“Mammalia”);
Horse myHorse = myMammal; // error

 This looks like a strange restriction, but remember that not all Mammal objects are Horses—

some are Whales. You can assign a Mammal object to a Horse variable as long as you check

that the Mammal is really a Horse fi rst, by using the as or is operator or by using a cast. The

following code example uses the as operator to check that myMammal refers to a Horse, and

if it does, the assignment to myHorseAgain results in myHorseAgain referring to the same

Horse object. If myMammal refers to some other type of Mammal, the as operator returns

null instead.

Horse myHorse = new Horse(“Neddy”);
Mammal myMammal = myHorse; // myMammal refers to a Horse
...
Horse myHorseAgain = myMammal as Horse; // OK - myMammal was a Horse
...
Whale myWhale = new Whale(“Moby Dick”);
myMammal = myWhale;
...
myHorseAgain = myMammal as Horse; // returns null - myMammal was a Whale

Declaring new Methods
 One of the hardest problems in the realm of computer programming is the task of thinking

up unique and meaningful names for identifi ers. If you are defi ning a method for a class and

that class is part of an inheritance hierarchy, sooner or later you are going to try to reuse a

name that is already in use by one of the classes higher up the hierarchy. If a base class and a

 Chapter 12 Working with Inheritance 223
derived class happen to declare two methods that have the same signature (the method sig-

nature is the name of the method and the number and types of its parameters), you will re-

ceive a warning when you compile the application. The method in the derived class masks (or

hides) the method in the base class that has the same signature. For example, if you compile

the following code, the compiler will generate a warning message telling you that Horse.Talk

hides the inherited method Mammal.Talk:

class Mammal
{
 ...
 public void Talk() // all mammals talk
 {
 ...
 }
}

class Horse : Mammal
{
 ...
 public void Talk() // horses talk in a different way from other mammals!
 {
 ...
 }
}

 Although your code will compile and run, you should take this warning seriously. If another

class derives from Horse and calls the Talk method, it might be expecting the method imple-

mented in the Mammal class to be called. However, the Talk method in the Horse class hides

the Talk method in the Mammal class, and the Horse.Talk method will be called instead. Most

of the time, such a coincidence is at best a source of confusion, and you should consider re-

naming methods to avoid clashes. However, if you’re sure that you want the two methods to

have the same signature, thus hiding the Mammal.Talk method, you can silence the warning

by using the new keyword as follows:

class Mammal
{
 ...
 public void Talk()
 {
 ...
 }
}

class Horse : Mammal
{
 ...
 new public void Talk()
 {
 ...
 }
}

224 Part II Understanding the C# Language
 Using the new keyword like this does not change the fact that the two methods are

 completely unrelated and that hiding still occurs. It just turns the warning off. In effect, the

new keyword says, “I know what I’m doing, so stop showing me these warnings.”

Declaring Virtual Methods
 Sometimes you do want to hide the way in which a method is implemented in a base class.

As an example, consider the ToString method in System.Object. The purpose of ToString is

to convert an object to its string representation. Because this method is very useful, it is a

member of System.Object, thereby automatically providing all classes with a ToString method.

However, how does the version of ToString implemented by System.Object know how to con-

vert an instance of a derived class to a string? A derived class might contain any number of

fi elds with interesting values that should be part of the string. The answer is that the imple-

mentation of ToString in System.Object is actually a bit simplistic. All it can do is convert an

object to a string that contains the name of its type, such as “Mammal” or “Horse.” This is not

very useful after all. So why provide a method that is so useless? The answer to this second

question requires a bit of detailed thought.

 Obviously, ToString is a fi ne idea in concept, and all classes should provide a method that

can be used to convert objects to strings for display or debugging purposes. It is only the

implementation that is problematic. In fact, you are not expected to call the ToString method

defi ned by System.Object—it is simply a placeholder. Instead, you should provide your own

version of the ToString method in each class you defi ne, overriding the default implementa-

tion in System.Object. The version in System.Object is there only as a safety net, in case a class

does not implement its own ToString method. In this way, you can be confi dent that you can

call ToString on any object, and the method will return a string containing something.

 A method that is intended to be overridden is called a virtual method. You should be clear on

the difference between overriding a method and hiding a method. Overriding a method is a

mechanism for providing different implementations of the same method—the methods are

all related because they are intended to perform the same task, but in a class-specifi c man-

ner. Hiding a method is a means of replacing one method with another—the methods are

usually unrelated and might perform totally different tasks. Overriding a method is a useful

programming concept; hiding a method is usually an error.

 You can mark a method as a virtual method by using the virtual keyword. For example, the

ToString method in the System.Object class is defi ned like this:

namespace System
{
 class Object
 {
 public virtual string ToString()
 {
 ...

 Chapter 12 Working with Inheritance 225
 }
 ...
 }
 ...
}

 Note Java developers should note that C# methods are not virtual by default.

Declaring override Methods
 If a base class declares that a method is virtual, a derived class can use the override keyword

to declare another implementation of that method. For example:

class Horse : Mammal
{
 ...
 public override string ToString()
 {
 ...
 }
}

 The new implementation of the method in the derived class can call the original implementa-

tion of the method in the base class by using the base keyword, like this:

 public override string ToString()
 {
 base.ToString();
 ...
 }

 There are some important rules you must follow when declaring polymorphic methods

(see the following sidebar, “Virtual Methods and Polymorphism”) by using the virtual and

override keywords:

 You’re not allowed to declare a private method when using the virtual or override

 keyword. If you try, you’ll get a compile-time error. Private really is private.

 The two method signatures must be identical—that is, they must have the same name,

the same number and type of parameters, and the same return type.

 The two methods must have the same access. For example, if one of the two methods

is public, the other must also be public. (Methods can also be protected, as you will fi nd

out in the next section.)

226 Part II Understanding the C# Language
 You can override only a virtual method. If the base class method is not virtual and you

try to override it, you’ll get a compile-time error. This is sensible; it should be up to the

designer of the base class to decide whether its methods can be overridden.

 If the derived class does not declare the method by using the override keyword, it does

not override the base class method. In other words, it becomes an implementation of a

completely different method that happens to have the same name. As before, this will

cause a compile-time hiding warning, which you can silence by using the new keyword

as previously described.

 An override method is implicitly virtual and can itself be overridden in a further derived

class. However, you are not allowed to explicitly declare that an override method is

 virtual by using the virtual keyword.

Virtual Methods and Polymorphism
 Virtual methods enable you to call different versions of the same method, based on the

type of the object determined dynamically at run time. Consider the following example

classes that defi ne a variation on the Mammal hierarchy described earlier:

class Mammal
{
 ...
 public virtual string GetTypeName()
 {
 return “This is a mammal”;
 }
}

class Horse : Mammal
{
 ...
 public override string GetTypeName()
 {
 return “This is a horse”;
 }
}

class Whale : Mammal
{
 ...
 public override string GetTypeName ()
 {
 return “This is a whale”;
 }
}

class Aardvark : Mammal
{
 ...
}

 Chapter 12 Working with Inheritance 227
 Notice two things: fi rst, the override keyword used by the GetTypeName method (which

will be described shortly) in the Horse and Whale classes, and second, the fact that the

Aardvark class does not have a GetTypeName method.

 Now examine the following block of code:

Mammal myMammal;
Horse myHorse = new Horse(...);
Whale myWhale = new Whale(...);
Aardvark myAardvark = new Aardvark(...);

myMammal = myHorse;
Console.WriteLine(myMammal.GetTypeName()); // Horse
myMammal = myWhale;
Console.WriteLine(myMammal.GetTypeName()); // Whale
myMammal = myAardvark;
Console.WriteLine(myMammal.GetTypeName()); // Aardvark

 What will be output by the three different Console.WriteLine statements? At fi rst

glance, you would expect them all to print “This is a mammal,” because each state-

ment calls the GetTypeName method on the myMammal variable, which is a Mammal.
However, in the fi rst case, you can see that myMammal is actually a reference to a

Horse. (Remember, you are allowed to assign a Horse to a Mammal variable because

the Horse class is derived from the Mammal class.) Because the GetTypeName method

is defi ned as virtual, the runtime works out that it should call the Horse.GetTypeName

method, so the statement actually prints the message “This is a horse.” The same logic

applies to the second Console.WriteLine statement, which outputs the message “This is

a whale.” The third statement calls Console.WriteLine on an Aardvark object. However,

the Aardvark class does not have a GetTypeName method, so the default method in the

Mammal class is called, returning the string “This is a mammal.”

 This phenomenon of the same statement invoking a different method is called

 polymorphism, which literally means “many forms.”

Understanding protected Access
 The public and private access keywords create two extremes of accessibility: public fi elds and

methods of a class are accessible to everyone, whereas private fi elds and methods of a class

are accessible to only the class itself.

 These two extremes are suffi cient when considering classes in isolation. However, as all expe-

rienced object-oriented programmers know, isolated classes cannot solve complex problems.

Inheritance is a powerful way of connecting classes, and there is clearly a special and close re-

lationship between a derived class and its base class. Frequently it is useful for a base class to

228 Part II Understanding the C# Language
allow derived classes to access some of its members while hiding these same members from

classes that are not part of the hierarchy. In this situation, you can use the protected keyword

to tag members:

 If a class A is derived from another class B, it can access the protected class members

of class B. In other words, inside the derived class A, a protected member of class B is

 effectively public.

 If a class A is not derived from another class B, it cannot access any protected members

of class B. In other words, within class A, a protected member of class B is effectively

private.

 C# gives programmers complete freedom to declare methods and fi elds as protected.

However, most object-oriented programming guidelines recommend keeping your fi elds

strictly private. Public fi elds violate encapsulation because all users of the class have direct,

unrestricted access to the fi elds. Protected fi elds maintain encapsulation for users of a class,

for whom the protected fi elds are inaccessible. However, protected fi elds still allow encapsu-

lation to be violated by classes that inherit from the class.

Note You can access a protected base class member not only in a derived class but also in

classes derived from the derived class. A protected base class member retains its protected

accessibility in a derived class and is accessible to further derived classes.

In the following exercise, you will defi ne a simple class hierarchy for modeling different types

of vehicles. You will defi ne a base class named Vehicle and derived classes named Airplane

and Car. You will defi ne common methods named StartEngine and StopEngine in the Vehicle

class, and you will add some additional methods to both of the derived classes that are spe-

cifi c to those classes. Last you will add a virtual method named Drive to the Vehicle class and

override the default implementation of this method in both of the derived classes.

Create a hierarchy of classes

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the Vehicles project, located in the \Microsoft Press\Visual CSharp Step by Step\

Chapter 12\Vehicles folder in your Documents folder.

The Vehicles project contains the fi le Program.cs, which defi nes the Program class with

the Main and Entrance methods that you have seen in previous exercises.

 3. In Solution Explorer, right-click the Vehicles project, point to Add, and then click Class.

 The Add New Item—Vehicles dialog box appears, enabling you to add a new fi le

 defi ning a class to the project.

Create a hierarchy of classes

 Chapter 12 Working with Inheritance 229

4. In the Add New Item—Vehicles dialog box, in the Name box, type Vehicle.cs, and then

click Add.

 The fi le Vehicle.cs is created and added to the project and appears in the Code and Text
Editor window. The fi le contains the defi nition of an empty class named Vehicle.

5. Add the StartEngine and StopEngine methods to the Vehicle class as shown here in bold:

class Vehicle
{
 public void StartEngine(string noiseToMakeWhenStarting)
 {
 Console.WriteLine(“Starting engine: {0}”, noiseToMakeWhenStarting);
 }

 public void StopEngine(string noiseToMakeWhenStopping)
 {
 Console.WriteLine(“Stopping engine: {0}”, noiseToMakeWhenStopping);
 }
}

 All classes that derive from the Vehicle class will inherit these methods. The values for

the noiseToMakeWhenStarting and noiseToMakeWhenStopping parameters will be dif-

ferent for each different type of vehicle and will help you to identify which vehicle is

being started and stopped later.

6. On the Project menu, click Add Class.

 The Add New Item—Vehicles dialog box appears again.

7. In the Name box, type Airplane.cs, and then click Add.

 A new fi le containing a class named Airplane is added to the project and appears in the

Code and Text Editor window.

8. In the Code and Text Editor window, modify the defi nition of the Airplane class so that it

derives from the Vehicle class, as shown in bold here:

class Airplane : Vehicle
{
}

9. Add the TakeOff and Land methods to the Airplane class, as shown in bold here:

class Airplane : Vehicle
{
 public void TakeOff()
 {
 Console.WriteLine(“Taking off”);
 }

 public void Land()
 {
 Console.WriteLine(“Landing”);
 }
}

230 Part II Understanding the C# Language

10. On the Project menu, click Add Class.

 The Add New Item—Vehicles dialog box appears again.

11. In the Name box, type Car.cs, and then click Add.

 A new fi le containing a class named Car is added to the project and appears in the

Code and Text Editor window.

12. In the Code and Text Editor window, modify the defi nition of the Car class so that it

 derives from the Vehicle class, as shown here in bold:

class Car : Vehicle
{
}

13. Add the Accelerate and Brake methods to the Car class, as shown in bold here:

class Car : Vehicle
{
 public void Accelerate()
 {
 Console.WriteLine(“Accelerating”);
 }

 public void Brake()
 {
 Console.WriteLine(“Braking”);
 }
}

14. Display the Vehicle.cs fi le in the Code and Text Editor window.

15. Add the virtual Drive method to the Vehicle class, as shown here in bold:

class Vehicle
{
 ...
 public virtual void Drive()
 {
 Console.WriteLine(“Default implementation of the Drive method”);
 }
}

16. Display the Program.cs fi le in the Code and Text Editor window.

17. In the Entrance method, create an instance of the Airplane class and exercise its meth-

ods by simulating a quick journey by airplane, as follows:

static void Entrance()
{
 Console.WriteLine(“Journey by airplane:”);
 Airplane myPlane = new Airplane();
 myPlane.StartEngine(“Contact”);

 Chapter 12 Working with Inheritance 231

 myPlane.TakeOff();
 myPlane.Drive();
 myPlane.Land();
 myPlane.StopEngine(“Whirr”);
}

18. Add the following statements shown in bold to the Entrance method after the code

you have just written. These statements create an instance of the Car class and test its

methods.

static void Entrance()
{
 ...
 Console.WriteLine(“\nJourney by car:”);
 Car myCar = new Car();
 myCar.StartEngine(“Brm brm”);
 myCar.Accelerate();
 myCar.Drive();
 myCar.Brake();
 myCar.StopEngine(“Phut phut”);
}

19. On the Debug menu, click Start Without Debugging.

 In the console window, verify that the program outputs messages simulating the

 different stages of performing a journey by airplane and by car, as shown in the

 following image:

 Notice that both modes of transport invoke the default implementation of the virtual

Drive method because neither class currently overrides this method.

20. Press Enter to close the application and return to Visual Studio 2008.

21. Display the Airplane class in the Code and Text Editor window. Override the Drive

 method in the Airplane class, as follows:

public override void Drive()
{
 Console.WriteLine(“Flying”);
}

232 Part II Understanding the C# Language

 Note Notice that IntelliSense automatically displays a list of available virtual methods. If

you select the Drive method from the IntelliSense list, Visual Studio automatically inserts

into your code a statement that calls the base.Drive method. If this happens, delete the

statement, as this exercise does not require it.

22. Display the Car class in the Code and Text Editor window. Override the Drive method in

the Car class as follows:

public override void Drive()
{
 Console.WriteLine(“Motoring”);
}

23. On the Debug menu, click Start Without Debugging.

 In the console window, notice that the Airplane object now displays the message Flying

when the application calls the Drive method and the Car object displays the message

Motoring.

24. Press Enter to close the application and return to Visual Studio 2008.

25. Display the Program.cs fi le in the Code and Text Editor window.

26. Add the statements shown here in bold to the end of the Entrance method:

static void Entrance()
{
 ...
 Console.WriteLine(“\nTesting polymorphism”);
 Vehicle v = myCar;
 v.Drive();
 v = myPlane;
 v.Drive();
}

 This code tests the polymorphism provided by the virtual Drive method. The code

 creates a reference to the Car object using a Vehicle variable (this is safe, because all

Car objects are Vehicle objects) and then calls the Drive method using this Vehicle vari-

able. The fi nal two statements refer the Vehicle variable to the Airplane object and call

what seems to be the same Drive method again.

27. On the Debug menu, click Start Without Debugging.

 In the console window, verify that the same messages appear as before, followed by

this text:

Testing polymorphism
Motoring
Flying

 Chapter 12 Working with Inheritance 233

 The Drive method is virtual, so the runtime (not the compiler) works out which version

of the Drive method to call when invoking it through a Vehicle variable based on the

real type of the object referenced by this variable. In the fi rst case, the Vehicle object

refers to a Car, so the application calls the Car.Drive method. In the second case, the

Vehicle object refers to an Airplane, so the application calls the Airplane.Drive method.

 28. Press Enter to close the application and return to Visual Studio 2008.

Understanding Extension Methods
 Inheritance is a very powerful feature, enabling you to extend the functionality of a class by

creating a new class that derives from it. However, sometimes using inheritance is not the

most appropriate mechanism for adding new behaviors, especially if you need to quickly ex-

tend a type without affecting existing code.

 For example, suppose you want to add a new feature to the int type—a method named

Negate that returns the negative equivalent value that an integer currently contains. (I know

that you could simply use the unary minus operator [-] to perform the same task, but bear

with me.) One way to achieve this would be to defi ne a new type named NegInt32 that inher-

its from System.Int32 (int is an alias for System.Int32) and that adds the Negate method:

class NegInt32 : System.Int32 // don’t try this!
{
 public int Negate()
 {
 ...
 }
}

 The theory is that NegInt32 will inherit all the functionality associated with the System.Int32

type in addition to the Negate method. There are two reasons why you might not want to

follow this approach:

 This method will apply only to the NegInt32 type, and if you want to use it with existing

int variables in your code, you would have to change the defi nition of every int variable

to the NegInt32 type.

 The System.Int32 type is actually a structure, not a class, and you cannot use inheri-

tance with structures.

 This is where extension methods become very useful.

 An extension method enables you to extend an existing type (a class or a structure) with ad-

ditional static methods. These static methods become immediately available to your code in

any statements that reference data of the type being extended.

234 Part II Understanding the C# Language

 You defi ne an extension method in a static class and specify the type that the method applies

to as the fi rst parameter to the method, along with the this keyword. Here’s an example

showing how you can implement the Negate extension method for the int type:

static class Util
{
 public static int Negate(this int i)
 {
 return –i;
 }
}

The syntax looks a little odd, but it is the this keyword prefi xing the parameter to Negate that

identifi es it as an extension method, and the fact that the parameter that this prefi xes is an

int means that you are extending the int type.

To use the extension method, bring the Util class into scope (if necessary, add a using

 statement specifying the namespace to which the Util class belongs), and then you can

 simply use “.” notation to reference the method, like this:

int x = 591;
Console.WriteLine(“x.Negate {0}”, x.Negate());

Notice that you do not need to reference the Util class anywhere in the statement that calls

the Negate method. The C# compiler automatically detects all extension methods for a given

type from all the static classes that are in scope. You can also invoke the Utils.Negate method

passing an int as the parameter, using the regular syntax you have seen before, although this

use obviates the purpose of defi ning the method as an extension method:

int x = 591;
Console.WriteLine(“x.Negate {0}”, Util.Negate(x));

In the following exercise, you will add an extension method to the int type. This exten-

sion method enables you to convert the value an int variable contains from base 10 to a

 representation of that value in a different number base.

Create an extension method

1. In Visual Studio 2008, open the ExtensionMethod project, located in the \Microsoft

Press\Visual CSharp Step by Step\Chapter 12\ExtensionMethod folder in your

Documents folder.

2. Display the Util.cs fi le in the Code and Text Editor window.

This fi le contains a static class named Util in a namespace named Extensions. The class

is empty apart from the // to do comment. Remember that you must defi ne extension

methods inside a static class.

Create an extension method

 Chapter 12 Working with Inheritance 235

3. Add a public static method to the Util class, named ConvertToBase. The method should

take two parameters: an int parameter named i, prefi xed with the this keyword to indi-

cate that the method is an extension method for the int type, and another ordinary int
parameter named baseToConvertTo. The method will convert the value in i to the base

indicated by baseToConvertTo. The method should return an int containing the con-

verted value.

 The ConvertToBase method should look like this:

static class Util
{
 public static int ConvertToBase(this int i, int baseToConvertTo)
 {
 }
}

4. Add an if statement to the ConvertToBase method that checks that the value of the

baseToConvertTo parameter is between 2 and 10. The algorithm used by this exercise

does not work reliably outside this range of values. Throw an ArgumentException with a

suitable message if the value of baseToConvertTo is outside this range.

 The ConvertToBase method should look like this:

public static int ConvertToBase(this int i, int baseToConvertTo)
{
 if (baseToConvertTo < 2 || baseToConvertTo > 10)
 throw new ArgumentException(“Value cannot be converted to base “ +
 baseToConvertTo.ToString());
}

5. Add the following statements shown in bold to the ConvertToBase method, after the

statement that throws the ArgumentException. This code implements a well-known

 algorithm that converts a number from base 10 to a different number base:

public static int ConvertToBase(this int i, int baseToConvertTo)
{
 ...
 int result = 0;
 int iterations = 0;
 do
 {
 int nextDigit = i % baseToConvertTo;
 result += nextDigit * (int)Math.Pow(10, iterations);
 iterations++;
 i /= baseToConvertTo;
 }
 while (i != 0);
 return result;
}

6. Display the Program.cs fi le in the Code and Text Editor window.

236 Part II Understanding the C# Language

7. Add the following using statement after the using System; statement at the top of the

fi le:

using Extensions;

 This statement brings the namespace containing the Util class into scope. The

ConvertToBase extension method will not be visible in the Program.cs fi le if you do not

perform this task.

8. Add the following statements to the Entrance method of the Program class:

int x = 591;
for (int i = 2; i <= 10; i++)
{
 Console.WriteLine(“{0} in base {1} is {2}”, x, i, x.ConvertToBase(i));
}

 This code creates an int named x and sets it to the value 591. (You could pick any

 integer value you want.) The code then uses a loop to print out the value 591 in all

number bases between 2 and 10. Notice that ConvertToBase appears as an extension

method in IntelliSense when you type the period (.) after x in the Console.WriteLine

statement.

9. On the Debug menu, click Start Without Debugging. Confi rm that the program displays

messages showing the value 591 in the different number bases to the console, like this:

10. Press Enter to close the program.

 Congratulations. You have successfully used inheritance to defi ne a hierarchy of classes,

and you should now understand how to override inherited methods and implement virtual

methods. You have also seen how to add an extension method to an existing type.

 Chapter 12 Working with Inheritance 237
 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 13.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 12 Quick Reference
 To Do this

 Create a derived class from a

base class

Declare the new class name followed by a colon and the name of the

base class. For example:

class Derived : Base
{
 ...
}

 Call a base class constructor as

part of the constructor for an

 inheriting class

Supply a constructor parameter list before the body of the derived class

constructor. For example:

class Derived : Base
{
 ...
 public Derived(int x) : Base(x)
 {
 ...
 }
 ...
}

 Declare a virtual method Use the virtual keyword when declaring the method. For example:

class Mammal
{
 public virtual void Breathe()
 {
 ...
 }
 ...
}

238 Part II Understanding the C# Language
 Implement a method in a derived

class that overrides an inherited vir-

tual method

Use the override keyword when declaring the method in the derived

class. For example:

class Whale : Mammal
{
 public override void Breathe()
 {
 ...
 }
 ...
}

 Defi ne an extension method for a

type

Add a static public method to a static class. The fi rst parameter must be

of the type being extended, preceded by the this keyword. For example:

static class Util
{
 public static int Negate(this int i)
 {
 return –i;
 }
}

 239

Chapter 13

Creating Interfaces and Defi ning
Abstract Classes

 After completing this chapter, you will be able to:

 Defi ne an interface identifying the names of methods.

 Implement an interface in a structure or class by writing the bodies of the methods.

 Capture common implementation details in an abstract class.

 Declare that a class cannot be used as a base class by using the sealed keyword.

 Inheriting from a class is a powerful mechanism, but the real power of inheritance comes

from inheriting from an interface. An interface does not contain any code or data; it just

specifi es the methods and properties that a class that inherits from the interface must pro-

vide. Using an interface enables you to completely separate the names and signatures of the

methods of a class from the method’s implementation.

 Abstract classes are similar in many ways to interfaces except that they can contain code and

data. However, you can specify that certain methods of an abstract class are virtual so that

a class that inherits from the abstract class must provide its own implementation of these

methods. You frequently use abstract classes with interfaces, and together they provide a key

technique enabling you to build extensible programming frameworks, as you will discover in

this chapter.

Understanding Interfaces
 Suppose you want to defi ne a new collection class that enables an application to store

objects in a sequence that depends on the type of objects the collection contains. When you

defi ne the collection class, you do not want to restrict the types of objects that it can hold,

and consequently you don’t know how to order these objects. But you need to provide a way

of sorting these unspecifi ed objects. The question is, how do you provide a method that sorts

objects whose types you do not know when you write the collection class? At fi rst glance,

this problem seems similar to the ToString problem described in Chapter 12, “Working with

Inheritance,” which could be resolved by declaring a virtual method that subclasses of your

collection class can override. However, this is not the case. There is not usually any form of

inheritance relationship between the collection class and the objects that it holds, so a vir-

tual method would not be of much use. If you think for a moment, the problem is that the

way in which the objects in the collection should be ordered is dependent on the type of the

240 Part II Understanding the C# Language
objects themselves, and not on the collection. The solution, therefore, is to require that all

the objects provide a method that the collection can call, enabling the collection to compare

these objects with one another. As an example, look at the CompareTo method shown here:

int CompareTo(object obj)
{
 // return 0 if this instance is equal to obj
 // return < 0 if this instance is less than obj
 // return > 0 if this instance is greater than obj
 ...
}

 The collection class can make use of this method to sort its contents.

 You can defi ne an interface for collectable objects that includes the CompareTo method

and specify that the collection class can collect only classes that implement this interface. In

this way, an interface is similar to a contract. If a class implements an interface, the interface

guarantees that the class contains all the methods specifi ed in the interface. This mechanism

ensures that you will be able to call the CompareTo method on all objects in the collection

and sort them.

 Interfaces enable you to truly separate the “what” from the “how.” The interface tells you

only the name, return type, and parameters of the method. Exactly how the method is imple-

mented is not a concern of the interface. The interface represents how you want an object to

be used, rather than how the usage happens to be implemented.

Interface Syntax
 To declare an interface, you use the interface keyword instead of the class or struct keyword.

Inside the interface, you declare methods exactly as in a class or a structure except that you

never specify an access modifi er (public, private, or protected), and you replace the method

body with a semicolon. Here is an example:

interface IComparable
{
 int CompareTo(object obj);
}

 Tip The Microsoft .NET Framework documentation recommends that you preface the name of

your interfaces with the capital letter I. This convention is the last vestige of Hungarian notation

in C#. Incidentally, the System namespace already defi nes the IComparable interface as shown

here.

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 241
Interface Restrictions
 The essential idea to remember is that an interface never contains any implementation. The

following restrictions are natural consequences of this:

 You’re not allowed to defi ne any fi elds in an interface, not even static ones. A fi eld is an

implementation detail of a class or structure.

 You’re not allowed to defi ne any constructors in an interface. A constructor is also

 considered to be an implementation detail of a class or structure.

 You’re not allowed to defi ne a destructor in an interface. A destructor contains

the statements used to destroy an object instance. (Destructors are described in

 Chapter 14, “Using Garbage Collection and Resource Management.”)

 You cannot specify an access modifi er for any method. All methods in an interface are

implicitly public.

 You cannot nest any types (such as enumerations, structures, classes, or interfaces)

 inside an interface.

 An interface is not allowed to inherit from a structure or a class, although an inter-

face can inherit from another interface. Structures and classes contain implementa-

tion; if an interface were allowed to inherit from either, it would be inheriting some

implementation.

Implementing an Interface
 To implement an interface, you declare a class or structure that inherits from the interface

and implements all the methods specifi ed by the interface. For example, suppose you are de-

fi ning the Mammal hierarchy shown in Chapter 12 but you need to specify that land-bound

mammals provide a method named NumberOfLegs that returns as an int the number of legs

that a mammal has. (Sea-bound mammals do not implement this interface.) You could defi ne

the ILandBound interface that contains this method as follows:

interface ILandBound
{
 int NumberOfLegs();
}

 You could then implement this interface in the Horse class:

class Horse : ILandBound
{
 ...
 int ILandBound.NumberOfLegs()
 {
 return 4;
 }
}

242 Part II Understanding the C# Language
 When you implement an interface, you must ensure that each method matches its

 corresponding interface method exactly, according to the following rules:

 The method names and return types match exactly.

 Any parameters (including ref and out keyword modifi ers) match exactly.

 The method name is prefaced by the name of the interface. This is known as explicit

interface implementation and is a good habit to cultivate.

 All methods implementing an interface must be publicly accessible. However, if you are

using explicit interface implementation, the method should not have an access qualifi er.

 If there is any difference between the interface defi nition and its declared implementation,

the class will not compile.

The Advantages of Explicit Interface Implementations
 Implementing an interface explicitly can seem a little verbose, but it does offer a

 number of advantages that help you to write clearer, more maintainable, and more

predictable code.

 You can implement a method without explicitly specifying the interface name, but this

can lead to some differences in the way the implementation behaves. Some of these

differences can cause confusion. For example, a method defi ned by using explicit in-

terface implementation cannot be declared as virtual, whereas omitting the interface

name allows this behavior.

 It’s possible for multiple interfaces to contain methods with the same names, return

types, and parameters. If a class implements multiple interfaces with methods that have

common signatures, you can use explicit interface implementation to disambiguate the

method implementations. Explicit interface implementation identifi es which methods

in a class belong to which interface. Additionally, the methods for each interface are

publicly accessible, but only through the interface itself. We will look at how to do this

in the upcoming section “Referencing a Class Through Its Interface.”

 In this book, I recommend implementing an interface explicitly wherever possible.

 A class can extend another class and implement an interface at the same time. In this case,

C# does not denote the base class and the interface by using keywords as, for example,

Java does. Instead, C# uses a positional notation. The base class is named fi rst, followed by

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 243
a comma, followed by the interface. The following example defi nes Horse as a class that is a

Mammal but that additionally implements the ILandBound interface:

interface ILandBound
{
 ...
}

class Mammal
{
 ...
}

class Horse : Mammal , ILandBound
{
 ...
}

Referencing a Class Through Its Interface
 In the same way that you can reference an object by using a variable defi ned as a class that

is higher up the hierarchy, you can reference an object by using a variable defi ned as an in-

terface that its class implements. Taking the preceding example, you can reference a Horse

object by using an ILandBound variable, as follows:

Horse myHorse = new Horse(...);
ILandBound iMyHorse = myHorse; // legal

 This works because all horses are land-bound mammals, although the converse is not true,

and you cannot assign an ILandBound object to a Horse variable without casting it fi rst.

 The technique of referencing an object through an interface is useful because it enables you

to defi ne methods that can take different types as parameters, as long as the types imple-

ment a specifi ed interface. For example, the FindLandSpeed method shown here can take any

argument that implements the ILandBound interface:

int FindLandSpeed(ILandBound landBoundMammal)
{
 ...
}

 Note that when referencing an object through an interface, you can invoke only methods

that are visible through the interface.

244 Part II Understanding the C# Language
Working with Multiple Interfaces
 A class can have at most one base class, but it is allowed to implement an unlimited number

of interfaces. A class must still implement all the methods it inherits from all its interfaces.

 If an interface, a structure, or a class inherits from more than one interface, you write the

interfaces in a comma-separated list. If a class also has a base class, the interfaces are listed

after the base class. For example, suppose you defi ne another interface named IGrazable that

contains the ChewGrass method for all grazing animals. You can defi ne the Horse class like

this:

class Horse : Mammal, ILandBound, IGrazable
{
 ...
}

Abstract Classes
 The ILandBound and IGrazable interfaces could be implemented by many different classes,

depending on how many different types of mammals you want to model in your C# ap-

plication. In situations such as this, it’s quite common for parts of the derived classes to

share common implementations. For example, the duplication in the following two classes is

obvious:

class Horse : Mammal, ILandBound, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine(“Chewing grass”);
 // code for chewing grass
 };
}

class Sheep : Mammal, ILandBound, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine(“Chewing grass”);
 // same code as horse for chewing grass
 };
}

 Duplication in code is a warning sign. You should refactor the code to avoid the duplication

and reduce any maintenance costs. The way to achieve this refactoring is to put the common

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 245
implementation into a new class created specifi cally for this purpose. In effect, you can insert

a new class into the class hierarchy. For example:

class GrazingMammal : Mammal, IGrazable
{
 ...
 void IGrazable.ChewGrass()
 {
 Console.WriteLine(“Chewing grass”);
 // common code for chewing grass
 }
}

class Horse : GrazingMammal, ILandBound
{
 ...
}

class Sheep : GrazingMammal, ILandBound
{
 ...
}

 This is a good solution, but there is one thing that is still not quite right: You can actually

create instances of the GrazingMammal class (and the Mammal class for that matter). This

doesn’t really make sense. The GrazingMammal class exists to provide a common default

implementation. Its sole purpose is to be inherited from. The GrazingMammal class is an

 abstraction of common functionality rather than an entity in its own right.

 To declare that creating instances of a class is not allowed, you must explicitly declare that

the class is abstract, by using the abstract keyword. For example:

abstract class GrazingMammal : Mammal, IGrazable
{
 ...
}

 If you try to instantiate a GrazingMammal object, the code will not compile:

GrazingMammal myGrazingMammal = new GrazingMammal(...); // illegal

Abstract Methods
 An abstract class can contain abstract methods. An abstract method is similar in principle to

a virtual method (you met virtual methods in Chapter 12) except that it does not contain a

method body. A derived class must override this method. The following example defi nes the

DigestGrass method in the GrazingMammal class as an abstract method; grazing mammals

might use the same code for chewing grass, but they must provide their own implementation

of the DigestGrass method. An abstract method is useful if it does not make sense to provide

246 Part II Understanding the C# Language
a default implementation in the abstract class and you want to ensure that an inheriting class

provides its own implementation of that method.

abstract class GrazingMammal : Mammal, IGrazable
{
 abstract void DigestGrass();
 ...
}

Sealed Classes
 Using inheritance is not always easy and requires forethought. If you create an interface or an

abstract class, you are knowingly writing something that will be inherited from in the future.

The trouble is that predicting the future is a diffi cult business. With practice and experience,

you can develop the skills to craft a fl exible, easy-to-use hierarchy of interfaces, abstract

classes, and classes, but it takes effort and you also need a solid understanding of the prob-

lem you are modeling. To put it another way, unless you consciously design a class with the

intention of using it as a base class, it’s extremely unlikely that it will function very well as a

base class. C# allows you to use the sealed keyword to prevent a class from being used as a

base class if you decide that it should not be. For example:

sealed class Horse : GrazingMammal, ILandBound
{
 ...
}

 If any class attempts to use Horse as a base class, a compile-time error will be generated.

Note that a sealed class cannot declare any virtual methods and that an abstract class cannot

be sealed.

 Note A structure is implicitly sealed. You can never derive from a structure.

Sealed Methods
 You can also use the sealed keyword to declare that an individual method in an unsealed

class is sealed. This means that a derived class cannot then override the sealed method. You

can seal only an override method. (You declare the method as sealed override.) You can think

of the interface, virtual, override, and sealed keywords as follows:

 An interface introduces the name of a method.

 A virtual method is the fi rst implementation of a method.

 An override method is another implementation of a method.

 A sealed method is the last implementation of a method.

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 247
Implementing an Extensible Framework
In the following exercise, you will familiarize yourself with a hierarchy of interfaces and

classes that together implement a simple framework for reading a C# source fi le and clas-

sifying its contents into tokens (identifi ers, keywords, operators, and so on). This framework

performs some of the tasks that a typical compiler might perform. The framework provides a

mechanism for “visiting” each token in turn, to perform specifi c tasks. For example, you could

create:

 A displaying visitor class that displays the source fi le in a rich text box.

 A printing visitor class that converts tabs to spaces and aligns braces correctly.

 A spelling visitor class that checks the spelling of each identifi er.

 A guideline visitor class that checks that public identifi ers start with a capital letter and

that interfaces start with the capital letter I.

 A complexity visitor class that monitors the depth of the brace nesting in the code.

 A counting visitor class that counts the number of lines in each method, the number of

members in each class, and the number of lines in each source fi le.

 Note This framework implements the Visitor pattern, fi rst documented by Erich Gamma,

Richard Helm, Ralph Johnson, and John Vlissides in Design Patterns: Elements of Reusable
 Object-Oriented Software (Addison Wesley Longman, 1995).

Understand the inheritance hierarchy and its purpose

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the Tokenizer project, located in the \Microsoft Press\Visual CSharp Step by Step\

Chapter 13\Tokenizer folder in your Documents folder.

 3. Display the SourceFile.cs fi le in the Code and Text Editor window.

 The SourceFile class contains a private array fi eld named tokens that looks like this and

is essentially a hard-coded version of a source fi le that has already been parsed and

tokenized:

private IVisitableToken[] tokens =
{
 new KeywordToken(“using”),
 new WhitespaceToken(“ “),
 new IdentifierToken(“System”),
 new PunctuatorToken(“;”),
 ...
};

Understand the inheritance hierarchy and its purpose

248 Part II Understanding the C# Language

 The tokens array contains a sequence of objects that all implement the IVisitableToken

interface (which is explained shortly). Together, these tokens simulate the tokens of a

simple “hello, world” source fi le. (A complete compiler would parse a source fi le, iden-

tify the type of each token, and dynamically create the tokens array. Each token would

be created using the appropriate class type, typically through a switch statement.) The

SourceFile class also contains a public method named Accept. The SourceFile.Accept
method has a single parameter of type ITokenVisitor. The body of the SourceFile.Accept
method iterates through the tokens, calling their Accept methods. The Token.Accept
method will process the current token in some way, according to the type of the token:

public void Accept(ITokenVisitor visitor)
{
 foreach (IVisitableToken token in tokens)
 {
 token.Accept(visitor);
 }
}

 In this way, the visitor parameter “visits” each token in sequence. The visitor parameter

is an instance of some visitor class that processes the token that the visitor object visits.

When the visitor object processes the token, the token’s own class methods come into

play.

4. Display the IVisitableToken.cs fi le in the Code and Text Editor window.

 This fi le defi nes the IVisitableToken interface. The IVisitableToken interface inherits from

two other interfaces, the IVisitable interface and the IToken interface, but does not de-

fi ne any methods of its own:

interface IVisitableToken : IVisitable, IToken
{
}

5. Display the IVisitable.cs fi le in the Code and Text Editor window.

 This fi le defi nes the IVisitable interface. The IVisitable interface declares a single method

named Accept:

interface IVisitable
{
 void Accept(ITokenVisitor visitor);
}

 Each object in the array of tokens inside the SourceFile class is accessed using the

IVisitableToken interface. The IVisitableToken interface inherits the Accept method, and

each token implements the Accept method. (Recall that each token must implement the

Accept method because any class that inherits from an interface must implement all the

methods in the interface.)

6. On the View menu, click Class View.

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 249

 The Class View window appears in the pane used by Solution Explorer. This window

 displays the namespaces, classes, and interfaces defi ned by the project.

7. In the Class View window, expand the Tokenizer project, and then expand the {}
Tokenizer namespace. The classes and interfaces in this namespace are listed. Notice the

different icons used to distinguish interfaces from classes.

 Expand the IVisitableToken interface, and then expand the Base Types node. The

 interfaces that the IVisitableToken interface extends (IToken and IVisitable) are displayed,

like this:

8. In the Class View window, right-click the Identifi erToken class, and then click Go To
Defi nition to display this class in the Code and Text Editor window. (It is actually located

in SourceFile.cs.)

 The Identifi erToken class inherits from the DefaultTokenImpl abstract class and the

IVisitableToken interface. It implements the Accept method as follows:

void IVisitable.Accept(ITokenVisitor visitor)
{
 visitor.VisitIdentifier(this.ToString());
}

 Note The VisitIdentifi er method processes the token passed to it as a parameter in

whatever way the visitor object sees fi t. In the following exercise, you will provide an

implementation of the VisitIdentifi er method that simply renders the token in a particular

color.

 The other token classes in this fi le follow a similar pattern.

250 Part II Understanding the C# Language

9. In the Class View window, right-click the ITokenVisitor interface, and then click Go To
Defi nition. This action displays the ITokenVisitor.cs source fi le in the Code and Text Editor
window.

 The ITokenVisitor interface contains one method for each type of token. The result

of this hierarchy of interfaces, abstract classes, and classes is that you can create a

class that implements the ITokenVisitor interface, create an instance of this class, and

pass this instance as the parameter to the Accept method of a SourceFile object. For

example:

class MyVisitor : ITokenVisitor
{
 public void VisitIdentifier(string token)
 {
 ...
 }

 public void VisitKeyword(string token)
 {
 ...
 }
}

...

class Program
{
 static void Main()
 {
 SourceFile source = new SourceFile();
 MyVisitor visitor = new MyVisitor();
 source.Accept(visitor);
 }
}

The code in the Main method will result in each token in the source fi le calling the

matching method in the visitor object.

In the following exercise, you will create a class that derives from the ITokenVisitor interface

and whose implementation displays the tokens from our hard-coded source fi le in a rich text

box in color syntax (for example, keywords in blue) by using the “visitor” mechanism.

Write the ColorSyntaxVisitor class

1. In Solution Explorer (click the Solution Explorer tab below the Class View window),

 double-click Window1.xaml to display the Color Syntax form in the Design View window.

Write the ColorSyntaxVisitor classr

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 251

 You will use this form to test the framework. This form contains a button for opening a

fi le to be tokenized and a rich text box for displaying the tokens:

 The rich text box in the middle of the form is named codeText, and the button is named

Open.

 Note A rich text box is like an ordinary text box except that it can display formatted

 content rather than simple, unformatted text.

2. Right-click the form, and then click View Code to display the code for the form in the

Code and Text Editor window.

3. Locate the openClick method.

 This method is called when the user clicks the Open button. You must implement this

method so that it displays the tokens defi ned in the SourceFile class in the rich text box,

by using a ColorSyntaxVisitor object. Add the code shown here in bold to the openClick

method:

private void openClick(object sender, RoutedEventArgs e)
{
 SourceFile source = new SourceFile();
 ColorSyntaxVisitor visitor = new ColorSyntaxVisitor(codeText);
 source.Accept(visitor);
}

 Remember that the Accept method of the SourceFile class iterates through all the

tokens, processing each one by using the specifi ed visitor. In this case, the visitor is the

ColorSyntaxVisitor object, which will render each token in color.

 Note In the current implementation, the Open button uses just data that is hard-coded in

the SourceFile class. In a fully functional implementation, the Open button would prompt

the user for the name of a text fi le and then parse and tokenize it into the format shown in

the SourceFile class before calling the Accept method.

252 Part II Understanding the C# Language

4. Open the ColorSyntaxVisitor.cs fi le in the Code and Text Editor window.

 The ColorSyntaxVisitor class has been partially written. This class implements the

ITokenVisitor interface and already contains two fi elds and a constructor to initialize

a reference to the rich text box, named target, used to display tokens. Your task is to

implement the methods inherited from the ITokenVisitor interface and also create a

method that will write the tokens to the rich text box.

5. In the Code and Text Editor window, add the Write method to the ColorSyntaxVisitor
class exactly as follows:

private void Write(string token, SolidColorBrush color)
{
 target.AppendText(token);
 int offsetToStartOfToken = -1 * token.Length - 2;
 int offsetToEndOfToken = -2;
 TextPointer start =
 target.Document.ContentEnd.GetPositionAtOffset(offsetToStartOfToken);
 TextPointer end =
 target.Document.ContentEnd.GetPositionAtOffset(offsetToEndOfToken);
 TextRange text = new TextRange(start, end);
 text.ApplyPropertyValue(TextElement.ForegroundProperty, color);
}

 This code appends each token to the rich text box identifi ed by the target variable us-

ing the specifi ed color. The two TextPointer variables, start and end, indicate where the

new token starts and ends in the rich text box control. (Don’t worry about how these

positions are calculated. If you’re wondering, they are negative values because they are

offset from the ContentEnd property.) The TextRange variable text obtains a reference

to the portion of the text in the rich text box control displaying the newly appended

token. The ApplyPropertyValue method sets the color of this text to the color specifi ed

as the second parameter.

 Each of the various “visit” methods in the ColorSyntaxVisitor class will call this Write

method with an appropriate color to display color-coded results.

6. In the Code and Text Editor window, add the following methods that implement the

ITokenVisitor interface to the ColorSyntaxVisitor class. Specify Brushes.Blue for key-

words, Brushes.Green for StringLiterals, and Brushes.Black for all other methods.

(Brushes is a class defi ned in the System.Windows.Media namespace.) Notice that this

code implements the interface explicitly; it qualifi es each method with the interface

name.

void ITokenVisitor.VisitComment(string token)
{
 Write(token, Brushes.Black);
}

void ITokenVisitor.VisitIdentifier(string token)
{
 Write(token, Brushes.Black);

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 253

}

void ITokenVisitor.VisitKeyword(string token)
{
 Write(token, Brushes.Blue);
}

void ITokenVisitor.VisitOperator(string token)
{
 Write(token, Brushes.Black);
}

void ITokenVisitor.VisitPunctuator(string token)
{
 Write(token, Brushes.Black);
}

void ITokenVisitor.VisitStringLiteral(string token)
{
 Write(token, Brushes.Green);
}

void ITokenVisitor.VisitWhitespace(string token)
{
 Write(token, Brushes.Black);
}

 It is the class type of the token in the token array that determines which of these

 methods is called through the token’s override of the Token.Accept method.

 Tip You can either type these methods into the Code and Text Editor window directly or

use Visual Studio 2008 to generate default implementations for each one and then modify

the method bodies with the appropriate code. To do this, right-click the ITokenVisitor iden-

tifi er in the class defi nition sealed class, ColorSyntaxVisitor : ITokenVisitor. On the shortcut

menu, point to Implement Interface and then click Implement Interface Explicitly. Each

method will contain a statement that throws a NotImplementedException. Replace this

code with that shown here.

7. On the Build menu, click Build Solution. Correct any errors, and rebuild if necessary.

8. On the Debug menu, click Start Without Debugging.

 The Color Syntax form appears.

9. On the form, click Open.

254 Part II Understanding the C# Language

 The dummy code is displayed in the rich text box, with keywords in blue and string

 literals in green.

10. Close the form, and return to Visual Studio 2008.

Generating a Class Diagram
 The Class View window is useful for displaying and navigating the hierarchy of classes

and interfaces in a project. Visual Studio 2008 also enables you to generate class dia-

grams that depict this same information graphically. (You can also use a class diagram

to add new classes and interfaces and to defi ne methods, properties, and other class

members.)

 Note This feature is not available in Visual C# 2008 Express Edition.

 To generate a new class diagram, on the Project menu, click Add New Item. In the Add
New Item dialog box, select the Class Diagram template, and then click Add. This action

will generate an empty diagram, and you can create new types by dragging items from

the Class Designer category in the Toolbox. You can generate a diagram of all exist-

ing classes by dragging them individually from the Class View window or by dragging

the namespace to which they belong. The diagram shows the relationships between

the classes and interfaces, and you can expand the defi nition of each class to show its

 contents. You can drag the classes and interfaces around to make the diagram more

readable, as shown in the image on the following page.

 Chapter 13 Creating Interfaces and Defi ning Abstract Classes 255
Summarizing Keyword Combinations
 The following table summarizes the various valid (yes), invalid (no), and mandatory (required)

keyword combinations when creating classes and interfaces.

 Keyword Interface Abstract class Class Sealed class Structure

 abstract no yes no no no

 new yes1 yes yes yes no2

 override no yes yes yes no3

 private no yes yes yes yes

 protected no yes yes yes no4

 public no yes yes yes yes

 sealed no yes yes required no

 virtual no yes yes no no

 1 An interface can extend another interface and introduce a new method with the same signature.
 2 A structure implicitly derives from System.Object, which contains methods that the structure can hide.
 3 A structure implicitly derives from System.Object, which contains no virtual methods.
 4 A structure is implicitly sealed and cannot be derived from.

256 Part II Understanding the C# Language
 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 14.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 13 Quick Reference
 To Do this

 Declare an interface Use the interface keyword. For example:

interface IDemo
{
 string Name();
 string Description();
}

 Implement an interface Declare a class using the same syntax as class inheritance, and then

 implement all the member functions of the interface. For example:

class Test : IDemo
{
 public string IDemo.Name()
 {
 ...
 }

 public string IDemo.Description()
 {
 ...
 }
}

 Create an abstract class that

can be used only as a base class,

containing abstract methods

Declare the class using the abstract keyword. For each abstract method,

declare the method with the abstract keyword and without a method

body. For example:

abstract class GrazingMammal
{
 abstract void DigestGrass();
 ...
}

 Create a sealed class that

 cannot be used as a base class

Declare the class using the sealed keyword. For example:

sealed class Horse

{
 ...
}

Chapter 14

Using Garbage Collection and
Resource Management

 After completing this chapter, you will be able to:

 Manage system resources by using garbage collection.

 Write code that runs when an object is fi nalized by using a destructor.

 Release a resource at a known point in time in an exception-safe manner by writing

a try/fi nally statement.

 Release a resource at a known point in time in an exception-safe manner by writing

a using statement.

 You have seen in earlier chapters how to create variables and objects, and you should

 understand how memory is allocated when you create variables and objects. (In case you

don’t remember, value types are created on the stack, and reference types are given memory

from the heap.) Computers do not have infi nite amounts of memory, so memory must be

reclaimed when a variable or an object no longer needs it. Value types are destroyed and

their memory reclaimed when they go out of scope. That’s the easy bit. How about refer-

ence types? You create an object by using the new keyword, but how and when is an object

 destroyed? That’s what this chapter is all about.

The Life and Times of an Object
 First, let’s recap what happens when you create an object.

 You create an object by using the new operator. The following example creates a new

 instance of the TextBox class. (This class is provided as part of the Microsoft .NET Framework.)

TextBox message = new TextBox(); // TextBox is a reference type

 From your point of view, the new operation is atomic, but underneath, object creation is

 really a two-phase process:

 1. The new operation allocates a chunk of raw memory from the heap. You have no

 control over this phase of an object’s creation.

 2. The new operation converts the chunk of raw memory to an object; it has to initialize

the object. You can control this phase by using a constructor.
 257

258 Part II Understanding the C# Language
 Note C++ programmers should note that in C#, you cannot overload new to control

allocation.

 After you have created an object, you can access its members by using the dot operator (.).

For example, the TextBox class includes a member named Text that you can access like this:

message.Text = “People of Earth, your attention please”;

 You can make other reference variables refer to the same object:

TextBox messageRef = message;

 How many references can you create to an object? As many as you want! This has an im-

pact on the lifetime of an object. The runtime has to keep track of all these references. If the

variable message disappears (by going out of scope), other variables (such as messageRef)
might still exist. The lifetime of an object cannot be tied to a particular reference variable. An

object can be destroyed and its memory reclaimed only when all the references to it have

disappeared.

 Note C++ programmers should note that C# does not have a delete operator. The runtime

controls when an object is destroyed.

 Like object creation, object destruction is a two-phase process. The two phases of

 destruction exactly mirror the two phases of creation:

 1. The runtime has to perform some tidying up. You can control this by writing a

destructor.

 2. The runtime has to return the memory previously belonging to the object back to the

heap; the memory that the object lived in has to be deallocated. You have no control

over this phase.

 The process of destroying an object and returning memory back to the heap is known as

garbage collection.

Writing Destructors
 You can use a destructor to perform any tidying up required when an object is garbage

 collected. A destructor is a special method, a little like a constructor, except that the runtime

calls it after the last reference to an object has disappeared. The syntax for writing a destruc-

tor is a tilde (~) followed by the name of the class. For example, here’s a simple class that

 Chapter 14 Using Garbage Collection and Resource Management 259
counts the number of existing instances by incrementing a static variable in the constructor

and decrementing the same static variable in the destructor:

class Tally
{
 public Tally()
 {
 this.instanceCount++;
 }

 ~Tally()
 {
 this.instanceCount--;
 }

 public static int InstanceCount()
 {
 return this.instanceCount;
 }
 ...
 private static int instanceCount = 0;
}

 There are some very important restrictions that apply to destructors:

 Destructors apply only to reference types. You cannot declare a destructor in a value

type, such as a struct.

struct Tally
{
 ~Tally() { ... } // compile-time error
}

 You cannot specify an access modifi er (such as public) for a destructor. You never call

the destructor in your own code—part of the the runtime called the garbage collector
does this for you.

public ~Tally() { ... } // compile-time error

 You never declare a destructor with parameters, and the destructor cannot take any

parameters. Again, this is because you never call the destructor yourself.

~Tally(int parameter) { ... } // compile-time error

 The compiler automatically translates a destructor into an override of the Object.Finalize

method. The compiler translates the following destructor:

class Tally
{
 ~Tally() { ... }
}

260 Part II Understanding the C# Language
 into this:

class Tally
{
 protected override void Finalize()
 {
 try { ... }
 finally { base.Finalize(); }
 }
}

 The compiler-generated Finalize method contains the destructor body inside a try block,

 followed by a fi nally block that calls the Finalize method in the base class. (The try and fi nally

keywords are described in Chapter 6, “Managing Errors and Exceptions.”) This ensures that a

destructor always calls its base class destructor. It’s important to realize that only the com-

piler can make this translation. You can’t override Finalize yourself, and you can’t call Finalize

yourself.

Why Use the Garbage Collector?
 You should now understand that you can never destroy an object yourself by using C# code.

There just isn’t any syntax to do it, and there are good reasons why the designers of C# de-

cided to forbid you from doing it. If it were your responsibility to destroy objects, sooner or

later one of the following situations would arise:

 You’d forget to destroy the object. This would mean that the object’s destructor (if it

had one) would not be run, tidying up would not occur, and memory would not be

deallocated back to the heap. You could quite easily run out of memory.

 You’d try to destroy an active object. Remember, objects are accessed by reference.

If a class held a reference to a destroyed object, it would be a dangling reference. The

dangling reference would end up referring either to unused memory or possibly to a

completely different object in the same piece of memory. Either way, the outcome of

using a dangling reference would be undefi ned at best or a security risk at worst. All

bets would be off.

 You’d try and destroy the same object more than once. This might or might not be

 disastrous, depending on the code in the destructor.

 These problems are unacceptable in a language like C#, which places robustness and security

high on its list of design goals. Instead, the garbage collector is responsible for destroying

objects for you. The garbage collector makes the following guarantees:

 Every object will be destroyed and its destructors run. When a program ends, all

 outstanding objects will be destroyed.

 Every object will be destroyed exactly once.

 Chapter 14 Using Garbage Collection and Resource Management 261
 Every object will be destroyed only when it becomes unreachable—that is, when no

references refer to the object.

 These guarantees are tremendously useful and free you, the programmer, from tedious

housekeeping chores that are easy to get wrong. They allow you to concentrate on the logic

of the program itself and be more productive.

 When does garbage collection occur? This might seem like a strange question. After all,

 surely garbage collection occurs when an object is no longer needed. Well, it does, but not

necessarily immediately. Garbage collection can be an expensive process, so the runtime col-

lects garbage only when it needs to (when it thinks available memory is starting to run low),

and then it collects as much as it can. Performing a few large sweeps of memory is more

 effi cient than performing lots of little dustings!

 Note You can invoke the garbage collector in a program by calling the static method System.
GC.Collect. However, except in a few cases, this is not recommended. The System.GC.Collect
method starts the garbage collector, but the process runs asynchronously, and when the method

call is complete, you still don’t know whether your objects have been destroyed. Let the runtime

decide when it is best to collect garbage!

 One feature of the garbage collector is that you don’t know, and should not rely upon, the

order in which objects will be destroyed. The fi nal point to understand is arguably the most

important: destructors do not run until objects are garbage collected. If you write a destruc-

tor, you know it will be executed, but you just don’t know when.

How Does the Garbage Collector Work?
 The garbage collector runs in its own thread and can execute only at certain times—typically,

when your application reaches the end of a method. While it runs, other threads running in

your application will temporarily halt. This is because the garbage collector might need to

move objects around and update object references; it cannot do this while objects are in use.

The steps that the garbage collector takes are as follows:

 1. It builds a map of all reachable objects. It does this by repeatedly following reference

fi elds inside objects. The garbage collector builds this map very carefully and makes

sure that circular references do not cause an infi nite recursion. Any object not in this

map is deemed to be unreachable.

 2. It checks whether any of the unreachable objects has a destructor that needs to be run

(a process called fi nalization). Any unreachable object that requires fi nalization is placed

in a special queue called the freachable queue (pronounced “F-reachable”).

262 Part II Understanding the C# Language
 3. It deallocates the remaining unreachable objects (those that don’t require fi nalization)

by moving the reachable objects down the heap, thus defragmenting the heap and

freeing memory at the top of the heap. When the garbage collector moves a reachable

object, it also updates any references to the object.

 4. At this point, it allows other threads to resume.

 5. It fi nalizes the unreachable objects that require fi nalization (now in the freachable

queue) by its own thread.

Recommendations
 Writing classes that contain destructors adds complexity to your code and to the garbage

collection process and makes your program run more slowly. If your program does not con-

tain any destructors, the garbage collector does not need to place unreachable objects in

the freachable queue and fi nalize them. Clearly, not doing something is faster than doing it.

Therefore, try to avoid using destructors except when you really need them. For example,

consider a using statement instead. (See the section “The using Statement” later in this

chapter.)

 You need to be very careful when you write a destructor. In particular, you need to be aware

that, if your destructor calls other objects, those other objects might have already had their

destructor called by the garbage collector. Remember that the order of fi nalization is not

guaranteed. Therefore, ensure that destructors do not depend on one another or overlap

with one another. (Don’t have two destructors that try to release the same resource, for

example.)

Resource Management
 Sometimes it’s inadvisable to release a resource in a destructor; some resources are just too

valuable to lie around waiting for an arbitrary length of time until the garbage collector ac-

tually releases them. Scarce resources need to be released, and they need to be released as

soon as possible. In these situations, your only option is to release the resource yourself. You

can achieve this by creating a disposal method. A disposal method is a method that explicitly

disposes of a resource. If a class has a disposal method, you can call it and control when the

resource is released.

 Note The term disposal method refers to the purpose of the method rather than its name. A

disposal method can be named using any valid C# identifi er.

 Chapter 14 Using Garbage Collection and Resource Management 263
Disposal Methods
 An example of a class that implements a disposal method is the TextReader class from the

System.IO namespace. This class provides a mechanism to read characters from a sequen-

tial stream of input. The TextReader class contains a virtual method named Close, which

closes the stream. The StreamReader class (which reads characters from a stream, such as an

open fi le) and the StringReader class (which reads characters from a string) both derive from

TextReader, and both override the Close method. Here’s an example that reads lines of text

from a fi le by using the StreamReader class and then displays them on the screen:

TextReader reader = new StreamReader(filename);
string line;
while ((line = reader.ReadLine()) != null)
{
 Console.WriteLine(line);
}
reader.Close();

 The ReadLine method reads the next line of text from the stream into a string. The ReadLine

method returns null if there is nothing left in the stream. It’s important to call Close when you

have fi nished with reader to release the fi le handle and associated resources. However, there

is a problem with this example: it’s not exception-safe. If the call to ReadLine or WriteLine

throws an exception, the call to Close will not happen; it will be bypassed. If this happens of-

ten enough, you will run out of fi le handles and be unable to open any more fi les.

Exception-Safe Disposal
 One way to ensure that a disposal method (such as Close) is always called, regardless of

whether there is an exception, is to call the disposal method inside a fi nally block. Here’s the

preceding example coded using this technique:

TextReader reader = new StreamReader(filename);
try
{
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
}
finally
{
 reader.Close();
}

264 Part II Understanding the C# Language
 Using a fi nally block like this works, but it has several drawbacks that make it a less than ideal

solution:

 It quickly gets unwieldy if you have to dispose of more than one resource. (You end up

with nested try and fi nally blocks.)

 In some cases, you might have to modify the code. (For example, you might need to

reorder the declaration of the resource reference, remember to initialize the reference

to null, and remember to check that the reference isn’t null in the fi nally block.)

 It fails to create an abstraction of the solution. This means that the solution is hard to

understand and you must repeat the code everywhere you need this functionality.

 The reference to the resource remains in scope after the fi nally block. This means that

you can accidentally try to use the resource after it has been released.

 The using statement is designed to solve all these problems.

The using Statement
 The using statement provides a clean mechanism for controlling the lifetimes of resources.

You can create an object, and this object will be destroyed when the using statement block

fi nishes.

 Important Do not confuse the using statement shown in this section with the using directive

that brings a namespace into scope. It is unfortunate that the same keyword has two different

meanings.

 The syntax for a using statement is as follows:

using (type variable = initialization)
{
 StatementBlock
}

 Here is the best way to ensure that your code always calls Close on a TextReader:

using (TextReader reader = new StreamReader(filename))
{
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
}

 Chapter 14 Using Garbage Collection and Resource Management 265
 This using statement is precisely equivalent to the following transformation:

{
 TextReader reader = new StreamReader(filename);
 try
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 Console.WriteLine(line);
 }
 }
 finally
 {
 if (reader != null)
 {
 ((IDisposable)reader).Dispose();
 }
 }
}

 Note The using statement introduces its own block for scoping purposes. This arrangement means

that the variable you declare in a using statement automatically goes out of scope at the end of the

embedded statement and you cannot accidentally attempt to access a disposed resource.

 The variable you declare in a using statement must be of a type that implements the

IDisposable interface. The IDisposable interface lives in the System namespace and contains

just one method, named Dispose:

namespace System
{
 interface IDisposable
 {
 void Dispose();
 }
}

 It just so happens that the StreamReader class implements the IDisposable interface, and its

Dispose method calls Close to close the stream. You can employ a using statement as a clean,

exception-safe, and robust way to ensure that a resource is always released. This approach

solves all of the problems that existed in the manual try/fi nally solution. You now have a

 solution that:

 Scales well if you need to dispose of multiple resources.

 Doesn’t distort the logic of the program code.

 Abstracts away the problem and avoids repetition.

 Is robust. You can’t use the variable declared inside the using statement (in this case,

reader) after the using statement has ended because it’s not in scope anymore—you’ll

get a compile-time error.

266 Part II Understanding the C# Language
Calling the Dispose Method from a Destructor
 When writing a class, should you write a destructor or implement the IDisposable interface? A

call to a destructor will happen, but you just don’t know when. On the other hand, you know

exactly when a call to the Dispose method happens, but you just can’t be sure that it will ac-

tually happen, because it relies on the programmer remembering to write a using statement.

However, it is possible to ensure that the Dispose method always runs by calling it from the

destructor. This acts as a useful backup. You might forget to call the Dispose method, but at

least you can be sure that it will be called, even if it’s only when the program shuts down.

Here’s an example of how to do this:

class Example : IDisposable
{
 ...
 ~Example()
 {
 Dispose();
 }

 public virtual void Dispose()
 {
 if (!this.disposed)
 {
 try {
 // release scarce resource here
 }
 finally {
 this.disposed = true;
 GC.SuppressFinalize(this);
 }
 }
 }

 public void SomeBehavior() // example method
 {
 checkIfDisposed();
 ...
 }
 ...
 private void checkIfDisposed()
 {
 if (this.disposed)
 {
 throw new ObjectDisposedException(“Example: object has been disposed”);
 }
 }

 private Resource scarce;
 private bool disposed = false;
}

 Chapter 14 Using Garbage Collection and Resource Management 267
Notice the following features of the Example class:

 The class implements the IDisposable interface.

 The destructor calls Dispose.

 The Dispose method is public and can be called at any time.

 The Dispose method can safely be called multiple times. The variable disposed indicates

whether the method has already been run. The scarce resource is released only the fi rst

time the method runs.

 The Dispose method calls the static GC.SuppressFinalize method. This method stops

the garbage collector from calling the destructor on this object, because the object has

now been fi nalized.

 All the regular methods of the class (such as SomeBehavior) check to see whether the

object has already been disposed. If it has, they throw an exception.

Making Code Exception-Safe
In the following exercise, you will rewrite a small piece of code to make the code exception-

safe. The code opens a text fi le, reads its contents one line at a time, writes these lines to a

text box on a form on the screen, and then closes the text fi le. However, if an exception arises

as the fi le is read or as the lines are written to the text box, the call to close the text fi le will

be bypassed. You will rewrite the code to use a using statement instead, ensuring that the

code is exception-safe.

Write a using statement

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the UsingStatement project, located in the \Microsoft Press\Visual CSharp Step by

Step\Chapter 14\UsingStatement folder in your Documents folder.

 3. On the Debug menu, click Start Without Debugging.

A Windows Presentation Foundation (WPF) form appears.

 4. On the form, click Open File.

 5. In the Open dialog box, move to the \Microsoft Press\Visual CSharp Step by Step\

Chapter 14\UsingStatement\UsingStatement folder in your Documents folder, and

 select the Window1.xaml.cs source fi le.

This is the source fi le for the application itself.

Write a using statement

268 Part II Understanding the C# Language

6. Click Open.

 The contents of the fi le are displayed in the form, as shown here:

7. Close the form to return to Visual Studio 2008.

8. Open the Window1.xaml.cs fi le in the Code and Text Editor window, and then locate the

openFileDialogFileOk method.

 The method looks like this:

private void openFileDialogFileOk(object sender,
System.ComponentModel.CancelEventArgs e)
{
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 fileName.Text = src.Name;
 source.Clear();

 TextReader reader = new StreamReader(fullPathname);
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 source.Text += line + “\n”;
 }
 reader.Close();
}

 Chapter 14 Using Garbage Collection and Resource Management 269

 The variables fi leName, openFileDialog, and source are three private fi elds of the

Window1 class. The problem with this code is that the call to reader.Close is not guaran-

teed to execute. If an exception occurs after opening the fi le, the method will terminate

with an exception, but the fi le will remain open until the application fi nishes.

9. Modify the openFileDialogFileOk method, and wrap the code that processes the fi le in a

using statement (including opening and closing braces), as shown in bold here. Remove

the statement that closes the TextReader object.

private void openFileDialogFileOk(object sender,
System.ComponentModel.CancelEventArgs e)
{
 string fullPathname = openFileDialog.FileName;
 FileInfo src = new FileInfo(fullPathname);
 fileName.Text = src.Name;
 source.Clear();
 using (TextReader reader = new StreamReader(fullPathname))
 {
 string line;
 while ((line = reader.ReadLine()) != null)
 {
 source.Text += line + “\n”;
 }
 }
}

 You no longer need to call reader.Close because it will be invoked automatically by

the Dispose method of the StreamReader class when the using statement completes.

This applies whether the using statement fi nishes naturally or terminates because of an

exception.

10. On the Debug menu, click Start Without Debugging.

11. Verify that the application works as before, and then close the form.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 15.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

270 Part II Understanding the C# Language
Chapter 14 Quick Reference
 To Do this

 Write a destructor Write a method whose name is the same as the name of the class and is pre-

fi xed with a tilde (~). The method must not have an access modifi er (such as

public) and cannot have any parameters or return a value. For example:

class Example
{
 ~Example()
 {
 ...
 }
}

 Call a destructor You can’t call a destructor. Only the garbage collector can call a destructor.

 Force garbage collection

(not recommended)

Call System.GC.Collect.

 Release a resource at a

known point in time (but at

the risk of memory leaks if

an exception interrupts the

execution)

Write a disposal method (a method that disposes of a resource) and call it

explicitly from the program. For example:

class TextReader
{
 ...
 public virtual void Close()
 {
 ...
 }
}

class Example
{
 void Use()
 {
 TextReader reader = ...;
 // use reader
 reader.Close();
 }
}

 Chapter 14 Using Garbage Collection and Resource Management 271
 Release a resource at a

known point in time in an

exception-safe manner (the

recommended approach)

Release the resource with a using statement. For example:

class TextReader : IDisposable
{
 ...
 public virtual void Dispose()
 {
 // calls Close
 }
 public virtual void Close()
 {
 ...
 }
}

class Example
{
 void Use()
 {
 using (TextReader reader = ...)
 {
 // use reader
 }
 }
}

Microsoft Visual C# 2008 Step by Step

Part III

Creating Components
In this part:
Chapter 15. Implementing Properties to Access Fields . 275
Chapter 16. Using Indexers . 295
Chapter 17. Interrupting Program Flow and Handling Events. 311
Chapter 18. Introducing Generics . 333
Chapter 19. Enumerating Collections . 355
Chapter 20. Querying In-Memory Data By Using Query Expressions 371
Chapter 21. Operator Overloading. 395
 273

Chapter 15

Implementing Properties to
Access Fields

 After completing this chapter, you will be able to:

 Encapsulate logical fi elds by using properties.

 Control read access to properties by declaring get accessors.

 Control write access to properties by declaring set accessors.

 Create interfaces that declare properties.

 Implement interfaces containing properties by using structures and classes.

 Generate properties automatically based on fi eld defi nitions.

 Use properties to initialize objects.

 The fi rst two parts of this book have introduced the core syntax of the C# language and have

shown you how to use C# to build new types using structures, enumerations, and classes. You

have also seen how the runtime manages the memory used by variables and objects when

a program runs, and you should now understand the life cycle of C# objects. The chapters

in Part III, “Creating Components,” build on this information, showing you how to use C#

to create reusable components—functional classes that you can reuse in many different

applications.

 This chapter looks at how to defi ne and use properties to hide fi elds in a class. Previous

 chapters have emphasized that you should make the fi elds in a class private and provide

methods to store values in them and to retrieve their values. This approach provides safe

and controlled access to fi elds and enables you to encapsulate additional logic and rules

concerning the values that are permitted. However, the syntax for accessing a fi eld in this

way is unnatural. When you want to read or write a variable, you normally use an assignment

statement, so calling a method to achieve the same effect on a fi eld (which is, after all, just a

variable) feels a little clumsy. Properties are designed to alleviate this awkwardness.
 275

276 Part III Creating Components
Implementing Encapsulation by Using Methods
 First let’s recap the original motivation for using methods to hide fi elds.

 Consider the following structure that represents a position on a computer screen as a pair of

coordinates, x and y. Assume that the range of valid values for the x-coordinate lies between

0 and 1280 and the range of valid values for the y-coordinate lies between 0 and 1024:

struct ScreenPosition
{
 public ScreenPosition(int x, int y)
 {
 this.X = rangeCheckedX(x);
 this.Y = rangeCheckedY(y);
 }

 public int X;
 public int Y;

 private static int rangeCheckedX(int x)
 {
 if (x < 0 || x > 1280)
 {
 throw new ArgumentOutOfRangeException(“X”);
 }
 return x;
 }

 private static int rangeCheckedY(int y)
 {
 if (y < 0 || y > 1024)
 {
 throw new ArgumentOutOfRangeException(“Y”);
 }
 return y;
 }
}

 One problem with this structure is that it does not follow the golden rule of encapsulation—

that is, it does not keep its data private. Public data is a bad idea because its use cannot be

checked and controlled. For example, the ScreenPosition constructor range checks its param-

eters, but no such check can be done on the “raw” access to the public fi elds. Sooner or later

(probably sooner), either X or Y will stray out of its acceptable range, possibly as the result of

a programming error:

ScreenPosition origin = new ScreenPosition(0, 0);
...
int xpos = origin.X;
origin.Y = -100; // oops

 Chapter 15 Implementing Properties to Access Fields 277
 The common way to solve this problem is to make the fi elds private and add an accessor

method and a modifi er method to respectively read and write the value of each private fi eld.

The modifi er methods can then range-check new fi eld values. For example, the following

code contains an accessor (GetX) and a modifi er (SetX) for the X fi eld. Notice that SetX checks

its parameter value.

struct ScreenPosition
{
 ...
 public int GetX()
 {
 return this.x;
 }

 public void SetX(int newX)
 {
 this.x = rangeCheckedX(newX);
 }
 ...
 private static int rangeCheckedX(int x) { ... }
 private static int rangeCheckedY(int y) { ... }
 private int x, y;
}

 The code now successfully enforces the range constraints, which is good. However, there is a

price to pay for this valuable guarantee—ScreenPosition no longer has a natural fi eldlike syn-

tax; it uses awkward method-based syntax instead. The following example increases the value

of X by 10. To do so, it has to read the value of X by using the GetX accessor method and

then write the value of X by using the SetX modifi er method.

int xpos = origin.GetX();
origin.SetX(xpos + 10);

 Compare this with the equivalent code if the X fi eld were public:

origin.X += 10;

 There is no doubt that, in this case, using public fi elds is cleaner, shorter, and easier.

Unfortunately, using public fi elds breaks encapsulation. Properties enable you to combine

the best of both examples: to retain encapsulation while allowing a fi eldlike syntax.

278 Part III Creating Components
What Are Properties?
 A property is a cross between a fi eld and a method—it looks like a fi eld but acts like a

method. You access a property using exactly the same syntax that you use to access a fi eld.

However, the compiler automatically translates this fi eldlike syntax into calls to accessor

methods. A property declaration looks like this:

AccessModifier Type PropertyName
{
 get
 {
 // read accessor code
 }

 set
 {
 // write accessor code
 }
}

 A property can contain two blocks of code, starting with the get and set keywords. The get
block contains statements that execute when the property is read, and the set block contains

statements that run when the property is written to. The type of the property specifi es the

type of data read and written by the get and set accessors.

 The next code example shows the ScreenPosition structure rewritten by using properties.

When reading this code, notice the following:

 Lowercase x and y are private fi elds.

 Uppercase X and Y are public properties.

 All set accessors are passed the data to be written by using a hidden, built-in parameter

named value.

 Tip The fi elds and properties follow the standard Microsoft Visual C# public/private naming

 convention. Public fi elds and properties should start with an uppercase letter, but private fi elds

and properties should start with a lowercase letter.

struct ScreenPosition
{
 public ScreenPosition(int X, int Y)
 {
 this.x = rangeCheckedX(X);
 this.y = rangeCheckedY(Y);
 }

 Chapter 15 Implementing Properties to Access Fields 279
 public int X
 {
 get { return this.x; }
 set { this.x = rangeCheckedX(value); }
 }

 public int Y
 {
 get { return this.y; }
 set { this.y = rangeCheckedY(value); }
 }

 private static int rangeCheckedX(int x) { ... }
 private static int rangeCheckedY(int y) { ... }
 private int x, y;
}

 In this example, a private fi eld directly implements each property, but this is only one way to

implement a property. All that is required is that a get accessor return a value of the specifi ed

type. Such a value could easily be calculated dynamically rather than being simply retrieved

from stored data, in which case there would be no need for a physical fi eld.

 Note Although the examples in this chapter show how to defi ne properties for a structure, they

are equally applicable to classes; the syntax is the same.

Using Properties
 When you use a property in an expression, you can use it in a read context (when you are

reading its value) and in a write context (when you are modifying its value). The following ex-

ample shows how to read values from the X and Y properties of a ScreenPosition structure:

ScreenPosition origin = new ScreenPosition(0, 0);
int xpos = origin.X; // calls origin.X.get
int ypos = origin.Y; // calls origin.Y.get

 Notice that you access properties and fi elds by using the same syntax. When you use a

property in a read context, the compiler automatically translates your fi eldlike code into a

call to the get accessor of that property. Similarly, if you use a property in a write context,

the compiler automatically translates your fi eldlike code into a call to the set accessor of that

property:

origin.X = 40; // calls origin.X.set, with value set to 40
origin.Y = 100; // calls origin.Y.Set, with value set to 100

 The values being assigned are passed in to the set accessors by using the value variable, as

described in the preceding section. The runtime does this automatically.

280 Part III Creating Components
 It’s also possible to use a property in a read/write context. In this case, both the get accessor

and the set accessor are used. For example, the compiler automatically translates statements

such as the following into calls to the get and set accessors:

origin.X += 10;

 Tip You can declare static properties in the same way that you can declare static fi elds and

methods. Static properties are accessed by using the name of the class or structure rather than

an instance of the class or structure.

Read-Only Properties
 You’re allowed to declare a property that contains only a get accessor. In this case, you

can use the property only in a read context. For example, here’s the X property of the

ScreenPosition structure declared as a read-only property:

struct ScreenPosition
{
 ...
 public int X
 {
 get { return this.x; }
 }
}

 The X property does not contain a set accessor; therefore, any attempt to use X in a write

context will fail. For example:

origin.X = 140; // compile-time error

Write-Only Properties
 Similarly, you can declare a property that contains only a set accessor. In this case, you

can use the property only in a write context. For example, here’s the X property of the

ScreenPosition structure declared as a write-only property:

struct ScreenPosition
{
 ...
 public int X
 {
 set { this.x = rangeCheckedX(value); }
 }
}

 Chapter 15 Implementing Properties to Access Fields 281
 The X property does not contain a get accessor; any attempt to use X in a read context will

fail. For example:

Console.WriteLine(origin.X); // compile-time error
origin.X = 200; // compiles OK
origin.X += 10; // compile-time error

 Note Write-only properties are useful for secure data such as passwords. Ideally, an application

that implements security should allow you to set your password but should never allow you to

read it back. A login method should compare a user-supplied string with the stored password

and return only an indication of whether they match.

Property Accessibility
 You can specify the accessibility of a property (public, private, or protected) when you declare

it. However, it is possible within the property declaration to override the property acces-

sibility for the get and set accessors. For example, the version of the ScreenPosition structure

shown here defi nes the set accessors of the X and Y properties as private. (The get accessors

are public, because the properties are public.)

struct ScreenPosition
{
 ...
 public int X
 {
 get { return this.x; }
 private set { this.x = rangeCheckedX(value); }
 }

 public int Y
 {
 get { return this.y; }
 private set { this.y = rangeCheckedY(value); }
 }
 ...
 private int x, y;
}

 You must observe some rules when defi ning accessors with different accessibility from one

another:

 You can change the accessibility of only one of the accessors when you defi ne it.

It wouldn’t make much sense to defi ne a property as public only to change the

 accessibility of both accessors to private anyway!

 The modifi er must not specify an accessibility that is less restrictive than that of the

property. For example, if the property is declared as private, you cannot specify

the read accessor as public. (Instead, you would make the property public and make the

read accessor private.)

282 Part III Creating Components
Properties and Field Names: A Warning
 Although it is a commonly accepted practice to give properties and private fi elds the

same name that differs only in the case of the initial letter, you should be aware of one

drawback. Examine the following code, which implements a class named Employee. The

employeeID fi eld is private, but the EmployeeID property provides pubic access to this

fi eld.

class Employee
{
 private int employeeID;

 public int EmployeeID;
 {
 get { return this.EmployeeID; }
 set { this.EmployeeID = value; }
 }

 This code will compile perfectly well, but it results in a program raising a

StackOverfl owException whenever the EmployeeID property is accessed. This is because

the get and set accessors reference the property (uppercase E) rather than the private

fi eld (lowercase e), which causes an endless recursive loop that eventually causes the

process to exhaust the available memory. This sort of bug is very diffi cult to spot!

Understanding the Property Restrictions
 Properties look, act, and feel like fi elds. However, they are not true fi elds, and certain

 restrictions apply to them:

 You can assign a value through a property of a structure or class only after the

 structure or class has been initialized. The following code example is illegal, as the

 location variable has not been initialized (by using new):

ScreenPosition location;
location.X = 40; // compile-time error, location not assigned

 Note This might seem trivial, but if X were a fi eld rather than a property, the code would

be legal. What this really means is that there are some differences between fi elds and

properties. You should defi ne structures and classes by using properties from the start,

rather than by using fi elds that you later migrate to properties—code that uses your class-

es and structures might no longer work after you change fi elds into properties. We will

return to this matter in the section “Generating Automatic Properties” later in this chapter.

 Chapter 15 Implementing Properties to Access Fields 283
 You can’t use a property as a ref or an out argument to a method (although you can use a

writable fi eld as a ref or an out argument). This makes sense because the property doesn’t

really point to a memory location but rather to an accessor method. For example:

MyMethod(ref location.X); // compile-time error

 A property can contain at most one get accessor and one set accessor. A property

 cannot contain other methods, fi elds, or properties.

 The get and set accessors cannot take any parameters. The data being assigned is

passed to the set accessor automatically by using the value variable.

 You can’t declare const properties. For example:

const int X { get { ... } set { ... } } // compile-time error

Using Properties Appropriately
 Properties are a powerful feature with a clean, fi eldlike syntax. Used in the correct

 manner, properties help to make code easier to understand and maintain. However,

they are no substitute for careful object-oriented design that focuses on the behavior

of objects rather than on the properties of objects. Accessing private fi elds through

regular methods or through properties does not, by itself, make your code well-

 designed. For example, a bank account holds a balance. You might therefore be tempt-

ed to create a Balance property on a BankAccount class, like this:

class BankAccount
{
 ...
 public money Balance
 {
 get { ... }
 set { ... }
 }

 private money balance;
}

 This would be a poor design. It fails to represent the functionality required when

 withdrawing money from and depositing money into an account. (If you know of a

bank that allows you to set the balance of your account directly without depositing

money, please let me know!) When you’re programming, try to express the problem

you are solving in the solution and don’t get lost in a mass of low-level syntax:

class BankAccount
{
 ...
 public money Balance { get { ... } }
 public void Deposit(money amount) { ... }
 public bool Withdraw(money amount) { ... }
 private money balance;
}

284 Part III Creating Components
Declaring Interface Properties
 You encountered interfaces in Chapter 13, “Creating Interfaces and Defi ning Abstract

Classes.” Interfaces can defi ne properties as well as methods. To do this, you specify the get
or set keyword, or both, but replace the body of the get or set accessor with a semicolon. For

example:

interface IScreenPosition
{
 int X { get; set; }
 int Y { get; set; }
}

 Any class or structure that implements this interface must implement the X and Y properties

with get and set accessor methods. For example:

struct ScreenPosition : IScreenPosition
{
 ...
 public int X
 {
 get { ... }
 set { ... }
 }

 public int Y
 {
 get { ... }
 set { ... }
 }
 ...
}

 If you implement the interface properties in a class, you can declare the property imple-

mentations as virtual, which enables derived classes to override the implementations. For

example:

class ScreenPosition : IScreenPosition
{
 ...
 public virtual int X
 {
 get { ... }
 set { ... }
 }

 public virtual int Y
 {
 get { ... }
 set { ... }
 }
 ...
}

 Chapter 15 Implementing Properties to Access Fields 285
Note This example shows a class. Remember that the virtual keyword is not valid when creating

a struct because structures are implicitly sealed.

You can also choose to implement a property by using the explicit interface implementa-

tion syntax covered in Chapter 13. An explicit implementation of a property is nonpublic and

nonvirtual (and cannot be overridden). For example:

struct ScreenPosition : IScreenPosition
{
 ...
 int IScreenPosition.X
 {
 get { ... }
 set { ... }
 }

 int IScreenPosition.Y
 {
 get { ... }
 set { ... }
 }
 ...
 private int x, y;
}

Using Properties in a Windows Application
When you set property values of objects such as TextBox controls, Windows, and Button

 controls by using the Properties window in Microsoft Visual Studio 2008, you are actually

generating code that sets the values of these properties at run time. Some components have

a large number of properties, although some properties are more commonly used than oth-

ers. You can write your own code to modify many of these properties at run time by using

the same syntax you have seen throughout this chapter.

In the following exercise, you will use some predefi ned properties of the TextBox controls and

the Window class to create a simple application that continually displays the size of its main

window, even when the window is resized.

Use properties

 1. Start Visual Studio 2008 if it is not already running.

 2. Open the WindowProperties project, located in the \Microsoft Press\Visual CSharp Step

by Step\Chapter 15\WindowProperties folder in your Documents folder.

 3. On the Debug menu, click Start Without Debugging.

Use properties

286 Part III Creating Components

 The project builds and runs. A window (a Windows Presentation Foundation [WPF]

form) appears, displaying two empty text boxes labeled Width and Height.

 In the program, the text box controls are named width and height. They are cur-

rently empty. You will add code to the application that displays the current size of the

window.

4. Close the form, and return to the Visual Studio 2008 programming environment.

5. Display the Window1.xaml.cs fi le in the Code and Text Editor window, and locate the

sizeChanged method.

 This method is called by the Window1 constructor. You will use it to display the

 current size of the form in the width and height text boxes. You will make use of the

ActualWidth and ActualHeight properties of the Window class. These properties return

the current width and height of the form as double values.

6. Add two statements to the sizeChanged method to display the size of the form. The

fi rst statement should read the value of the ActualWidth property of the form, convert

it to a string, and assign this value to the Text property of the width text box. The sec-

ond statement should read the value of the ActualHeight property of the form, convert

it to a string, and assign this value to the Text property of the height text box.

 The sizeChanged method should look exactly like this:

private void sizeChanged()
{
 width.Text = this.ActualWidth.ToString();
 height.Text = this.ActualHeight.ToString();
}

7. Locate the window1SizeChanged method.

 This method runs whenever the size of the window changes when the application is

running. Notice that this method calls the sizeChanged method to display the new size

of the window in the text boxes.

8. On the Debug menu, click Start Without Debugging to build and run the project.

 The form displays the two text boxes containing the values 305 and 155. These are the

default dimensions of the form, specifi ed when the form was designed.

9. Resize the form. Notice that the text in the text boxes changes to refl ect the new size.

10. Close the form, and return to the Visual Studio 2008 programming environment.

 Chapter 15 Implementing Properties to Access Fields 287
Generating Automatic Properties
 This chapter mentioned earlier that the principal purpose of properties is to hide the

 implementation of fi elds from the outside world. This is fi ne if your properties actually per-

form some useful work, but if the get and set accessors simply wrap operations that just read

or assign a value to a fi eld, you might be questioning the value of this approach. There are at

least two good reasons why you should defi ne properties rather than exposing data as public

fi elds:

 Compatibility with applications Fields and properties expose themselves by using

 different metadata in assemblies. If you develop a class and decide to use public fi elds,

any applications that use this class will reference these items as fi elds. Although you use

the same C# syntax for reading and writing a fi eld that you use when reading and writ-

ing a property, the compiled code is actually quite different—the C# compiler just hides

the differences from you. If you later decide that you really do need to change these

fi elds to properties (maybe the business requirements have changed, and you need to

perform additional logic when assigning values), existing applications will not be able

to use the updated version of the class without being recompiled. This is awkward if

you have deployed the application on a large number of users’ desktops throughout an

organization. There are ways around this, but it is generally better to avoid getting into

this situation in the fi rst place.

 Compatibility with interfaces If you are implementing an interface and the interface

 defi nes an item as a property, you must write a property that matches the specifi cation

in the interface, even if the property just reads and writes data in a private fi eld. You

cannot implement a property simply by exposing a public fi eld with the same name.

 The designers of the C# language recognized that programmers are busy people who

should not have to waste their time writing more code than they need to. To this end, the C#

 compiler can generate the code for properties for you automatically, like this:

class Circle
{
 public int Radius{ get; set; }
 ...
}

 In this example, the Circle class contains a property named Radius. Apart from the type of

this property, you have not specifi ed how this property works—the get and set accessors are

288 Part III Creating Components
empty. The C# compiler converts this defi nition to a private fi eld and a default implementa-

tion that looks similar to this:

class Circle
{
 private int _radius;
 public int Radius{
 get
 {
 return this._radius;
 }
 set
 {
 this._radius = value;
 }
 }
 ...
}

 So for very little effort, you can implement a simple property by using automatically
generated code, and if you need to include additional logic later, you can do so without
breaking any existing applications. You should note, however, that you must specify both a
get and a set accessor with an automatically generated property—an automatic property
cannot be read-only or write-only.

 Note The syntax for defi ning an automatic property is almost identical to the syntax for

defi ning a property in an interface. The exception is that an automatic property can specify an

access modifi er, such as private, public, or protected.

Initializing Objects by Using Properties
 In Chapter 7, “Creating and Managing Classes and Objects,” you learned how to defi ne

 constructors to initialize an object. An object can have multiple constructors, and you can

defi ne constructors with varying parameters to initialize different elements in an object. For

example, you could defi ne a class that models a triangle like this:

public class Triangle
{
 private int side1Length;
 private int side2Length;
 private int side3Length;

 // default constructor - default values for all sides
 public Triangle()
 {
 this.side1Length = this.side2Length = this.side3Length = 10;
 }

 // specify length for side1Length, default values for the others
 public Triangle(int length1)

 Chapter 15 Implementing Properties to Access Fields 289
 {
 this.side1Length = length1;
 this.side2Length = this.side3Length = 10;
 }

 // specify length for side1Length and side2Length,
 // default value for side3Length
 public Triangle(int length1, int length2)
 {
 this.side1Length = length1;
 this.side2Length = length2;
 this.side3Length = 10;
 }

 // specify length for all sides
 public Triangle(int length1, int length2, int length3)
 {
 this.side1Length = length1;
 this.side2Length = length2;
 this.side3Length = length3;
 }
}

 Depending on how many fi elds a class contains and the various combinations you want to

enable for initializing the fi elds, you could end up writing a lot of constructors. There are also

potential problems if many of the fi elds have the same type: you might not be able to write a

unique constructor for all combinations of fi elds. For example, in the preceding Triangle class,

you could not easily add a constructor that initializes only the side1Length and side3Length

fi elds because it would not have a unique signature; it would take two int parameters, and

the constructor that initializes side1Length and side2Length already has this signature. The so-

lution is to initialize the private fi elds to their default values and to defi ne properties, like this:

public class Triangle
{
 private int side1Length = 10;
 private int side2Length = 10;
 private int side3Length = 10;

 public int Side1Length
 {
 set { this.side1Length = value; }
 }

 public int Side2Length
 {
 set { this.side2Length = value; }
 }

 public int Side3Length
 {
 set { this.side3Length = value; }
 }
}

290 Part III Creating Components

 When you create an instance of a class, you can initialize it by specifying values for any public

properties that have set accessors. This means that you can create Triangle objects and initial-

ize any combination of the three sides, like this:

Triangle tri1 = new Triangle { Side3Length = 15 };
Triangle tri2 = new Triangle { Side1Length = 15, Side3Length = 20 };
Triangle tri3 = new Triangle { Side2Length = 12, Side3Length = 17 };
Triangle tri4 = new Triangle { Side1Length = 9, Side2Length = 12,
 Side3Length = 15 };

 This syntax is known as an object initializer. When you invoke an object initializer in this way,

the C# compiler generates code that calls the default constructor and then calls the set ac-

cessor of each named property to initialize it with the value specifi ed. You can specify object

initializers in combination with nondefault constructors as well. For example, if the Triangle

class also provided a constructor that took a single string parameter describing the type of

triangle, you could invoke this constructor and initialize the other properties like this:

Triangle tri5 = new Triangle(“Equilateral triangle”) { Side1Length = 3,
 Side2Length = 3,
 Side3Length = 3 };

 The important point to remember is that the constructor runs fi rst and the properties are set

afterward. Understanding this sequencing is important if the constructor sets fi elds in an ob-

ject to specifi c values and the properties that you specify change these values.

 You can also use object initializers with automatic properties, as you will see in the next ex-

ercise. In this exercise, you will defi ne a class for modeling regular polygons, containing au-

tomatic properties for providing access to the number of sides the polygon contains and the

length of these sides.

Defi ne automatic properties and use object initializers

1. In Visual Studio 2008, open the AutomaticProperties project, located in the \Microsoft

Press\Visual CSharp Step by Step\Chapter 15\AutomaticProperties folder in your

Documents folder.

 The AutomaticProperties project contains the Program.cs fi le, defi ning the Program

class with the Main and Entrance methods that you have seen in previous exercises.

2. In Solution Explorer, right-click the AutomaticProperties project, point to Add, and then

click Class. In the Add New Item—AutomaticProperties dialog box, in the Name text

box, type Polygon.cs, and then click Add.

 The Polygon.cs fi le, holding the Polygon class, is created and added to the project and

appears in the Code and Text Editor window.

Defi ne automatic properties and use object initializers

 Chapter 15 Implementing Properties to Access Fields 291

3. Add the automatic properties NumSides and SideLength, shown here in bold, to the

Polygon class:

class Polygon
{
 public int NumSides { get; set; }
 public double SideLength { get; set; }
}

4. Add the following default constructor to the Polygon class:

class Polygon
{
 public Polygon()
 {
 this.NumSides = 4;
 this.SideLength = 10.0;
 }
 ...
}

 In this exercise, the default polygon is a square with sides 10 units long.

5. Display the Program.cs fi le in the Code and Text Editor window.

6. Add the statements shown here in bold to the Entrance method:

static void Entrance()
{
 Polygon square = new Polygon();
 Polygon triangle = new Polygon { NumSides = 3 };
 Polygon pentagon = new Polygon { SideLength = 15.5, NumSides = 5 };
}

 These statements create Polygon objects. The square variable is initialized by using the

default constructor. The triangle and pentagon variables are also initialized by using

the default constructor, and then this code changes the value of the properties exposed

by the Polygon class. In the case of the triangle variable, the NumSides property is set to

3, but the SideLength property is left at its default value of 10.0. For the pentagon vari-

able, the code changes the values of the SideLength and NumSides properties.

7. Add the following code to the end of the Entrance method:

static void Entrance()
{
 ...
 Console.WriteLine(“Square: number of sides is {0}, length of each side is {1}”,
 square.NumSides, square.SideLength);
 Console.WriteLine(“Triangle: number of sides is {0}, length of each side is {1}”,
 triangle.NumSides, triangle.SideLength);
 Console.WriteLine(“Pentagon: number of sides is {0}, length of each side is {1}”,
 pentagon.NumSides, pentagon.SideLength);
}

292 Part III Creating Components
 These statements display the values of the NumSides and SideLength properties for

each Polygon object.

 8. On the Debug menu, click Start Without Debugging.

 Verify that the program builds and runs, writing the message shown here to the

console:

 9. Press the Enter key to close the application and return to Visual Studio 2008.

 You have now seen how to create automatic properties and how to use properties when

 initializing objects.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 16.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 15 Quick Reference
 To Do this

 Declare a read/write property for

a structure or class

Declare the type of the property, its name, a get accessor, and a set
 accessor. For example:

struct ScreenPosition
{
 ...
 public int X
 {
 get { ... }
 set { ... }
 }
 ...
}

 Chapter 15 Implementing Properties to Access Fields 293
 Declare a read-only property for

a structure or class

Declare a property with only a get accessor. For example:

struct ScreenPosition
{
 ...
 public int X
 {
 get { ... }
 }
 ...
}

 Declare a write-only property for

a structure or class

Declare a property with only a set accessor. For example:

struct ScreenPosition
{
 ...
 public int X
 {
 set { ... }
 }
 ...
}

 Declare a property in an interface Declare a property with just the get or set keyword, or both. For example:

interface IScreenPosition
{
 int X { get; set; } // no body
 int Y { get; set; } // no body
}

 Implement an interface property

in a structure or class

In the class or structure that implements the interface, declare the

 property and implement the accessors. For example:

struct ScreenPosition : IScreenPosition
{
 public int X
 {
 get { ... }
 set { ... }
 }
 public int Y
 {
 get { ... }
 set { ... }
 }
}

294 Part III Creating Components
 Create an automatic property In the class or structure that contains the property, defi ne the property

with empty get and set accessors. For example:

class Polygon
{
 public int NumSides { get; set; }
}

 Use properties to initialize an

 object

Specify the properties and their values as a list enclosed in braces when

constructing the object. For example:

Triangle tri3 = new Triangle { Side2Length = 12,

 Side3Length = 17 };

Chapter 16

Using Indexers
 After completing this chapter, you will be able to:

 Encapsulate logical arraylike access to an object by using indexers.

 Control read access to indexers by declaring get accessors.

 Control write access to indexers by declaring set accessors.

 Create interfaces that declare indexers.

 Implement indexers in structures and classes that inherit from interfaces.

 The preceding chapter described how to implement and use properties as a means of

 providing controlled access to the fi elds in a class. Properties are useful for mirroring fi elds

that contain a single value. However, indexers are invaluable if you want to provide access to

items that contain multiple values by using a natural and familiar syntax.

What Is an Indexer?
 An indexer is a smart array in exactly the same way that a property is a smart fi eld. The syntax

that you use for an indexer is exactly the same as the syntax that you use for an array. The

best way to understand indexers is to work through an example. First we’ll examine a prob-

lem and examine a weak solution that doesn’t use indexers. Then we’ll work through the

same problem and look at a better solution that does use indexers. The problem concerns

integers, or more precisely, the int type.

An Example That Doesn’t Use Indexers
 You normally use an int to hold an integer value. Internally, an int stores its value as a

 sequence of 32 bits, where each bit can be either 0 or 1. Most of the time, you don’t care

about this internal binary representation; you just use an int type as a bucket to hold an in-

teger value. However, sometimes programmers use the int type for other purposes: some

programs manipulate the individual bits within an int. In other words, occasionally a program

might use an int because it holds 32 bits and not because it can represent an integer value. (If

you are an old C hack like I am, what follows should have a very familiar feel!)
 295

296 Part III Creating Components
 Note Some older programs used int types to try to save memory. Such programs typically date

back to when the size of computer memory was measured in kilobytes rather than the gigabytes

available these days and memory was at an absolute premium. A single int holds 32 bits, each of

which can be 1 or 0. In some cases, programmers assigned 1 to indicate the value true and 0 to

indicate false and then employed an int as a set of Boolean values.

 As an example, the following expression uses the left-shift (<<) and bitwise AND (&) operators

to determine whether the sixth bit of the int named bits is set to 0 or to 1:

(bits & (1 << 6)) != 0

 If the bit at position 6 is 0, this expression evaluates to false; if the bit at position 6 is 1, this

expression evaluates to true. This is a fairly complicated expression, but it’s trivial in compari-

son with the following expression, which uses the compound assignment operator &= to set

the bit at position 6 to 0:

bits &= ~(1 << 6)

 Note The bitwise operators count the positions of bits from right to left, so bit 0 is the

rightmost bit, and the bit at position 6 is the bit six places from the right.

 Similarly, if you want to set the bit at position 6 to 1, you can use a bitwise OR (|) operator.

The following complicated expression is based on the compound assignment operator |=:

bits |= (1 << 6)

 The trouble with these examples is that although they work, it’s not clear why or how they

work. They’re complicated, and the solution is a very low-level one: it fails to create an

 abstraction of the problem that it solves.

The Bitwise and Shift Operators
 You might have noticed some unfamiliar symbols in the expressions shown in these

 examples—in particular, ~, <<, |, and &. These are some of the bitwise and shift opera-

tors, and they are used to manipulate the individual bits held in int and long data types.

 The NOT (~) operator is a unary operator that performs a bitwise comple-

ment. For example, if you take the 8-bit value 11001100 (204 decimal) and

apply the ~ operator to it, you obtain the result 00110011 (51 decimal)—all

the 1s in the original value become 0s, and all the 0s become 1s.

 Chapter 16 Using Indexers 297
 The left-shift (<<) operator is a binary operator that performs a left shift. The

expression 204 << 2 returns the value 48. (In binary, 204 decimal is 11001100,

and left-shifting it by two places yields 00110000, or 48 decimal.) The far-

left bits are discarded, and zeros are introduced from the right. There is a

 corresponding right-shift operator >>.

 The OR (|) operator is a binary operator that performs a bitwise OR operation,

returning a value containing a 1 in each position in which either of the oper-

ands has a 1. For example, the expression 204 | 24 has the value 220 (204 is

11001100, 24 is 00011000, and 220 is 11011100).

 The AND (&) operator performs a bitwise AND operation. AND is similar to the

bitwise OR operator, except that it returns a value containing a 1 in each posi-

tion where both of the operands have a 1. So 204 & 20 is 8 (204 is 11001100,

24 is 00011000, and 8 is 00001000).

 The XOR (̂) operator performs a bitwise exclusive OR operation, returning

a 1 in each bit where there is a 1 in one operand or the other but not both.

(Two 1s yield a 0—this is the “exclusive” part of the operator.) So 204 ^ 24 is

212 (11001100 ^ 00011000 is 11010100).

The Same Example Using Indexers
 Let’s pull back from the preceding low-level solution for a moment and stop to remind

 ourselves what the problem is. We’d like to use an int not as an int but as an array of 32

bits. Therefore, the best way to solve this problem is to use an int as if it were an array of 32

bits! In other words, what we’d like to be able to write to access the bit at index 6 of the bits
 variable is something like this:

bits[6]

 And, for example, to set the bit at index 6 to true, we’d like to be able to write:

bits[6] = true

 Unfortunately, you can’t use the square bracket notation on an int—it works only on an array

or on a type that behaves like an array. So the solution to the problem is to create a new type

that acts like, feels like, and is used like an array of bool variables but is implemented by using

an int. You can achieve this feat by defi ning an indexer. Let’s call this new type IntBits. IntBits
will contain an int value (initialized in its constructor), but the idea is that we’ll use IntBits as

an array of bool variables.

 Tip The IntBits type is small and lightweight, so it makes sense to create it as a structure rather

than as a class.

298 Part III Creating Components
struct IntBits
{
 public IntBits(int initialBitValue)
 {
 bits = initialBitValue;
 }

 // indexer to be written here

 private int bits;
}

 To defi ne the indexer, you use a notation that is a cross between a property and an array. The

indexer for the IntBits struct looks like this:

struct IntBits
{
 ...
 public bool this [int index]
 {
 get
 {
 return (bits & (1 << index)) != 0;
 }

 set
 {
 if (value) // turn the bit on if value is true; otherwise, turn it off
 bits |= (1 << index);
 else
 bits &= ~(1 << index);
 }
 }
 ...
}

 Notice the following points:

 An indexer is not a method—there are no parentheses containing a parameter, but

there are square brackets that specify an index. This index is used to specify which

 element is being accessed.

 All indexers use the this keyword in place of the method name. A class or structure can

defi ne at most one indexer, and it is always named this.

 Indexers contain get and set accessors just like properties. In this example, the get and

set accessors contain the complicated bitwise expressions previously discussed.

 The index specifi ed in the indexer declaration is populated with the index value

 specifi ed when the indexer is called. The get and set accessor methods can read this

argument to determine which element should be accessed.

 Chapter 16 Using Indexers 299
 Note You should perform a range check on the index value in the indexer to prevent any

 unexpected exceptions from occurring in your indexer code.

 After you have declared the indexer, you can use a variable of type IntBits instead of an int
and apply the square bracket notation, as shown in the next example:

int adapted = 62; // 62 has the binary representation 111110
IntBits bits = new IntBits(adapted);
bool peek = bits[6]; // retrieve bool at index 6; should be true (1)
bits[0] = true; // set the bit at index 0 to true (1)
bits[3] = false; // set the bit at index 3 to false (0)
 // the value in adapted is now 111011, or 59 in decimal

 This syntax is certainly much easier to understand. It directly and succinctly captures the

 essence of the problem.

 Note Indexers and properties are similar in that both use get and set accessors. An indexer

is like a property with multiple values. However, although you’re allowed to declare static

 properties, static indexers are illegal.

Understanding Indexer Accessors
 When you read an indexer, the compiler automatically translates your arraylike code into a

call to the get accessor of that indexer. Consider the following example:

bool peek = bits[6];

 This statement is converted to a call to the get accessor for bits, and the index argument is set

to 6.

 Similarly, if you write to an indexer, the compiler automatically translates your arraylike code

into a call to the set accessor of that indexer, setting the index argument to the value en-

closed in the square brackets. For example:

bits[6] = true;

 This statement is converted to a call to the set accessor for bits where index is 6. As with

 ordinary properties, the data you are writing to the indexer (in this case, true) is made avail-

able inside the set accessor by using the value keyword. The type of value is the same as the

type of indexer itself (in this case, bool).

300 Part III Creating Components
 It’s also possible to use an indexer in a combined read/write context. In this case, the get and

set accessors are both used. Look at the following statement:

bits[6] ^= true;

 This code is automatically translated into:

bits[6] = bits[6] ^ true;

 This code works because the indexer declares both a get and a set accessor.

 Note You can declare an indexer that contains only a get accessor (a read-only indexer) or only

a set accessor (a write-only accessor).

Comparing Indexers and Arrays
 When you use an indexer, the syntax is deliberately very arraylike. However, there are some

important differences between indexers and arrays:

 Indexers can use non-numeric subscripts, whereas arrays can use only integer

subscripts:

public int this [string name] { ... } // OK

 Tip Many collection classes, such as Hashtable, that implement an associative lookup

based on key/value pairs implement indexers to provide a convenient alternative to using

the Add method to add a new value and as an alternative to iterating through the Values
property to locate a value in your code. For example, instead of this:

Hashtable ages = new Hashtable();
ages.Add(“John”, 42);

 you can use this:

Hashtable ages = new Hashtable();
ages[“John”] = 42;

 Indexers can be overloaded (just like methods), whereas arrays cannot:

public Name this [PhoneNumber number] { ... }
public PhoneNumber this [Name name] { ... }

 Indexers cannot be used as ref or out parameters, whereas array elements can:

IntBits bits; // bits contains an indexer
Method(ref bits[1]); // compile-time error

 Chapter 16 Using Indexers 301
Properties, Arrays, and Indexers
 It is possible for a property to return an array, but remember that arrays are reference

types, so exposing an array as a property makes it possible to accidentally overwrite a

lot of data. Look at the following structure that exposes an array property named Data:

struct Wrapper
{
 private int[] data;
 ...
 public int[] Data
 {
 get { return this.data; }
 set { this.data = value; }
 }
}

 Now consider the following code that uses this property:

Wrapper wrap = new Wrapper();
...
int[] myData = wrap.Data;
myData[0]++;
myData[1]++;

 This looks pretty innocuous. However, because arrays are reference types, the variable

myData refers to the same object as the private data variable in the Wrapper structure.

Any changes you make to elements in myData are made to the data array; the expres-

sion myData[0]++ has exactly the same effect as data[0]++. If this is not the intention,

you should use the Clone method in the get and set accessors of the Data property to

return a copy of the data array, or make a copy of the value being set, as shown here.

(The Clone method returns an object, which you must cast to an integer array.)

struct Wrapper
{
 private int[] data;
 ...
 public int[] Data
 {
 get { return this.data.Clone() as int[]; }
 set { this.data = value.Clone() as int[]; }
 }
}

 However, this approach can become very messy and expensive in terms of memory

use. Indexers provide a natural solution to this problem—don’t expose the entire array

as a property; just make its individual elements available through an indexer:

struct Wrapper
{
 private int[] data;
 ...

302 Part III Creating Components
 public int this [int i]
 {
 get { return this.data[i]; }
 set { this.data[i] = value; }
 }
}

 The following code uses the indexer in a similar manner to the property shown earlier:

Wrapper wrap = new Wrapper();
...
int[] myData = new int[2];
myData[0] = wrap[0];
myData[1] = wrap[1];
myData[0]++;
myData[1]++;

 This time, incrementing the values in the MyData array has no effect on the origi-

nal array in the Wrapper object. If you really want to modify the data in the Wrapper
 object, you must write statements such as this:

wrap[0]++;

 This is much clearer, and safer!

Indexers in Interfaces
 You can declare indexers in an interface. To do this, specify the get keyword, the set keyword,

or both, but replace the body of the get or set accessor with a semicolon. Any class or struc-

ture that implements the interface must implement the indexer accessors declared in the

interface. For example:

interface IRawInt
{
 bool this [int index] { get; set; }
}

struct RawInt : IRawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

 Chapter 16 Using Indexers 303
If you implement the interface indexer in a class, you can declare the indexer implementa-

tions as virtual. This allows further derived classes to override the get and set accessors. For

example:

class RawInt : IRawInt
{
 ...
 public virtual bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

You can also choose to implement an indexer by using the explicit interface implementation

syntax covered in Chapter 12, “Working with Inheritance.” An explicit implementation of an

indexer is nonpublic and nonvirtual (and so cannot be overridden). For example:

struct RawInt : IRawInt
{
 ...
 bool IRawInt.this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Using Indexers in a Windows Application
In the following exercise, you will examine a simple phone book application and complete its

implementation. You will write two indexers in the PhoneBook class: one that accepts a Name

parameter and returns a PhoneNumber and another that accepts a PhoneNumber parameter

and returns a Name. (The Name and PhoneNumber structures have already been written.)

You will also need to call these indexers from the correct places in the program.

Familiarize yourself with the application

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the Indexers project, located in the \Microsoft Press\Visual CSharp Step by Step\

Chapter 16\Indexers folder in your Documents folder.

This is a Windows Presentation Foundation (WPF) application that enables a user to

search for the telephone number for a contact and also fi nd the name of a contact that

matches a given telephone number.

Familiarize yourself with the application

304 Part III Creating Components

3. On the Debug menu, click Start Without Debugging.

 The project builds and runs. A form appears, displaying two empty text boxes labeled

Name and Phone Number. The form also contains three buttons—one to add a name/

phone number pair to a list of names and phone numbers held by the application,

one to fi nd a phone number when given a name, and one to fi nd a name when given

a phone number. These buttons currently do nothing. Your task is to complete the

 application so that these buttons work.

4. Close the form, and return to Visual Studio 2008.

5. Display the Name.cs fi le in the Code and Text Editor window. Examine the Name

 structure. Its purpose is to act as a holder for names.

 The name is provided as a string to the constructor. The name can be retrieved

by using the read-only string property named Text. (The Equals and GetHashCode

 methods are used for comparing Names when searching through an array of Name

values—you can ignore them for now.)

6. Display the PhoneNumber.cs fi le in the Code and Text Editor window, and examine the

PhoneNumber structure. It is similar to the Name structure.

7. Display the PhoneBook.cs fi le in the Code and Text Editor window, and examine the

PhoneBook class.

This class contains two private arrays: an array of Name values named names, and an

array of PhoneNumber values named phoneNumbers. The PhoneBook class also con-

tains an Add method that adds a phone number and name to the phone book. This

method is called when the user clicks the Add button on the form. The enlargeIfFull
method is called by Add to check whether the arrays are full when the user adds anoth-

er entry. This method creates two new bigger arrays, copies the contents of the existing

arrays to them, and then discards the old arrays.

Write the indexers

1. In the PhoneBook.cs fi le, add a public read-only indexer to the PhoneBook class, as

shown in bold in the following code. The indexer should return a Name and take a

PhoneNumber item as its index. Leave the body of the get accessor blank.

The indexer should look like this:

sealed class PhoneBook
{
 ...
 public Name this [PhoneNumber number]
 {
 get
 {
 }
 }
 ...
}

Write the indexers

 Chapter 16 Using Indexers 305

2. Implement the get accessor as shown in bold in the following code. The purpose of

the accessor is to fi nd the name that matches the specifed phone number. To do this,

you will need to call the static IndexOf method of the Array class. The IndexOf method

performs a search through an array, returning the index of the fi rst item in the array

that matches the specifi ed value. The fi rst argument to IndexOf is the array to search

through (phoneNumbers). The second argument to IndexOf is the item you are search-

ing for. IndexOf returns the integer index of the element if it fi nds it; otherwise, IndexOf
returns –1. If the indexer fi nds the phone number, it should return it; otherwise, it

should return an empty Name value. (Note that Name is a structure and will always

have a default constructor that sets its private fi eld to null.)

 The indexer with its completed get accessor should look like this:

sealed class PhoneBook
{
 ...
 public Name this [PhoneNumber number]
 {
 get
 {
 int i = Array.IndexOf(this.phoneNumbers, number);
 if (i != -1)
 return this.names[i];
 else
 return new Name();
 }
 }
 ...
}

3. Add a second public read-only indexer to the PhoneBook class that returns a

PhoneNumber and accepts a single Name parameter. Implement this indexer in the

same way as the fi rst one. (Again note that PhoneNumber is a structure and therefore

always has a default constructor.)

 The second indexer should look like this:

sealed class PhoneBook
{
 ...
 public PhoneNumber this [Name name]
 {
 get
 {
 int i = Array.IndexOf(this.names, name);
 if (i != -1)
 return this.phoneNumbers[i];
 else
 return new PhoneNumber();
 }
 }
 ...
}

306 Part III Creating Components

 Notice that these overloaded indexers can coexist because they return different types,

which means that their signatures are different. If the Name and PhoneNumber struc-

tures were replaced by simple strings (which they wrap), the overloads would have the

same signature and the class would not compile.

4. On the Build menu, click Build Solution. Correct any syntax errors, and then rebuild if

necessary.

Call the indexers

1. Display the Window1.xaml.cs fi le in the Code and Text Editor window, and then locate

the fi ndPhoneClick method.

This method is called when the Search by Name button is clicked. This method is

 currently empty. Add the code shown in bold in the following example to perform

these tasks:

1.1. Read the value of the Text property from the name text box on the form. This is a

string containing the contact name that the user has typed in.

1.2. If the string is not empty, search for the phone number corresponding to that

name in the PhoneBook by using the indexer. (Notice that the Window1 class

contains a private PhoneBook fi eld named phoneBook.) Construct a Name object

from the string, and pass it as the parameter to the PhoneBook indexer.

1.3. Write the Text property of the PhoneNumber structure returned by the indexer to

the phoneNumber text box on the form.

 The fi ndPhoneClick method should look like this:

private void findPhoneClick(object sender, RoutedEventArgs e)
{
 string text = name.Text;
 if (!String.IsNullOrEmpty(text))
 {
 phoneNumber.Text = phoneBook[new Name(text)].Text;
 }
}

Tip Notice the use of the static String method IsNullOrEmpty to determine whether a

string is empty or contains a null value. This is the preferred method for testing whether a

string contains a value. It returns true if the string has a value and false otherwise.

2. Locate the fi ndNameClick method in the Window1.xaml.cs fi le. It is below the

fi ndPhoneClick method.

Call the indexers

 Chapter 16 Using Indexers 307

The fi ndName_Click method is called when the Search by Phone button is clicked. This

method is currently empty, so you need to implement it as follows. (The code is shown

in bold in the following example.)

2.1. Read the value of the Text property from the phoneNumber text box on the form.

This is a string containing the phone number that the user has typed.

2.2. If the string is not empty, search for the name corresponding to that phone num-

ber in the PhoneBook by using the indexer.

2.3. Write the Text property of the Name structure returned by the indexer to the

name text box on the form.

 The completed method should look like this:

private void findNameClick(object sender, RoutedEventArgs e)
{
 string text = phoneNumber.Text;
 if (!String.IsNullOrEmpty(text))
 {
 name.Text = phoneBook[new PhoneNumber(text)].Text;
 }
}

3. On the Build menu, click Build Solution. Correct any errors that occur.

Run the application

1. On the Debug menu, click Start Without Debugging.

2. Type your name and phone number in the text boxes, and then click Add.

When you click the Add button, the Add method stores the information in the phone

book and clears the text boxes so that they are ready to perform a search.

3. Repeat step 2 several times with some different names and phone numbers so that the

phone book contains a selection of entries.

 Note The application performs no checking of the names and telephone numbers

that you enter, and you can input the same name and telephone number more than once.

To avoid confusion, please make sure that you provide different names and telephone

numbers.

4. Type a name that you used in step 2 into the Name text box, and then click Search by
Name.

 The phone number you added for this contact in step 2 is retrieved from the phone

book and is displayed in the Phone Number text box.

Run the application

308 Part III Creating Components
 5. Type a phone number for a different contact in the Phone Number text box, and then

click Search by Phone.

 The contact name is retrieved from the phone book and is displayed in the Name text

box.

 6. Type a name that you did not enter in the phone book into the Name text box, and

then click Search by Name.

 This time the Phone Number text box is empty, indicating that the name could not be

found in the phone book.

 7. Close the form, and return to Visual Studio 2008.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 17.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 16 Quick Reference
 To Do this

 Create an indexer for a class

or structure

Declare the type of the indexer, followed by the keyword this
and then the indexer arguments in square brackets. The body of

the indexer can contain a get and/or set accessor. For

example:

struct RawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

 Defi ne an indexer in an

interface

Defi ne an indexer with the get and/or set keywords. For example:

interface IRawInt
{
 bool this [int index] { get; set; }
}

 Chapter 16 Using Indexers 309
 Implement an interface

indexer in a class or structure

In the class or structure that implements the interface, defi ne the

indexer and implement the accessors. For example:

struct RawInt : IRawInt
{
 ...
 public bool this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

 Implement an interface

indexer by using explicit

interface implementation in

a class or structure

In the class or structure that implements the interface, explicitly

name the interface, but do not specify the indexer accessibility.

For example:

struct RawInt : IRawInt
{
 ...
 bool IRawInt.this [int index]
 {
 get { ... }
 set { ... }
 }
 ...
}

Chapter 17

Interrupting Program Flow and
Handling Events

 After completing this chapter, you will be able to:

 Declare a delegate type to create an abstraction of a method signature.

 Create an instance of a delegate to refer to a specifi c method.

 Call a method through a delegate.

 Defi ne a lambda expression to specify the code for a delegate.

 Declare an event fi eld.

 Handle an event by using a delegate.

 Raise an event.

 Much of the code you have written in the various exercises in this book has assumed that

statements execute sequentially. Although this is a common scenario, you will fi nd that it

is sometimes necessary to interrupt the current fl ow of execution and perform another,

more important, task. When the task has completed, the program can continue where it

left off. The classic example of this style of program is the Microsoft Windows Presentation

Foundation (WPF) form. A WPF form displays controls such as buttons and text boxes. When

you click a button or type text in a text box, you expect the form to respond immediately.

The application has to temporarily stop what it is doing and handle your input. This style of

operation applies not just to graphical user interfaces but to any application where an opera-

tion must be performed urgently—shutting down the reactor in a nuclear power plant if it is

getting too hot, for example.

 To handle this type of application, the runtime has to provide two things: a means of indi-

cating that something urgent has happened and a way of indicating the code that should

be run when it happens. This is the purpose of events and delegates. We start by looking at

delegates.

 Declaring and Using Delegates
 A delegate is a pointer to a method, and you can call it in the same way as you would call a

method. When you invoke a delegate, the runtime actually executes the method to which the

delegate refers. You can dynamically change the method that a delegate references so that
 311

312 Part III Creating Components
code that calls a delegate might actually run a different method each time it executes. The

best way to understand delegates is to see them in action, so let’s work through an example.

 Note If you are familiar with C++, a delegate is similar to a function pointer. However, unlike

function pointers, delegates are type-safe; you can make a delegate refer to only a method that

matches the signature of the delegate, and you cannot call a delegate that does not refer to a

valid method.

The Automated Factory Scenario
 Suppose you are writing the control systems for an automated factory. The factory contains

a large number of different machines, each performing distinct tasks in the production of

the articles manufactured by the factory—shaping and folding metal sheets, welding sheets

together, painting sheets, and so on. Each machine was built and installed by a specialist ven-

dor. The machines are all computer-controlled, and each vendor has provided a set of APIs

that you can use to control its machine. Your task is to integrate the different systems used

by the machines into a single control program. One aspect on which you have decided to

concentrate is to provide a means of shutting down all the machines, quickly if needed!

 Note The term API stands for application programming interface. It is a method, or set of

methods, exposed by a piece of software that you can use to control that software. You can think

of the Microsoft .NET Framework as a set of APIs because it provides methods that you can use

to control the .NET common language runtime and the Microsoft Windows operating system.

 Each machine has its own unique computer-controlled process (and API) for shutting down

safely. These are summarized here:

StopFolding(); // Folding and shaping machine
FinishWelding(); // Welding machine
PaintOff(); // Painting machine

Implementing the Factory Without Using Delegates
 A simple approach to implementing the shutdown functionality in the control program is as

follows:

class Controller
{
 // Fields representing the different machines
 private FoldingMachine folder;
 private WeldingMachine welder;
 private PaintingMachine painter;
 ...

 Chapter 17 Interrupting Program Flow and Handling Events 313
 public void ShutDown()
 {
 folder.StopFolding();
 welder.FinishWelding();
 painter.PaintOff();
 }
 ...
}

 Although this approach works, it is not very extensible or fl exible. If the factory buys a

new machine, you must modify this code; the Controller class and the machines are tightly

coupled.

Implementing the Factory by Using a Delegate
 Although the names of each method are different, they all have the same “shape”: They take

no parameters, and they do not return a value. (We consider what happens if this isn’t the

case later, so bear with me!) The general format of each method is, therefore:

void methodName();

 This is where a delegate is useful. A delegate that matches this shape can be used to refer to

any of the machinery shutdown methods. You declare a delegate like this:

delegate void stopMachineryDelegate();

 Note the following points:

 Use the delegate keyword when declaring a delegate.

 A delegate defi nes the shape of the methods it can refer to. You specify the return

type (void in this example), a name for the delegate (stopMachineryDelegate), and any

 parameters (there are none in this case).

 After you have defi ned the delegate, you can create an instance and make it refer to a

matching method by using the += compound assignment operator. You can do this in the

constructor of the controller class like this:

class Controller
{
 delegate void stopMachineryDelegate();
 private stopMachineryDelegate stopMachinery; // an instance of the delegate
 ...
 public Controller()
 {
 this.stopMachinery += folder.StopFolding;
 }
 ...
}

314 Part III Creating Components
 This syntax takes a bit of getting used to. You add the method to the delegate; you are not

actually calling the method at this point. The + operator is overloaded to have this new

meaning when used with delegates. (You will learn more about operator overloading in

Chapter 21, “Operator Overloading.”) Notice that you simply specify the method name and

should not include any parentheses or parameters.

 It is safe to use the += operator on an uninitialized delegate. It will be initialized automati-

cally. You can also use the new keyword to initialize a delegate explicitly with a single specifi c

method, like this:

this.stopMachinery = new stopMachineryDelegate(folder.StopFolding);

 You can call the method by invoking the delegate, like this:

public void ShutDown()
{
 this.stopMachinery();
 ...
}

 You use the same syntax to invoke a delegate as you use to make a method call. If the

 method that the delegate refers to takes any parameters, you should specify them at this

time, between parentheses.

 Note If you attempt to invoke a delegate that is uninitialized and does not refer to any

methods, you will get a NullReferenceException.

 The principal advantage of using a delegate is that it can refer to more than one method; you

simply use the += operator to add methods to the delegate, like this:

public Controller()
{
 this.stopMachinery += folder.StopFolding;
 this.stopMachinery += welder.FinishWelding;
 this.stopMachinery += painter.PaintOff;
}

 Invoking this.stopMachinery() in the Shutdown method of the Controller class automatically

calls each of the methods in turn. The Shutdown method does not need to know how many

machines there are or what the method names are.

 You can remove a method from a delegate by using the -= compound assignment operator:

this.stopMachinery -= folder.StopFolding;

 Chapter 17 Interrupting Program Flow and Handling Events 315
 The current scheme adds the machine methods to the delegate in the Controller constructor.

To make the Controller class totally independent of the various machines, you need to make

stopMachineryDelegate type public and supply a means of enabling classes outside Controller
to add methods to the delegate. You have several options:

 Make the delegate variable, stopMachinery, public:

public stopMachineryDelegate stopMachinery;

 Keep the stopMachinery delegate variable private, but provide a read/write property to

provide access to it:

public delegate void stopMachineryDelegate();
...
public stopMachineryDelegate StopMachinery
{
 get
 {
 return this.stopMachinery;
 }

 set
 {
 this.stopMachinery = value;
 }
}

 Provide complete encapsulation by implementing separate Add and Remove methods.

The Add method takes a method as a parameter and adds it to the delegate, while

the Remove method removes the specifi ed method from the delegate (notice that you

specify a method as a parameter by using a delegate type):

public void Add(stopMachineryDelegate stopMethod)
{
 this.stopMachinery += stopMethod;
}

public void Remove(stopMachineryDelegate stopMethod)
{
 this.stopMachinery -= stopMethod;
}

 If you are an object-oriented purist, you will probably opt for the Add/Remove approach.

However, the others are viable alternatives that are frequently used, which is why they are

shown here.

 Whichever technique you choose, you should remove the code that adds the machine

 methods to the delegate from the Controller constructor. You can then instantiate a

316 Part III Creating Components

Controller and objects representing the other machines like this (this example uses the

Add/Remove approach):

Controller control = new Controller();
FoldingMachine folder = new FoldingMachine();
WeldingMachine welder = new WeldingMachine();
PaintingMachine painter = new PaintingMachine();
...
control.Add(folder.StopFolding);
control.Add(welder.FinishWelding);
control.Add(painter.PaintOff);
...
control.ShutDown();
...

Using Delegates
 In the following exercise, you will create a delegate to encapsulate a method that displays the

time in a text box acting as a digital clock on a WPF form. You will attach the delegate object

to a class called Ticker that invokes the delegate every second.

Complete the digital clock application

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the Delegates project located in the \Microsoft Press\Visual CSharp Step by Step

\Chapter 17\Delegates folder in your Documents folder.

3. On the Debug menu, click Start Without Debugging.

The project builds and runs. A form appears, displaying a digital clock. The clock

 displays the current time as “00:00:00,” which is probably wrong unless you happen to

be reading this chapter at midnight.

4. Click Start to start the clock, and then click Stop to stop it again.

Nothing happens. The Start and Stop methods have not been written yet. Your task is

to implement these methods.

5. Close the form, and return to the Visual Studio 2008 environment.

6. Open the Ticker.cs fi le, and display it in the Code and Text Editor window. This fi le

 contains a class called Ticker that models the inner workings of a clock. Scroll to the

bottom of the fi le. The class contains a DispatcherTimer object called ticking to arrange

for a pulse to be sent at regular intervals. The constructor for the class sets this interval

to 1 second. The class catches the pulse by using an event (you will learn how events

work shortly) and then arranges for the display to be updated by invoking a delegate.

Complete the digital clock application

 Chapter 17 Interrupting Program Flow and Handling Events 317

 Note The .NET Framework provides another timer class called System.Timers.Timer. This

class offers similar functionality to the DispatcherTimer class, but it is not suitable for use in

a WPF application.

7. In the Code and Text Editor window, fi nd the declaration of the Tick delegate. It is

 located near the top of the fi le and looks like this:

public delegate void Tick(int hh, int mm, int ss);

 The Tick delegate can be used to refer to a method that takes three integer parameters

and that does not return a value. A delegate variable called tickers at the bottom of the

fi le is based on this type. By using the Add and Remove methods in this class (shown in

the following code example), you can add methods with matching signatures to (and

remove them from) the tickers delegate variable:

class Ticker
{
 ...
 public void Add(Tick newMethod)
 {
 this.tickers += newMethod;
 }

 public void Remove(Tick oldMethod)
 {
 this.tickers -= oldMethod;
 }
 ...
 private Tick tickers;
}

8. Open the Clock.cs fi le, and display it in the Code and Text Editor window. The Clock class

models the clock display. It has methods called Start and Stop that are used to start

and stop the clock running (after you have implemented them) and a method called

RefreshTime that formats a string to depict the time specifi ed by its three parameters

(hours, minutes, and seconds) and then displays it in the TextBox fi eld called display.

This TextBox fi eld is initialized in the constructor. The class also contains a private Ticker
fi eld called pulsed that tells the clock when to update its display:

class Clock
{
 ...

 public Clock(TextBox displayBox)
 {
 this.display = displayBox;
 }
 ...

318 Part III Creating Components

 private void RefreshTime(int hh, int mm, int ss)
 {
 this.display.Text = string.Format(“{0:D2}:{1:D2}:{2:D2}”, hh, mm, ss);
 }

 private Ticker pulsed = new Ticker();
 private TextBox display;
}

9. Display the code for the Window1.xaml.cs fi le in the Code and Text Editor window.

Notice that the constructor creates a new instance of the Clock class, passing in the

TextBox fi eld called digital as its parameter:

public Window1()
{
 ...
 clock = new Clock(digital);
}

 The digital fi eld is the TextBox control displayed on the form. The clock will display its

output in this TextBox control.

10. Return to the Clock.cs fi le. Implement the Clock.Start method so that it adds the Clock.
RefreshTime method to the delegate in the pulsed object by using the Ticker.Add meth-

od, as follows in bold type. The pulsed delegate is invoked every time a pulse occurs,

and this statement causes the RefreshTime method to execute when this happens.

 The Start method should look like this:

public void Start()
{
 pulsed.Add(this.RefreshTime);
}

11. Implement the Clock.Stop method so that it removes the Clock.RefreshTime method

from the pulsed delegate by using the Ticker.Remove method, as follows in bold type.

 The Stop method should look like this:

public void Stop()
{
 pulsed.Remove(this.RefreshTime);
}

12. On the Debug menu, click Start Without Debugging.

13. On the WPF form, click Start.

 The form now displays the correct time and updates every second.

14. Click Stop.

 The display stops responding, or “freezes.” This is because the Stop button calls the

Clock.Stop method, which removes the RefreshTime method from the Ticker delegate;

RefreshTime is no longer being called every second, although the timer continues to pulse.

 Chapter 17 Interrupting Program Flow and Handling Events 319
 Note If you click Start more than one time, you must click Stop the same number of

times. Each time you click Start you add a reference to the RefreshTime method to the

delegate. You must remove them all before the clock will stop.

 15. Click Start again.

 The display resumes processing, corrects the time, and updates the time every sec-

ond. This is because the Start button calls the Clock.Start method, which attaches the

RefreshTime method to the Ticker delegate again.

 16. Close the form, and return to Visual Studio 2008.

Lambda Expressions and Delegates
 All the examples of adding a method to a delegate that you have seen so far use the meth-

od’s name. For example, returning to the automated factory scenario described earlier, you

add the StopFolding method of the folder object to the stopMachinery delegate like this:

this.stopMachinery += folder.StopFolding;

 This approach is very useful if there is a convenient method that matches the signature of the

delegate, but what if this is not the case? Suppose that the StopFolding method actually had

the following signature:

void StopFolding(int shutDownTime); // Shut down in the specified number of seconds

 This signature is now different from that of the FinishWelding and PaintOff methods, and

therefore you cannot use the same delegate to handle all three methods.

Creating a Method Adapter
 One way around this problem is to create another method that calls StopFolding but that

takes no parameters itself, like this:

void FinishFolding()
{
 folder.StopFolding(0); // Shut down immediately
}

 You can then add the FinishFolding method to the stopMachinery delegate in place of the

StopFolding method, using the same syntax as before:

this.stopMachinery += folder.FinishFolding;

320 Part III Creating Components
 When the stopMachinery delegate is invoked, it calls FinishFolding, which in turn calls the

StopFolding method, passing in the parameter of 0.

 Note The FinishFolding method is a classic example of an adapter, a method that converts (or

adapts) a method to give it a different signature. This pattern is very common and is one of the

set of patterns documented in the book Design Patterns: Elements of Reusable Object-Oriented
Architecture by Gamma, Helm, Johnson, and Vlissides (Addison-Wesley Professional, 1994).

 In many cases, adapter methods such as this are small, and it is easy to lose them in a sea of

methods, especially in a large class. Furthermore, apart from using it to adapt the StopFolding

method for use by the delegate, it is unlikely to be called elsewhere. C# provides lambda

 expressions for situations such as this.

Using a Lambda Expression as an Adapter
 A lambda expression is an expression that returns a method. This sounds rather odd because

most expressions that you have met so far in C# actually return a value. If you are familiar

with functional programming languages such as Haskell, you are probably comfortable with

this concept. For the rest of you, fear not: lambda expressions are not particularly compli-

cated, and after you have gotten used to a new bit of syntax, you will see that they are very

useful.

 You saw in Chapter 3, “Writing Methods and Applying Scope,” that a typical method consists

of four elements: a return type, a method name, a list of parameters, and a method body. A

lambda expression contains two of these elements: a list of parameters and a method body.

Lambda expressions do not defi ne a method name, and the return type (if any) is inferred

from the context in which the lambda expression is used. In the StopFolding method of the

FoldingMachine class, the problem is that this method now takes a parameter, so you need to

create an adapter that takes no parameters that you can add to the stopMachinery delegate.

You can use the following statement to do this:

this.stopMachinery += () => { folder.StopFolding(0); };

 All of the text to the right of the += operator is a lambda expression, which defi nes the

method to be added to the stopMachinery delegate. It has the following syntactic items:

 A list of parameters enclosed in parentheses. As with a regular method, if the method

you are defi ning (as in the preceding example) takes no parameters, you must still

 provide the parentheses.

 The => operator, which indicates to the C# compiler that this is a lambda expression.

 The body of the method. The example shown here is very simple, containing a single

statement. However, a lambda expression can contain multiple statements, and you can

 Chapter 17 Interrupting Program Flow and Handling Events 321
format it in whatever way you feel is most readable. Just remember to add a semicolon

after each statement as you would in an ordinary method.

 Strictly speaking, the body of a lambda expression can be a method body containing mul-

tiple statements, or it can actually be a single expression. If the body of a lambda expression

contains only a single expression, you can omit the braces and the semicolon (you still need a

semicolon to complete the entire statement), like this:

this.stopMachinery += () => folder.StopFolding(0) ;

 When you invoke the stopMachinery delegate, it will run the code defi ned by the lambda

expression.

The Form of Lambda Expressions
 Lambda expressions can take a number of subtly different forms. Lambda expressions were

originally part of a mathematical notation called the Lambda Calculus that provides a nota-

tion for describing functions. (You can think of a function as a method that returns a value.)

Although the C# language has extended the syntax and semantics of the Lambda Calculus in

its implementation of lambda expressions, many of the original principles still apply. Here are

some examples showing the different forms of lambda expression available in C#:

x => x * x // A simple expression that returns the square of its parameter
 // The type of parameter x is inferred from the context.

x => { return x * x ; } // Semantically the same as the preceding
 // expression, but using a C# statement block as
 // a body rather than a simple expression

(int x) => x / 2 // A simple expression that returns the value of the
 // parameter divided by 2
 // The type of parameter x is stated explicitly.

() => folder.StopFolding(0) // Calling a method
 // The expression takes no parameters.
 // The expression might or might not
 // return a value.

(x, y) => { x++; return x / y; } // Multiple parameters; the compiler
 // infers the parameter types.
 // The parameter x is passed by value, so
 // the effect of the ++ operation is
 // local to the expression.

(ref int x, int y) { x++; return x / y; } // Multiple parameters
 // with explicit types
 // Parameter x is passed by
 // reference, so the effect of
 // the ++ operation is permanent.

322 Part III Creating Components
 To summarize, here are some features of lambda expressions that you should be aware of:

 If a lambda expression takes parameters, you specify them in the parentheses to the

left of the => operator. You can omit the types of parameters, and the C# compiler will

infer their types from the context of the lambda expression. You can pass parameters

by reference (by using the ref keyword) if you want the lambda expression to be able to

change their values other than locally, but this is not recommended.

 Lambda expressions can return values, but the return type must match that of the

 delegate they are being added to.

 The body of a lambda expression can be a simple expression or a block of C# code

made up of multiple statements, method calls, variable defi nitions, and so on.

 Variables defi ned in a lambda expression method go out of scope when the method

fi nishes.

 A lambda expression can access and modify all variables outside the lambda expression

that are in scope when the lambda expression is defi ned. Be very careful with this

feature!

 You will learn more about lambda expressions and see further examples that take parameters

and return values in later chapters in this book.

Lambda Expressions and Anonymous Methods
 Lambda expressions are a new addition to the C# language in version 3.0. C# version

2.0 introduced anonymous methods that can perform a similar task but that are not as

fl exible. Anonymous methods were added primarily so that you can defi ne delegates

without having to create a named method; you simply provide the defi nition of the

method body in place of the method name, like this:

this.stopMachinery += delegate { folder.StopFolding(0); };

 You can also pass an anonymous method as a parameter in place of a delegate, like

this:

control.Add(delegate { folder.StopFolding(0); });

 Notice that whenever you introduce an anonymous method, you must prefi x it with the

delegate keyword. Also, any parameters needed are specifi ed in braces following the

delegate keyword. For example:

control.Add(delegate(int param1, string param2) { /* code that uses param1 and param2
*/ ... });

 After you are used to them, you will notice that lambda expressions provide a more

succinct syntax than anonymous methods do and they pervade many of the more ad-

vanced aspects of C#, as you will see later in this book. Generally speaking, you should

use lambda expressions rather than anonymous methods in your code.

 Chapter 17 Interrupting Program Flow and Handling Events 323
Enabling Notifi cations with Events
 You have now seen how to declare a delegate type, call a delegate, and create delegate

 instances. However, this is only half the story. Although by using delegates you can invoke

any number of methods indirectly, you still have to invoke the delegate explicitly. In many

cases, it would be useful to have the delegate run automatically when something signifi -

cant happens. For example, in the automated factory scenario, it could be vital to be able

to invoke the stopMachinery delegate and halt the equipment if the system detects that a

machine is overheating.

 The .NET Framework provides events, which you can use to defi ne and trap signifi cant actions

and arrange for a delegate to be called to handle the situation. Many classes in the .NET

Framework expose events. Most of the controls that you can place on a WPF form, and the

Windows class itself, use events so that you can run code when, for example, the user clicks a

button or types something in a fi eld. You can also defi ne your own events.

Declaring an Event
 You declare an event in a class intended to act as an event source. An event source is usually

a class that monitors its environment and raises an event when something signifi cant hap-

pens. In the automated factory, an event source could be a class that monitors the tempera-

ture of each machine. The temperature-monitoring class would raise a “machine overheating”

event if it detects that a machine has exceeded its thermal radiation boundary (that is, it has

become too hot). An event maintains a list of methods to call when it is raised. These meth-

ods are sometimes referred to as subscribers. These methods should be prepared to handle

the “machine overheating” event and take the necessary corrective action: shut down the

machines.

 You declare an event similarly to how you declare a fi eld. However, because events are

 intended to be used with delegates, the type of an event must be a delegate, and you must

prefi x the declaration with the event keyword. Use the following syntax to declare an event:

 event delegateTypeName eventName

 As an example, here’s the StopMachineryDelegate delegate from the automated factory. It

has been relocated to a new class called TemperatureMonitor, which provides an interface to

the various electronic probes monitoring the temperature of the equipment (this is a more

logical place for the event than the Controller class is):

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 ...
}

324 Part III Creating Components
 You can defi ne the MachineOverheating event, which will invoke the stopMachineryDelegate,

like this:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
}

 The logic (not shown) in the TemperatureMonitor class raises the MachineOverheating event

as necessary. You will see how to raise an event in the upcoming section titled “Raising an

Event.” Also, you add methods to an event (a process known as subscribing to the event) rath-

er than adding them to the delegate that the event is based on. You will look at this aspect of

events next.

Subscribing to an Event
 Like delegates, events come ready-made with a += operator. You subscribe to an event by

using this += operator. In the automated factory, the software controlling each machine

can arrange for the shutdown methods to be called when the MachineOverheating event is

raised, like this:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate();
 public event StopMachineryDelegate MachineOverheating;
 ...
}
...
TemperatureMonitor tempMonitor = new TemperatureMonitor();
...
tempMonitor.MachineOverheating += () => { folder.StopFolding(0); };
tempMonitor.MachineOverheating += welder.FinishWelding;
tempMonitor.MachineOverheating += painter.PaintOff;

 Notice that the syntax is the same as for adding a method to a delegate. You can even

 subscribe by using a lambda expression. When the tempMonitor.MachineOverheating event

runs, it will call all the subscribing methods and shut down the machines.

Unsubscribing from an Event
 Knowing that you use the += operator to attach a delegate to an event, you can probably

guess that you use the –= operator to detach a delegate from an event. Calling the –= op-

erator removes the method from the event’s internal delegate collection. This action is often

referred to as unsubscribing from the event.

 Chapter 17 Interrupting Program Flow and Handling Events 325
Raising an Event
 An event can be raised, just like a delegate, by calling it like a method. When you raise

an event, all the attached delegates are called in sequence. For example, here’s the

TemperatureMonitor class with a private Notify method that raises the MachineOverheating

event:

class TemperatureMonitor
{
 public delegate void StopMachineryDelegate;
 public event StopMachineryDelegate MachineOverheating;
 ...
 private void Notify()
 {
 if (this.MachineOverheating != null)
 {
 this.MachineOverheating();
 }
 }
 ...
}

 This is a common idiom. The null check is necessary because an event fi eld is implicitly null
and only becomes non-null when a method subscribes to it by using the += operator. If you

try to raise a null event, you will get a NullReferenceException. If the delegate defi ning the

event expects any parameters, the appropriate arguments must be provided when you raise

the event. You will see some examples of this later.

 Important Events have a very useful built-in security feature. A public event (such as

MachineOverheating) can be raised only by methods in the class that defi nes it (the

TemperatureMonitor class). Any attempt to raise the method outside the class results in a

compiler error.

Understanding WPF User Interface Events
 As mentioned earlier, the .NET Framework classes and controls used for building graphi-

cal user interfaces (GUIs) employ events extensively. You’ll see and use GUI events on many

occasions in the second half of this book. For example, the WPF Button class derives from

the ButtonBase class, inheriting a public event called Click of type RoutedEventHandler. The

RoutedEventHandler delegate expects two parameters: a reference to the object that caused

the event to be raised and a RoutedEventArgs object that contains additional information

about the event:

public delegate void RoutedEventHandler(Object sender, RoutedEventArgs e);

326 Part III Creating Components
 The Button class looks like this:

public class ButtonBase: ...
{
 public event RoutedEventHandler Click;
 ...
}

public class Button: ButtonBase
{
 ...
}

 The Button class automatically raises the Click event when you click the button on-screen.

(How this actually happens is beyond the scope of this book.) This arrangement makes it easy

to create a delegate for a chosen method and attach that delegate to the required event. The

following example shows the code for a WPF form that contains a button called okay and the

code to connect the Click event of the okay button to the okayClick method:

public partial class Example : System.Windows.Window, System.Windows.Markup.
IComponentConnector
{
 internal System.Windows.Controls.Button okay;
 ...
 void System.Windows.Markup.IComponentConnector.Connect(...)
 {
 ...
 this.okay.Click += new System.Windows.RoutedEventHandler(this.okayClick);
 ...
 }
 ...
}

 This code is usually hidden from you. When you use the Design View window in Visual Studio

2008 and set the Click property of the okay button to okayClick in the Extensible Application

Markup Language (XAML) description of the form, Visual Studio 2008 generates this code

for you. All you have to do is write your application logic in the event handling method,

okayClick, in the part of the code that you do have access to, in the Example.xaml.cs fi le in

this case:

public partial class Example : System.Windows.Window
{
 ...
 private void okayClick(object sender, RoutedEventArgs args)
 {
 // your code to handle the Click event
 }
}

 The events that the various GUI controls generate always follow the same pattern. The events

are of a delegate type whose signature has a void return type and two arguments. The fi rst

 Chapter 17 Interrupting Program Flow and Handling Events 327

argument is always the sender (the source) of the event, and the second argument is always

an EventArgs argument (or a class derived from EventArgs).

With the sender argument, you can reuse a single method for multiple events. The del-

egated method can examine the sender argument and respond accordingly. For example,

you can use the same method to subscribe to the Click event for two buttons (you add the

same method to two different events). When the event is raised, the code in the method can

 examine the sender argument to ascertain which button was clicked.

You learn more about how to handle events for WPF controls in Chapter 22, “Introducing

Windows Presentation Foundation.”

Using Events
In the following exercise, you will use events to simplify the program you completed in the

fi rst exercise. You will add an event fi eld to the Ticker class and delete its Add and Remove

methods. You will then modify the Clock.Start and Clock.Stop methods to subscribe to the

event. You will also examine the Timer object, used by the Ticker class to obtain a pulse once

each second.

Rework the digital clock application

1. Return to the Visual Studio 2008 window displaying the Delegates project.

2. Display the Ticker.cs fi le in the Code and Text Editor window.

This fi le contains the declaration of the Tick delegate type in the Ticker class:

public delegate void Tick(int hh, int mm, int ss);

3. Add a public event called tick of type Tick to the Ticker class, as shown in bold type in

the following code:

class Ticker
{
 public delegate void Tick(int hh, int mm, int ss);
 public event Tick tick;
 ...
}

4. Comment out the following delegate variable tickers near the bottom of the Ticker class

defi nition because it is now obsolete:

// private Tick tickers;

5. Comment out the Add and Remove methods from the Ticker class.

 The add and remove functionality is automatically provided by the += and –=

 operators of the event object.

Rework the digital clock application

328 Part III Creating Components

6. Locate the Ticker.Notify method. This method previously invoked an instance of the

Tick delegate called tickers. Modify it so that it calls the tick event instead. Don’t forget

to check whether tick is null before calling the event.

 The Notify method should look like this:

private void Notify(int hours, int minutes, int seconds)
{
 if (this.tick != null)
 this.tick(hours, minutes, seconds);
}

 Notice that the Tick delegate specifi es parameters, so the statement that raises the tick

event must specify arguments for each of these parameters.

7. Examine the defi nition of the ticking variable at the end of the class:

private DispatcherTimer ticking = new DispatcherTimer();

 The DispatcherTimer class can be programmed to raise an event repeatedly at a

 specifi ed interval.

8. Examine the constructor for the Ticker class:

public Ticker()
{
 this.ticking.Tick += new EventHandler(this.OnTimedEvent);
 this.ticking.Interval = new TimeSpan(0, 0, 1); // 1 second
 this.ticking.Start();
}

 The DispatcherTimer class exposes the Tick event, which can be raised at regu-

lar intervals according to the value of the Interval property. Setting Interval to the

TimeSpan shown causes the Tick event to be raised once a second. The timer starts

when you invoke the Start method. Methods that subscribe to the Tick event must

match the signature of the EventHandler delegate. The EventHandler delegate has the

same signature as the RoutedEventHandler delegate described earlier. The Ticker con-

structor creates an instance of this delegate referring to the OnTimedEvent method and

subscribes to the Tick event.

 The OnTimedEvent method in the Ticker class obtains the current time by examining the

static DateTime.Now property. The DateTime structure is part of the .NET Framework

class library. The Now property returns a DateTime structure. This structure has several

fi elds, including those used by the OnTimedEvent method shown in the following code

and called Hour, Minute, and Second. The OnTimedEvent method uses this information

in turn to raise the tick event through the Notify method:

private void OnTimedEvent(object source, EventArgs args)
{
 DateTime now = DateTime.Now;
 int hh = now.Hour;
 int mm = now.Minutes;

 Chapter 17 Interrupting Program Flow and Handling Events 329

 int ss = now.Seconds;
 Notify(hh, mm, ss);
}

 9. Display the Clock.cs fi le in the Code and Text Editor window.

 10. Modify the Clock.Start method so that the delegate is attached to the tick event of the

pulsed fi eld by using the += operator, like this:

public void Start()
{
 pulsed.tick += this.RefreshTime;
}

 11. Modify the Clock.Stop method so that the delegate is detached from the tick event of

the pulsed fi eld by using the –= operator, like this:

public void Stop()
{
 pulsed.tick -= this.RefreshTime;
}

 12. On the Debug menu, click Start Without Debugging.

 13. Click Start.

 The digital clock form displays the correct time and updates the display every second.

 14. Click Stop, and verify that the clock stops.

 15. Close the form, and return to Visual Studio 2008.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running and turn to Chapter 18.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Microsoft Visual C# 2008 Express Edition)

and save the project.

Chapter 17 Quick Reference
 To Do this

 Declare a delegate type Write the keyword delegate, followed by the return type, followed by the name

of the delegate type, followed by any parameter types. For example:

delegate void myDelegate();

330 Part III Creating Components
 Create an instance of a

delegate initialized with a

single specifi c method

Use the same syntax you use for a class or structure: Write the keyword new,

followed by the name of the type (the name of the delegate), followed by the

argument between parentheses. The argument must be a method whose signa-

ture exactly matches the signature of the delegate. For example:

delegate void myDelegate();
private void myMethod() { ... }
...
myDelegate del = new myDelegate(this.myMethod);

 Invoke a delegate Use the same syntax as a method call. For example:

myDelegate del;
...
del();

 Declare an event Write the keyword event, followed by the name of the type (the type must be a

delegate type), followed by the name of the event. For example:

delegate void myEvent();

class MyClass
{
 public event myDelegate MyEvent;
}

 Subscribe to an event Create a delegate instance (of the same type as the event), and attach the

 delegate instance to the event by using the += operator. For example:

class MyEventHandlingClass
{
 ...
 public void Start()
 {
 myClass.MyEvent += new myDelegate
 (this.eventHandlingMethod);
 }

 private void eventHandlingMethod()
 {
 ...
 }

 private MyClass myClass = new MyClass();
}

You can also get the compiler to generate the new delegate automatically

 simply by specifying the subscribing method:

public void Start()
{
 myClass.MyEvent += this.eventHandlingMethod;
}

 Chapter 17 Interrupting Program Flow and Handling Events 331
 Unsubscribe from an event Create a delegate instance (of the same type as the event), and detach the
 delegate instance from the event by using the –= operator. For example:

class MyEventHandlingClass
{
 ...
 public void Stop()
 {
 myClass.MyEvent -= new myDelegate
 (this.eventHandlingMethod);
 }

 private void eventHandlingMethod()
 {
 ...
 }
 private MyClass myClass = new MyClass();
}

Or:

public void Stop()
{
 myClass.MyEvent -= this.eventHandlingMethod;
}

 Raise an event Use parentheses exactly as if the event were a method. You must supply

 arguments to match the type of the event. Don’t forget to check whether the

event is null. For example:

class MyClass
{
 public event myDelegate MyEvent;
 ...
 private void RaiseEvent()
 {
 if (this.MyEvent != null)
 {
 this.MyEvent();
 }
 }
 ...
}

Chapter 18

Introducing Generics
 After completing this chapter, you will be able to:

 Defi ne a type-safe class by using generics.

 Create instances of a generic class based on types specifi ed as type parameters.

 Implement a generic interface.

 Defi ne a generic method that implements an algorithm independent of the type of

data on which it operates.

 In Chapter 8, “Understanding Values and References,” you learned how to use the object type

to refer to an instance of any class. You can use the object type to store a value of any type,

and you can defi ne parameters by using the object type when you need to pass values of

any type into a method. A method can also return values of any type by specifying object as

the return type. Although this practice is very fl exible, it puts the onus on the programmer

to remember what sort of data is actually being used and can lead to run-time errors if the

 programmer makes a mistake. In this chapter, you will learn about generics, a feature that has

been designed to help you prevent that kind of mistake.

The Problem with objects
 To understand generics, it is worth looking in detail at the problems they are designed to

solve, specifi cally when using the object type.

 You can use the object type to refer to a value or variable of any type. All reference types

 automatically inherit (either directly or indirectly) from the System.Object class in the

Microsoft .NET Framework. You can use this information to create highly generalized classes

and methods. For example, many of the classes in the System.Collections namespace exploit

this fact, so you can create collections holding almost any type of data. (You have already

been introduced to the collection classes in Chapter 10, “Using Arrays and Collections.”) By

homing in on one particular collection class as a detailed example, you will also notice in the
 333

334 Part III Creating Components
System.Collections.Queue class that you can create queues containing practically anything.

The following code example shows how to create and manipulate a queue of Circle objects:

using System.Collections;
...
Queue myQueue = new Queue();
Circle myCircle = new Circle();
myQueue.Enqueue(myCircle);
...
myCircle = (Circle)myQueue.Dequeue();

 The Enqueue method adds an object to the head of a queue, and the Dequeue method

 removes the object at the other end of the queue. These methods are defi ned like this:

public void Enqueue(object item);
public object Dequeue();

 Because the Enqueue and Dequeue methods manipulate objects, you can operate on queues

of Circles, PhoneBooks, Clocks, or any of the other classes you have seen in earlier exercises in

this book. However, it is important to notice that you have to cast the value returned by the

Dequeue method to the appropriate type because the compiler will not perform the conver-

sion from the object type automatically. If you don’t cast the returned value, you will get the

compiler error “Cannot implicitly convert type ‘object’ to ‘Circle’. ”

 This need to perform an explicit cast denigrates much of the fl exibility afforded by the object
type. It is very easy to write code such as this:

Queue myQueue = new Queue();
Circle myCircle = new Circle();
myQueue.Enqueue(myCircle);
...
Clock myClock = (Clock)myQueue.Dequeue(); // run-time error

 Although this code will compile, it is not valid and throws a System.InvalidCastException at

run time. The error is caused by trying to store a reference to a Circle in a Clock variable, and

the two types are not compatible. This error is not spotted until run time because the com-

piler does not have enough information to perform this check at compile time. The real type

of the object being dequeued becomes apparent only when the code runs.

 Another disadvantage of using the object approach to create generalized classes and meth-

ods is that it can use additional memory and processor time if the runtime needs to convert

an object to a value type and back again. Consider the following piece of code that manipu-

lates a queue of int variables:

Queue myQueue = new Queue();
int myInt = 99;
myQueue.Enqueue(myInt); // box the int to an object
...
myInt = (int)myQueue.Dequeue(); // unbox the object to an int

 Chapter 18 Introducing Generics 335
 The Queue data type expects the items it holds to be reference types. Enqueueing a value

type, such as an int, requires it to be boxed to convert it to a reference type. Similarly, de-

queueing into an int requires the item to be unboxed to convert it back to a value type. See

the sections titled “Boxing” and “Unboxing” in Chapter 8 for more details. Although boxing

and unboxing happen transparently, they add a performance overhead because they involve

dynamic memory allocations. This overhead is small for each item, but it adds up when a

program creates queues of large numbers of value types.

The Generics Solution
 C# provides generics to remove the need for casting, improve type safety, reduce the

amount of boxing required, and make it easier to create generalized classes and methods.

Generic classes and methods accept type parameters, which specify the type of objects that

they operate on. The .NET Framework class library includes generic versions of many of the

collection classes and interfaces in the System.Collections.Generic namespace. The following

code example shows how to use the generic Queue class found in this namespace to create a

queue of Circle objects:

using System.Collections.Generic;
...
Queue<Circle> myQueue = new Queue<Circle>();
Circle myCircle = new Circle();
myQueue.Enqueue(myCircle);
...
myCircle = myQueue.Dequeue();

 There are two new things to note about the code in the preceding example:

 The use of the type parameter between the angle brackets, <Circle>, when declaring

the myQueue variable

 The lack of a cast when executing the Dequeue method

 The type parameter in angle brackets specifi es the type of objects accepted by the queue.

All references to methods in this queue will automatically expect to use this type rather

than object, rendering unnecessary the cast to the Circle type when invoking the Dequeue

method. The compiler will check to ensure that types are not accidentally mixed and will

generate an error at compile time rather than at run time if you try to dequeue an item from

 circleQueue into a Clock object, for example.

 If you examine the description of the generic Queue class in the Microsoft Visual Studio 2008

documentation, you will notice that it is defi ned as follows:

public class Queue<T> : ...

336 Part III Creating Components
 The T identifi es the type parameter and acts as a placeholder for a real type at compile

time. When you write code to instantiate a generic Queue, you provide the type that should

be substituted for T (Circle in the preceding example). Furthermore, if you then look at the

methods of the Queue<T> class, you will observe that some of them, such as Enqueue and

Dequeue, specify T as a parameter type or return value:

public void Enqueue(T item);
public T Dequeue();

 The type parameter, T, will be replaced with the type you specifi ed when you declared the

queue. What is more, the compiler now has enough information to perform strict type

checking when you build the application and can trap any type mismatch errors early.

 You should also be aware that this substitution of T for a specifi ed type is not simply a textual

replacement mechanism. Instead, the compiler performs a complete semantic substitution so

that you can specify any valid type for T. Here are more examples:

struct Person
{
 ...
}
...
Queue<int> intQueue = new Queue<int>();
Queue<Person> personQueue = new Queue<Person>();
Queue<Queue<int>> queueQueue = new Queue<Queue<int>>();

 The fi rst two examples create queues of value types, while the third creates a queue of

queues (of ints). For example, for the intQueue variable the compiler will also generate the

following versions of the Enqueue and Dequeue methods:

public void Enqueue(int item);
public int Dequeue();

 Contrast these defi nitions with those of the nongeneric Queue class shown in the preced-

ing section. In the methods derived from the generic class, the item parameter to Enqueue is

passed as a value type that does not require boxing. Similarly, the value returned by Dequeue

is also a value type that does not need to be unboxed.

 It is also possible for a generic class to have multiple type parameters. For example, the ge-

neric System.Collections.Generic.Dictionary class expects two type parameters: one type for

keys and another for the values. The following defi nition shows how to specify multiple type

parameters:

public class Dictionary<TKey, TValue>

 A dictionary provides a collection of key/value pairs. You store values (type TValue) with

an associated key (type TKey) and then retrieve them by specifying the key to look up. The

 Chapter 18 Introducing Generics 337
Dictionary class provides an indexer that allows you to access items by using array notation. It

is defi ned like this:

public virtual TValue this[TKey key] { get; set; }

 Notice that the indexer accesses values of type TValue by using a key of type TKey. To create

and use a dictionary called directory containing Person values identifi ed by string keys, you

could use the following code:

struct Person
{
 ...
}
...
Dictionary<string, Person> directory = new Dictionary<string, Person>();
Person john = new Person();
directory[“John”] = john;
...
Person author = directory[“John”];

 As with the generic Queue class, the compiler will detect attempts to store values other

than Person structures in the directory, as well as ensure that the key is always a string value.

For more information about the Dictionary class, you should read the Visual Studio 2008

documentation.

 Note You can also defi ne generic structures and interfaces by using the same type–parameter

syntax as generic classes.

Generics vs. Generalized Classes
 It is important to be aware that a generic class that uses type parameters is different from

a generalized class designed to take parameters that can be cast to different types. For ex-

ample, the System.Collections.Queue class is a generalized class. There is a single implementa-

tion of this class, and its methods take object parameters and return object types. You can use

this class with ints, strings, and many other types; in each case, you are using instances of the

same class.

 Compare this with the System.Collections.Generic.Queue<T> class. Each time you use this class

with a type parameter (such as Queue<int> or Queue<string>) you actually cause the com-

piler to generate an entirely new class that happens to have functionality defi ned by the ge-

neric class. You can think of a generic class as one that defi nes a template that is then used by

the compiler to generate new type-specifi c classes on demand. The type-specifi c versions of

a generic class (Queue<int>, Queue<string>, and so on) are referred to as constructed types,
and you should treat them as distinctly different types (albeit ones that have a similar set of

methods and properties).

338 Part III Creating Components
Generics and Constraints
 Occasionally, you will want to ensure that the type parameter used by a generic class

identifi es a type that provides certain methods. For example, if you are defi ning a

PrintableCollection class, you might want to ensure that all objects stored in the class have a

Print method. You can specify this condition by using a constraint.

 By using a constraint, you can limit the type parameters of a generic class to those that

implement a particular set of interfaces, and therefore provide the methods defi ned by those

interfaces. For example, if the IPrintable interface defi ned the Print method, you could create

the PrintableCollection class like this:

public class PrintableCollection<T> where T : IPrintable

 When you build this class with a type parameter, the compiler will check to ensure that the

type used for T actually implements the IPrintable interface and will stop with a compilation

error if it doesn’t.

Creating a Generic Class
 The .NET Framework class library contains a number of generic classes readily available for

you. You can also defi ne your own generic classes, which is what you will do in this section.

Before you do this, I provide a bit of background theory.

The Theory of Binary Trees
 In the following exercises, you will defi ne and use a class that represents a binary tree. This

is a practical exercise because this class happens to be one that is missing from the System.
Collections.Generic namespace. A binary tree is a useful data structure used for a variety of

operations, including sorting and searching through data very quickly. There are volumes

written on the minutiae of binary trees, but it is not the purpose of this book to cover binary

trees in detail. Instead, we just look at the pertinent details. If you are interested, you should

consult a book such as The Art of Computer Programming, Volume 3: Sorting and Searching
by Donald E. Knuth (Addison-Wesley Professional, 2nd edition, 1998).

 A binary tree is a recursive (self-referencing) data structure that can either be empty or con-

tain three elements: a datum, which is typically referred to as the node, and two subtrees,

which are themselves binary trees. The two subtrees are conventionally called the left subtree

and the right subtree because they are typically depicted to the left and right of the node,

respectively. Each left subtree or right subtree is either empty or contains a node and other

subtrees. In theory, the whole structure can continue ad infi nitum. Figure 18-1 shows the

structure of a small binary tree.

 Chapter 18 Introducing Generics 339
FIGURE 18-1 A binary tree.

 The real power of binary trees becomes evident when you use them for sorting data. If you

start with an unordered sequence of objects of the same type, you can construct an ordered

binary tree and then walk through the tree to visit each node in an ordered sequence. The

algorithm for inserting an item I into an ordered binary tree T is shown here:

If the tree, T, is empty
Then
 Construct a new tree T with the new item I as the node, and empty left and
 right subtrees
Else
 Examine the value of the current node, N, of the tree, T
 If the value of N is greater than that of the new item, I
 Then
 If the left subtree of T is empty
 Then
 Construct a new left subtree of T with the item I as the node, and
 empty left and right subtrees
 Else
 Insert I into the left subtree of T
 End If
 Else
 If the right subtree of T is empty
 Then
 Construct a new right subtree of T with the item I as the node, and
 empty left and right subtrees
 Else
 Insert I into the right subtree of T
 End If
 End If
End If

340 Part III Creating Components
 Notice that this algorithm is recursive, calling itself to insert the item into the left or right

subtree depending on how the value of the item compares with the current node in the tree.

 Note The defi nition of the expression greater than depends on the type of data in the item and

node. For numeric data, greater than can be a simple arithmetic comparison, for text data it can

be a string comparison, but other forms of data must be given their own means of comparing

values. This is discussed in more detail when you implement a binary tree in the upcoming

 section titled “Building a Binary Tree Class by Using Generics.”

 If you start with an empty binary tree and an unordered sequence of objects, you can

 iterate through the unordered sequence, inserting each object into the binary tree by using

this algorithm, resulting in an ordered tree. Figure 18-2 shows the steps in the process for

 constructing a tree from a set of fi ve integers.

FIGURE 18-2 Constructing an ordered binary tree.

 After you have built an ordered binary tree, you can display its contents in sequence by

 visiting each node in turn and printing the value found. The algorithm for achieving this task

is also recursive:

If the left subtree is not empty
Then
 Display the contents of the left subtree
End If
Display the value of the node
If the right subtree is not empty

 Chapter 18 Introducing Generics 341
Then
 Display the contents of the right subtree
End If

 Figure 18-3 shows the steps in the process for outputting the tree constructed in Figure 18-2.

Notice that the integers are now displayed in ascending order.

FIGURE 18-3 Printing an ordered binary tree.

Building a Binary Tree Class by Using Generics
 In the following exercise, you will use generics to defi ne a binary tree class capable of holding

almost any type of data. The only restriction is that the data type must provide a means of

comparing values between different instances.

 The binary tree class is a class that you might fi nd useful in many different applications.

Therefore, you will implement it as a class library rather than as an application in its own

right. You can then reuse this class elsewhere without having to copy the source code and

 recompile it. A class library is a set of compiled classes (and other types such as structures

and delegates) stored in an assembly. An assembly is a fi le that usually has the .dll suffi x.

Other projects and applications can make use of the items in a class library by adding a refer-

ence to its assembly and then bringing its namespaces into scope with using statements. You

will do this when you test the binary tree class.

342 Part III Creating Components
The System.IComparable and System.IComparable<T> Interfaces
 If you need to create a class that requires you to be able to compare values according to

some natural (or possibly unnatural) ordering, you should implement the IComparable

interface. This interface contains a method called CompareTo, which takes a single param-

eter specifying the object to be compared with the current instance and returns an inte-

ger that indicates the result of the comparison as shown in the following table.

 Value Meaning

 Less than 0 The current instance is less than the value of the parameter.

 0 The current instance is equal to the value of the parameter.

 Greater than 0 The current instance is greater than the value of the parameter.

 As an example, consider the Circle class that was described in Chapter 7, “Creating and

Managing Classes and Objects,” and reproduced here:

class Circle
{
 public Circle(int initialRadius)
 {
 radius = initialRadius;
 }

 public double Area()
 {
 return Math.PI * radius * radius;
 }

 private double radius;
}

 You can make the Circle class “comparable” by implementing the System.IComparable

interface and providing the CompareTo method. In the example shown, the CompareTo

method compares Circle objects based on their areas. A circle with a larger area is

 considered to be greater than a circle with a smaller area.

class Circle : System.IComparable
{
 ...
 public int CompareTo(object obj)
 {
 Circle circObj = (Circle)obj; // cast the parameter to its real type
 if (this.Area() == circObj.Area())
 return 0;

 if (this.Area() > circObj.Area())
 return 1;

 Chapter 18 Introducing Generics 343
 return -1;
 }
}

 If you examine the System.IComparable interface, you will see that its parameter is

defi ned as an object. However, this approach is not type-safe. To understand why this

is so, consider what happens if you try to pass something that is not a Circle to the

CompareTo method. The System.IComparable interface requires the use of a cast to be

able to access the Area method. If the parameter is not a Circle but some other type

of object, this cast will fail. However, the System namespace also defi nes the generic

IComparable<T> interface, which contains the following methods:

int CompareTo(T other);
bool Equals(T other);

 Notice that there is an additional method in this interface called Equals, which should

return true if both instances are equals and false if they are not equals.

 Also notice that these methods take a type parameter (T) rather than an object and,

therefore, are much safer than is the nongeneric version of the interface. The following

code shows how you can implement this interface in the Circle class:

class Circle : System.IComparable<Circle>
{
 ...
 public int CompareTo(Circle other)
 {
 if (this.Area() == other.Area())
 return 0;

 if (this.Area() > other.Area())
 return 1;

 return -1;
 }

 public bool Equals(Circle other)
 {
 return (this.CompareTo(other) == 0);
 }
}

 The parameters for the CompareTo and Equals methods must match the type speci-

fi ed in the interface, IComparable<Circle>. In general, it is preferable to implement the

System.IComparable<T> interface rather than the System.IComparable interface. You

can also implement both just as many of the types in the .NET Framework do.

344 Part III Creating Components

Create the Tree<TItem> class

1. Start Visual Studio 2008 if it is not already running.

2. If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following tasks to create a new class library project:

2.1. On the File menu, point to New, and then click Project.

2.2. In the New Project dialog box, select the Class Library template.

2.3. Set the Name to BinaryTree and set the Location to \Microsoft Press\Visual CSharp
Step By Step\Chapter 18 under your Documents folder.

2.4. Click OK.

3. If you are using Microsoft Visual C# 2008 Express Edition, perform the following tasks

to create a new class library project:

3.1. On the Tools menu, click Options.

3.2. In the Options dialog box, click Projects and Solutions in the tree view in the left

pane.

3.3. In the right pane, in the Visual Studio projects location text box, specify the

 location \Microsoft Press\Visual CSharp Step By Step\Chapter 18 folder under your

Documents folder.

3.4. Click OK.

3.5. On the File menu, click New Project.

3.6. In the New Project dialog box, click the Class Library icon.

3.7. In the Name fi eld, type BinaryTree.

3.8. Click OK.

4. In Solution Explorer, right-click Class1.cs and change the name of the fi le to Tree.cs.

Allow Visual Studio to change the name of the class as well as the name of the fi le when

prompted.

5. In the Code and Text Editor window, change the defi nition of the Tree class to

Tree<TItem>, as shown in bold type in the following code:

public class Tree<TItem>
{
}

Create the Tree<TItem> class

 Chapter 18 Introducing Generics 345

6. In the Code and Text Editor window, modify the defi nition of the Tree<TItem> class as

follows in bold type to specify that the type parameter TItem must denote a type that

implements the generic IComparable<TItem> interface.

 The modifi ed defi nition of the Tree<TItem> class should look like this:

public class Tree<TItem> where TItem : IComparable<TItem>
{
}

7. Add three public, automatic properties to the Tree<TItem> class: a TItem property

called NodeData and two Tree<TItem> properties called LeftTree and RightTree, as

 follows in bold type:

public class Tree<TItem> where TItem : IComparable<TItem>
{
 public TItem NodeData { get; set; }
 public Tree<TItem> LeftTree { get; set; }
 public Tree<TItem> RightTree { get; set; }
}

8. Add a constructor to the Tree<TItem> class that takes a single TItem parameter called

nodeValue. In the constructor, set the NodeData property to nodeValue, and initialize the

LeftTree and RightTree properties to null, as shown in bold type in the following code:

public class Tree<TItem> where TItem : IComparable<TItem>
{
 public Tree(TItem nodeValue)
 {
 this.NodeData = nodeValue;
 this.LeftTree = null;
 this.RightTree = null;
 }
 ...
}

 Note Notice that the name of the constructor does not include the type parameter; it is

called Tree, and not Tree<TItem>.

9. Add a public method called Insert to the Tree<TItem> class as shown in bold type in the

following code. This method will insert a TItem value into the tree.

 The method defi nition should look like this:

public class Tree<TItem> where TItem: IComparable<TItem>
{
 ...
 public void Insert(TItem newItem)
 {
 }
 ...
}

346 Part III Creating Components

 The Insert method will implement the recursive algorithm described earlier for creating

an ordered binary tree. The programmer will have used the constructor to create the

initial node of the tree (there is no default constructor), so the Insert method can as-

sume that the tree is not empty. The part of the algorithm after checking whether the

tree is empty is reproduced here to help you understand the code you will write for the

Insert method in the following steps:

...
Examine the value of the node, N, of the tree, T
If the value of N is greater than that of the new item, I
Then
 If the left subtree of T is empty
 Then
 Construct a new left subtree of T with the item I as the node, and empty
 left and right subtrees
 Else
 Insert I into the left subtree of T
End If
...

10. In the Insert method, add a statement that declares a local variable of type TItem, called

currentNodeValue. Initialize this variable to the value of the NodeData property of the

tree, as shown here:

public void Insert(TItem newItem)
{
 TItem currentNodeValue = this.NodeData;
}

11. Add the following if-else statement shown in bold type to the Insert method after

the defi nition of the currentNodeValue variable. This statement uses the CompareTo

method of the IComparable<T> interface to determine whether the value of the current

node is greater than the new item is:

public void Insert(TItem newItem)
{
 TItem currentNodeValue = this.NodeData;
 if (currentNodeValue.CompareTo(newItem) > 0)
 {
 // Insert the new item into the left subtree
 }
 else
 {
 // Insert the new item into the right subtree
 }
}

12. Replace the // Insert the new item into the left subtree comment with the

following block of code:

if (this.LeftTree == null)
{

 Chapter 18 Introducing Generics 347

 this.LeftTree = new Tree<TItem>(newItem);
}
else
{
 this.LeftTree.Insert(newItem);
}

 These statements check whether the left subtree is empty. If so, a new tree is created

using the new item and attached as the left subtree of the current node; otherwise,

the new item is inserted into the existing left subtree by calling the Insert method

recursively.

13. Replace the // Insert the new item into the right subtree comment with the

equivalent code that inserts the new node into the right subtree:

if (this.RightTree == null)
{
 this.RightTree = new Tree<TItem>(newItem);
}
else
{
 this.RightTree.Insert(newItem);
}

14. Add another public method called WalkTree to the Tree<TItem> class after the Insert
method. This method will walk through the tree, visiting each node in sequence and

printing out its value.

 The method defi nition should look like this:

public void WalkTree()
{
}

15. Add the following statements to the WalkTree method. These statements implement

the algorithm described earlier for printing the contents of a binary tree:

if (this.LeftTree != null)
{
 this.LeftTree.WalkTree();
}

Console.WriteLine(this.NodeData.ToString());

if (this.RightTree != null)
{
 this.RightTree.WalkTree();
}

16. On the Build menu, click Build Solution. The class should compile cleanly, but correct

any errors that are reported and rebuild the solution if necessary.

17. If you are using Visual C# 2008 Express Edition, on the File menu, click Save All. If the

Save Project dialog box appears, click Save.

348 Part III Creating Components

 In the next exercise, you will test the Tree<TItem> class by creating binary trees of integers

and strings.

Test the Tree<TItem> class

1. In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click New
Project.

 Note Make sure you right-click the BinaryTree solution rather than the BinaryTree project.

2. Add a new project using the Console Application template. Name the project

BinaryTreeTest. Set the Location to \Microsoft Press\Visual CSharp Step By Step\Chapter
18 under your Documents folder, and then click OK.

Note Remember that a Visual Studio 2008 solution can contain more than one project.

You are using this feature to add a second project to the BinaryTree solution for testing the

Tree<TItem> class. This is the recommended way of testing class libraries.

3. Ensure that the BinaryTreeTest project is selected in Solution Explorer. On the Project
menu, click Set as Startup Project.

The BinaryTreeTest project is highlighted in Solution Explorer. When you run the

 application, this is the project that will actually execute.

4. Ensure that the BinaryTreeTest project is still selected in Solution Explorer. On the Project
menu, click Add Reference. In the Add Reference dialog box, click the Projects tab. Select

the BinaryTree project, and then click OK.

 The BinaryTree assembly appears in the list of references for the BinaryTreeTest proj-

ect in Solution Explorer. You will now be able to create Tree<TItem> objects in the

BinaryTreeTest project.

Note If the class library project is not part of the same solution as the project that uses it,

you must add a reference to the assembly (the .dll fi le) and not to the class library project.

You do this by selecting the assembly from the Browse tab in the Add Reference dialog

box. You will use this technique in the fi nal set of exercises in this chapter.

5. In the Code and Text Editor window displaying the Program class, add the following

using directive to the list at the top of the class:

using BinaryTree;

Test the Tree<TItem> class

 Chapter 18 Introducing Generics 349

6. Add the statements in bold type in the following code to the Main method:

static void Main(string[] args)
{
 Tree<int> tree1 = new Tree<int>(10);
 tree1.Insert(5);
 tree1.Insert(11);
 tree1.Insert(5);
 tree1.Insert(-12);
 tree1.Insert(15);
 tree1.Insert(0);
 tree1.Insert(14);
 tree1.Insert(-8);
 tree1.Insert(10);
 tree1.Insert(8);
 tree1.Insert(8);
 tree1.WalkTree();
}

 These statements create a new binary tree for holding ints. The constructor creates an

initial node containing the value 10. The Insert statements add nodes to the tree, and

the WalkTree method prints out the contents of the tree, which should appear sorted in

ascending order.

 Note Remember that the int keyword in C# is actually just an alias for the System.Int32

type; whenever you declare an int variable, you are actually declaring a struct variable of

type System.Int32. The System.Int32 type implements the IComparable and

IComparable<T> interfaces, which is why you can create Tree<int> variables. Similarly, the

string keyword is an alias for System.String, which also implements IComparable and

IComparable<T>.

7. On the Build menu, click Build Solution. Verify that the solution compiles, and correct

any errors if necessary.

8. Save the project, and then on the Debug menu, click Start Without Debugging.

 The program runs and displays the values in the following sequence:

 –12, –8, 0, 5, 5, 8, 8, 10, 10, 11, 14, 15

9. Press the Enter key to return to Visual Studio 2008.

10. Add the following statements shown in bold type to the end of the Main method in the

Program class, after the existing code:

static void Main(string[] args)
{
 ...
 Tree<string> tree2 = new Tree<string>(“Hello”);
 tree2.Insert(“World”);
 tree2.Insert(“How”);
 tree2.Insert(“Are”);
 tree2.Insert(“You”);

350 Part III Creating Components
 tree2.Insert(“Today”);
 tree2.Insert(“I”);
 tree2.Insert(“Hope”);
 tree2.Insert(“You”);
 tree2.Insert(“Are”);
 tree2.Insert(“Feeling”);
 tree2.Insert(“Well”);
 tree2.Insert(“!”);
 tree2.WalkTree();
}

 These statements create another binary tree for holding strings, populate it with some

test data, and then print the tree. This time, the data is sorted alphabetically.

 11. On the Build menu, click Build Solution. Verify that the solution compiles, and correct

any errors if necessary.

 12. On the Debug menu, click Start Without Debugging.

 The program runs and displays the integer values as before, followed by the strings in

the following sequence:

 !, Are, Are, Feeling, Hello, Hope, How, I, Today, Well, World, You, You

 13. Press the Enter key to return to Visual Studio 2008.

Creating a Generic Method
 As well as defi ning generic classes, you can also use the .NET Framework to create generic

methods.

 With a generic method, you can specify parameters and the return type by using a type

parameter in a manner similar to that used when defi ning a generic class. In this way, you

can defi ne generalized methods that are type-safe and avoid the overhead of casting (and

boxing in some cases). Generic methods are frequently used in conjunction with generic

classes—you need them for methods that take a generic class as a parameter or that have a

return type that is a generic class.

 You defi ne generic methods by using the same type parameter syntax that you use when

creating generic classes (you can also specify constraints). For example, you can call the fol-

lowing generic Swap<T> method to swap the values in its parameters. Because this func-

tionality is useful regardless of the type of data being swapped, it is helpful to defi ne it as a

generic method:

static void Swap<T>(ref T first, ref T second)
{
 T temp = first;
 first = second;
 second = temp;
}

 Chapter 18 Introducing Generics 351
You invoke the method by specifying the appropriate type for its type parameter. The

 following examples show how to invoke the Swap<T> method to swap over two ints and two

strings:

int a = 1, b = 2;
Swap<int>(ref a, ref b);
...
string s1 = “Hello”, s2 = “World”;
Swap<string>(ref s1, ref s2);

 Note Just as instantiating a generic class with different type parameters causes the compiler to

generate different types, each distinct use of the Swap<T> method causes the compiler to gener-

ate a different version of the method. Swap<int> is not the same method as Swap<string>; both

methods just happen to have been generated from the same generic method, so they exhibit the

same behavior, albeit over different types.

Defi ning a Generic Method to Build a Binary Tree
 The preceding exercise showed you how to create a generic class for implementing a binary

tree. The Tree<TItem> class provides the Insert method for adding data items to the tree.

However, if you want to add a large number of items, repeated calls to the Insert method

are not very convenient. In the following exercise, you will defi ne a generic method called

InsertIntoTree that you can use to insert a list of data items into a tree with a single method

call. You will test this method by using it to insert a list of characters into a tree of characters.

Write the InsertIntoTree method

 1. Using Visual Studio 2008, create a new project by using the Console Application

template. In the New Project dialog box, name the project BuildTree. If you are us-

ing Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional Edition,

set the Location to \Microsoft Press\Visual CSharp Step By Step\Chapter 18 under your

Documents folder, and select Create a new Solution from the Solution drop-down list.

Click OK.

 2. On the Project menu, click Add Reference. In the Add Reference dialog box, click the

Browse tab. Move to the folder \Microsoft Press\Visual CSharp Step By Step\Chapter 18
\BinaryTree\BinaryTree\bin\Debug, click BinaryTree.dll, and then click OK.

The BinaryTree assembly is added to the list of references shown in Solution Explorer.

 3. In the Code and Text Editor window displaying the Program.cs fi le, add the following

 using directive to the top of the Program.cs fi le:

using BinaryTree;

 This namespace contains the Tree<TItem> class.

Write the InsertIntoTree method

352 Part III Creating Components

4. Add a method called InsertIntoTree to the Program class after the Main method. This

should be a static method that takes a Tree<TItem> variable and a params array of
TItem elements called data.

 The method defi nition should look like this:

static void InsertIntoTree<TItem>(Tree<TItem> tree, params TItem[] data)
{
}

 Tip An alternative way of implementing this method is to create an extension method of

the Tree<TItem> class by prefi xing the Tree<TItem> parameter with the this keyword and

defi ning the InsertIntoTree method in a static class, like this:

public static class TreeMethods
{
 public static void InsertIntoTree<TItem>(this Tree<TItem> tree,
 params TItem[] data)
 {
 ...
 }
 ...
}

 The principal advantage of this approach is that you can invoke the InsertIntoTree method

directly on a Tree<TItem> object rather than pass the Tree<TItem> in as a parameter.

However, for this exercise, we will keep things simple.

5. The TItem type used for the elements being inserted into the binary tree must imple-

ment the IComparable<TItem> interface. Modify the defi nition of the InsertIntoTree

method and add the appropriate where clause, as shown in bold type in the following

code.

static void InsertIntoTree<TItem>(Tree<TItem> tree, params TItem[] data) where TItem :
IComparable<TItem>
{
}

6. Add the following statements shown in bold type to the InsertIntoTree method. These

statements check to make sure that the user has actually passed some parameters into

the method (the data array might be empty), and then they iterate through the params
list, adding each item to the tree by using the Insert method. The tree is passed back as

the return value:

static void InsertIntoTree<TItem>(Tree<TItem> tree, params TItem[] data) where TItem :
IComparable<TItem>
{
 if (data.Length == 0)
 throw new ArgumentException(“Must provide at least one data value”);

 Chapter 18 Introducing Generics 353

 foreach (TItem datum in data)
 {
 tree.Insert(datum);
 }
}

Test the InsertIntoTree method

1. In the Main method of the Program class, add the following statements shown in bold

type that create a new Tree for holding character data, populate it with some sample

data by using the InsertIntoTree method, and then display it by using the WalkTree

method of Tree:

static void Main(string[] args)
{
 Tree<char> charTree = new Tree<char>(‘M’);
 InsertIntoTree<char>(charTree, ‘X’, ‘A’, ‘M’, ‘Z’, ‘Z’, ‘N’);
 charTree.WalkTree();
}

2. On the Build menu, click Build Solution. Verify that the solution compiles, and correct

any errors if necessary.

3. On the Debug menu, click Start Without Debugging.

 The program runs and displays the character values in the following order:

 A, M, M, N, X, Z, Z

4. Press the Enter key to return to Visual Studio 2008.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running and turn to Chapter 19.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Test the InsertIntoTree method

354 Part III Creating Components
Chapter 18 Quick Reference
 To Do this

 Instantiate an object by using a

generic type

Specify the appropriate generic type parameter. For example:

Queue<int> myQueue = new Queue<int>();

 Create a new generic type Defi ne the class using a type parameter. For example:

public class Tree<TItem>
{
 ...
}

 Restrict the type that can be

substituted for the generic type

parameter

Specify a constraint by using a where clause when defi ning the

class. For example:

public class Tree<TItem>
where TItem : IComparable<TItem>
{
 ...
}

 Defi ne a generic method Defi ne the method by using type parameters. For example:

static void InsertIntoTree<TItem>
(Tree<TItem> tree, params TItem[] data)
{
 ...
}

 Invoke a generic method Provide types for each of the type parameters. For example:

InsertIntoTree<char>(charTree, ‘Z’, ‘X’);

Chapter 19

Enumerating Collections
 After completing this chapter, you will be able to:

 Manually defi ne an enumerator that can be used to iterate over the elements in a

collection.

 Implement an enumerator automatically by creating an iterator.

 Provide additional iterators that can step through the elements of a collection in

 different sequences.

 In Chapter 10, “Using Arrays and Collections,” you learned about arrays and collection classes

for holding sequences or sets of data. Chapter 10 also introduced the foreach statement that

you can use for stepping through, or iterating over, the elements in a collection. At the time,

you just used the foreach statement as a quick and convenient way of accessing the contents

of a collection, but now it is time to learn a little more about how this statement actually

works. This topic becomes important when you start defi ning your own collection classes.

Fortunately, C# provides iterators to help you automate much of the process.

Enumerating the Elements in a Collection
 In Chapter 10, you saw an example of using the foreach statement to list the items in a simple

array. The code looked like this:

int[] pins = { 9, 3, 7, 2 };
foreach (int pin in pins)
{
 Console.WriteLine(pin);
}

 The foreach construct provides an elegant mechanism that greatly simplifi es the code that

you need to write, but it can be exercised only under certain circumstances—you can use

foreach only to step through an enumerable collection. So, what exactly is an enumerable

collection? The quick answer is that it is a collection that implements the System.Collections.
IEnumerable interface.

 Note Remember that all arrays in C# are actually instances of the System.Array class. The

System.Array class is a collection class that implements the IEnumerable interface.
 355

356 Part III Creating Components
 The IEnumerable interface contains a single method called GetEnumerator:

IEnumerator GetEnumerator();

 The GetEnumerator method should return an enumerator object that implements the System.
Collections.IEnumerator interface. The enumerator object is used for stepping through (enu-

merating) the elements of the collection. The IEnumerator interface specifi es the following

property and methods:

object Current { get; }
bool MoveNext();
void Reset();

 Think of an enumerator as a pointer pointing to elements in a list. Initially, the pointer points

before the fi rst element. You call the MoveNext method to move the pointer down to the

next (fi rst) item in the list; the MoveNext method should return true if there actually is an-

other item and false if there isn’t. You use the Current property to access the item currently

pointed to, and you use the Reset method to return the pointer back to before the fi rst item

in the list. By creating an enumerator by using the GetEnumerator method of a collection and

repeatedly calling the MoveNext method and retrieving the value of the Current property by

using the enumerator, you can move forward through the elements of a collection one item

at a time. This is exactly what the foreach statement does. So if you want to create your own

enumerable collection class, you must implement the IEnumerable interface in your collec-

tion class and also provide an implementation of the IEnumerator interface to be returned by

the GetEnumerator method of the collection class.

 Important At fi rst glance, it is easy to confuse the IEnumerable<T> and the IEnumerator<T>

interfaces because of the similarity of their names. Don’t get them mixed up.

 If you are observant, you will have noticed that the Current property of the IEnumerator in-

terface exhibits non-type-safe behavior in that it returns an object rather than a specifi c type.

However, you should be pleased to know that the Microsoft .NET Framework class library also

provides the generic IEnumerator<T> interface, which has a Current property that returns a

T instead. Likewise, there is also an IEnumerable<T> interface containing a GetEnumerator
method that returns an Enumerator<T> object. If you are building applications for the .NET

Framework version 2.0 or later, you should make use of these generic interfaces when defi n-

ing enumerable collections rather than using the nongeneric defi nitions.

 Note The IEnumerator<T> interface has some further differences from the IEnumerator
interface; it does not contain a Reset method but extends the IDisposable interface.

 Chapter 19 Enumerating Collections 357

Manually Implementing an Enumerator
In the next exercise, you will defi ne a class that implements the generic IEnumerator<T>

interface and create an enumerator for the binary tree class that you built in Chapter 18,

“Introducing Generics.” In Chapter 18, you saw how easy it is to traverse a binary tree and dis-

play its contents. You would therefore be inclined to think that defi ning an enumerator that

retrieves each element in a binary tree in the same order would be a simple matter. Sadly,

you would be mistaken. The main problem is that when defi ning an enumerator you need to

remember where you are in the structure so that subsequent calls to the MoveNext method

can update the position appropriately. Recursive algorithms, such as that used when walk-

ing a binary tree, do not lend themselves to maintaining state information between method

calls in an easily accessible manner. For this reason, you will fi rst preprocess the data in the

binary tree into a more amenable data structure (a queue) and actually enumerate this data

structure instead. Of course, this deviousness is hidden from the user iterating through the

elements of the binary tree!

Create the TreeEnumerator class

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the BinaryTree solution located in the \Microsoft Press\Visual CSharp Step by

Step\Chapter 19\BinaryTree folder in your Documents folder. This solution contains a

working copy of the BinaryTree project you created in Chapter 18.

3. Add a new class to the project: On the Project menu, click Add Class, select the Class
template, type TreeEnumerator.cs in the Name text box, and then click Add.

4. The TreeEnumerator class will generate an enumerator for a Tree<TItem> object. To

ensure that the class is typesafe, you must provide a type parameter and implement

the IEnumerator<T> interface. Also, the type parameter must be a valid type for the

Tree<TItem> object that the class enumerates, so it must be constrained to implement

the IComparable<TItem> interface.

 In the Code and Text Editor window displaying the TreeEnumerator.cs fi le, modify the

defi nition of the TreeEnumerator class to satisfy these requirements, as shown in bold

type in the following example.

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
}

Create the TreeEnumerator classr

358 Part III Creating Components

5. Add the following three private variables shown in bold type to the

TreeEnumerator<TItem> class:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
 private Tree<TItem> currentData = null;
 private TItem currentItem = default(TItem);
 private Queue<TItem> enumData = null;
}

 The currentData variable will be used to hold a reference to the tree being enumer-

ated, and the currentItem variable will hold the value returned by the Current property.

You will populate the enumData queue with the values extracted from the nodes in

the tree, and the MoveNext method will return each item from this queue in turn. The

default keyword is explained in the section titled “Initializing a Variable Defi ned with a

Type Parameter” later in this chapter.

6. Add a TreeEnumerator constructor that takes a single Tree<TItem> parameter called

data. In the body of the constructor, add a statement that initializes the currentData

variable to data:

class TreeEnumerator<TItem> : IEnumerator<TItem> where TItem : IComparable<TItem>
{
 public TreeEnumerator(Tree<TItem> data)
 {
 this.currentData = data;
 }
 ...
}

7. Add the following private method, called populate, to the TreeEnumerator<TItem> class

immediately after the constructor:

private void populate(Queue<TItem> enumQueue, Tree<TItem> tree)
{
 if (tree.LeftTree != null)
 {
 populate(enumQueue, tree.LeftTree);
 }

 enumQueue.Enqueue(tree.NodeData);

 if (tree.RightTree != null)
 {
 populate(enumQueue, tree.RightTree);
 }
}

 This method walks a binary tree, adding the data it contains to the queue. The algo-

rithm used is similar to that used by the WalkTree method in the Tree<TItem> class,

which was described in Chapter 18. The main difference is that rather than the method

outputting NodeData values to the screen, it stores these values in the queue.

 Chapter 19 Enumerating Collections 359

8. Return to the defi nition of the TreeEnumerator<TItem> class. Right-click anywhere in

the IEnumerator<TItem> interface in the class declaration, point to Implement Interface,

and then click Implement Interface Explicitly.

 This action generates stubs for the methods of the IEnumerator<TItem> interface and

the IEnumerator interface and adds them to the end of the class. It also generates the

Dispose method for the IDisposable interface.

 Note The IEnumerator<TItem> interface inherits from the IEnumerator and IDisposable

interfaces, which is why their methods also appear. In fact, the only item that belongs to

the IEnumerator<TItem> interface is the generic Current property. The MoveNext and

Reset methods belong to the nongeneric IEnumerator interface. The IDisposable interface

was described in Chapter 14, “Using Garbage Collection and Resource Management.”

9. Examine the code that has been generated. The bodies of the properties and methods

contain a default implementation that simply throws a NotImplementedException. You

will replace this code with a real implementation in the following steps.

10. Replace the body of the MoveNext method with the code shown in bold type here:

bool System.Collections.IEnumerator.MoveNext()
{
 if (this.enumData == null)
 {
 this.enumData = new Queue<TItem>();
 populate(this.enumData, this.currentData);
 }

 if (this.enumData.Count > 0)
 {
 this.currentItem = this.enumData.Dequeue();
 return true;
 }

 return false;
}

 The purpose of the MoveNext method of an enumerator is actually twofold. The fi rst

time it is called, it should initialize the data used by the enumerator and advance to the

fi rst piece of data to be returned. (Prior to MoveNext being called for the fi rst time, the

value returned by the Current property is undefi ned and should result in an exception.)

In this case, the initialization process consists of instantiating the queue and then calling

the populate method to fi ll the queue with data extracted from the tree.

 Subsequent calls to the MoveNext method should just move through data items until

there are no more left, dequeuing items from the queue until the queue is empty in

this example. It is important to bear in mind that MoveNext does not actually return

data items—that is the purpose of the Current property. All MoveNext does is update

360 Part III Creating Components

internal state in the enumerator (the value of the currentItem variable is set to the data

item extracted from the queue) for use by the Current property, returning true if there

is a next value and false otherwise.

11. Modify the defi nition of the get accessor of the generic Current property as follows:

TItem IEnumerator<TItem>.Current
{
 get
 {
 if (this.enumData == null)
 throw new InvalidOperationException
 (“Use MoveNext before calling Current”);

 return this.currentItem;
 }
}

 Important Be sure to add the code to the correct implementation of the Current
property. Leave the nongeneric version, System.Collections.IEnumerator.Current, with its

default implementation.

 The Current property examines the enumData variable to ensure that MoveNext has

been called. (This variable will be null prior to the fi rst call to MoveNext.) If this is not

the case, the property throws an InvalidOperationException—this is the conventional

mechanism used by .NET Framework applications to indicate that an operation cannot

be performed in the current state. If MoveNext has been called beforehand, it will have

updated the currentItem variable, so all the Current property needs to do is return the

value in this variable.

12. Locate the IDisposable.Dispose method. Comment out the throw new
NotImplementedException(); statement as follows in bold type. The enumera-

tor does not use any resources that require explicit disposal, so this method does not

need to do anything. It must still be present, however. For more information about the

Dispose method, refer to Chapter 14.

void IDisposable.Dispose()
{
 // throw new NotImplementedException();
}

13. Build the solution, and fi x any errors that are reported.

 Chapter 19 Enumerating Collections 361

Initializing a Variable Defi ned with a Type Parameter
You should have noticed that the statement that defi nes and initializes the currentItem

variable uses the default keyword. The currentItem variable is defi ned by using the type

parameter TItem. When the program is written and compiled, the actual type that will

be substituted for TItem might not be known—this issue is resolved only when the

code is executed. This makes it diffi cult to specify how the variable should be initialized.

The temptation is to set it to null. However, if the type substituted for TItem is a value

type, this is an illegal assignment. (You cannot set value types to null, only reference

types.) Similarly, if you set it to 0 in the expectation that the type will be numeric, this

will be illegal if the type used is actually a reference type. There are other possibilities

as well—TItem could be a boolean, for example. The default keyword solves this prob-

lem. The value used to initialize the variable will be determined when the statement is

executed; if TItem is a reference type, default(TItem) returns null; if TItem is numeric,

default(TItem) returns 0; if TItem is a boolean, default(TItem) returns false. If TItem is a

struct, the individual fi elds in the struct are initialized in the same way (reference fi elds

are set to null, numeric fi elds are set to 0, and boolean fi elds are set to false).

Implementing the IEnumerable Interface
In the following exercise, you will modify the binary tree class to implement the IEnumerable

interface. The GetEnumerator method will return a TreeEnumerator<TItem> object.

Implement the IEnumerable<TItem> interface in the Tree<TItem> class

1. In Solution Explorer, double-click the fi le Tree.cs to display the Tree<TItem> class in the

Code and Text Editor window.

2. Modify the defi nition of the Tree<TItem> class so that it implements the

IEnumerable<TItem> interface, as shown in bold type in the following code:

public class Tree<TItem> : IEnumerable<TItem> where TItem : IComparable<TItem>

Notice that constraints are always placed at the end of the class defi nition.

3. Right-click the IEnumerable<TItem> interface in the class defi nition, point to Implement
Interface, and then click Implement Interface Explicitly.

This action generates implementations of the IEnumerable<TItem>.GetEnumerator
and IEnumerable.GetEnumerator methods and adds them to the class. The non-

generic IEnumerable interface method is implemented because the generic

IEnumerable<TItem> interface inherits from IEnumerable.

Implement the IEnumerable<TItem> interface in the Tree<TItem> class

362 Part III Creating Components

4. Locate the generic IEnumerable<TItem>.GetEnumerator method near the end of the

class. Modify the body of the GetEnumerator() method, replacing the existing throw

statement as shown in bold type here:

IEnumerator<TItem> IEnumerable<TItem>.GetEnumerator()
{
 return new TreeEnumerator<TItem>(this);
}

 The purpose of the GetEnumerator method is to construct an enumerator object

for iterating through the collection. In this case, all you need to do is build a new

TreeEnumerator<TItem> object by using the data in the tree.

5. Build the solution.

 The project should compile cleanly, but correct any errors that are reported and rebuild

the solution if necessary.

 You will now test the modifi ed Tree<TItem> class by using a foreach statement to iterate

through a binary tree and display its contents.

Test the enumerator

1. In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click

New Project. Add a new project by using the Console Application template. Name the

project EnumeratorTest, set the Location to \Microsoft Press\Visual CSharp Step By Step\
Chapter 19 in your Documents folder, and then click OK.

2. Right-click the EnumeratorTest project in Solution Explorer, and then click Set as Startup
Project.

3. On the Project menu, click Add Reference. In the Add Reference dialog box, click the

Projects tab. Select the BinaryTree project, and then click OK.

 The BinaryTree assembly appears in the list of references for the EnumeratorTest project

in Solution Explorer.

4. In the Code and Text Editor window displaying the Program class, add the following

 using directive to the list at the top of the fi le:

using BinaryTree;

Test the enumerator

 Chapter 19 Enumerating Collections 363
 5. Add to the Main method the following statements shown in bold type that create and

populate a binary tree of integers:

static void Main(string[] args)
{
 Tree<int> tree1 = new Tree<int>(10);
 tree1.Insert(5);
 tree1.Insert(11);
 tree1.Insert(5);
 tree1.Insert(-12);
 tree1.Insert(15);
 tree1.Insert(0);
 tree1.Insert(14);
 tree1.Insert(-8);
 tree1.Insert(10);
}

 6. Add a foreach statement, as follows in bold type, that enumerates the contents of the

tree and displays the results:

static void Main(string[] args)
{
 ...
 foreach (int item in tree1)
 Console.WriteLine(item);
}

 7. Build the solution, correcting any errors if necessary.

 8. On the Debug menu, click Start Without Debugging.

 The program runs and displays the values in the following sequence:

 –12, –8, 0, 5, 5, 10, 10, 11, 14, 15

 9. Press Enter to return to Visual Studio 2008.

Implementing an Enumerator by Using an Iterator
 As you can see, the process of making a collection enumerable can become complex and

potentially error-prone. To make life easier, C# includes iterators that can automate much of

this process.

 An iterator is a block of code that yields an ordered sequence of values. Additionally, an

 iterator is not actually a member of an enumerable class. Rather, it specifi es the sequence

that an enumerator should use for returning its values. In other words, an iterator is just a de-

364 Part III Creating Components
scription of the enumeration sequence that the C# compiler can use for creating its own enu-

merator. This concept requires a little thought to understand it properly, so consider a basic

example before returning to binary trees and recursion.

A Simple Iterator
 The following BasicCollection<T> class illustrates the principles of implementing an iterator.

The class uses a List<T> object for holding data and provides the FillList method for populat-

ing this list. Notice also that the BasicCollection<T> class implements the IEnumerable<T>

 interface. The GetEnumerator method is implemented by using an iterator:

using System;
using System.Collections.Generic;
using System.Collections;

class BasicCollection<T> : IEnumerable<T>
{
 private List<T> data = new List<T>();

 public void FillList(params T [] items)
 {
 foreach (var datum in items)
 data.Add(datum);
 }

 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 foreach (var datum in data)
 yield return datum;
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 // Not implemented in this example
 }
}

 The GetEnumerator method appears to be straightforward, but it bears closer examina-

tion. The fi rst thing you should notice is that it doesn’t appear to return an IEnumerator<T>

type. Instead, it loops through the items in the data array, returning each item in turn. The

key point is the use of the yield keyword. The yield keyword indicates the value that should

be returned by each iteration. If it helps, you can think of the yield statement as calling a

temporary halt to the method, passing back a value to the caller. When the caller needs the

next value, the GetEnumerator method continues at the point it left off, looping around and

then yielding the next value. Eventually, the data is exhausted, the loop fi nishes, and the

GetEnumerator method terminates. At this point, the iteration is complete.

 Chapter 19 Enumerating Collections 365
 Remember that this is not a normal method in the usual sense. The code in the

GetEnumerator method defi nes an iterator. The compiler uses this code to generate an imple-

mentation of the IEnumerator<T> class containing a Current and a MoveNext method. This

implementation exactly matches the functionality specifi ed by the GetEnumerator method.

You don’t actually get to see this generated code (unless you decompile the assembly con-

taining the compiled code), but that is a small price to pay for the convenience and reduction

in code that you need to write. You can invoke the enumerator generated by the iterator in

the usual manner, as shown in this block of code:

BasicCollection<string> bc = new BasicCollection<string>();
bc.FillList(“Twas”, “brillig”, “and”, “the”, “slithy”, “toves”);
foreach (string word in bc)
 Console.WriteLine(word);

 This code simply outputs the contents of the bc object in this order:

 Twas, brillig, and, the, slithy, toves

 If you want to provide alternative iteration mechanisms presenting the data in a different

sequence, you can implement additional properties that implement the IEnumerable inter-

face and that use an iterator for returning data. For example, the Reverse property of the

BasicCollection<T> class, shown here, emits the data in the list in reverse order:

public IEnumerable<T> Reverse
{
 get
 {
 for (int i = data.Count - 1; i >= 0; i--)
 yield return data[i];
 }
}

 You can invoke this property as follows:

BasicCollection<string> bc = new BasicCollection<string>();
bc.FillList(“Twas”, “brillig”, “and”, “the”, “slithy”, “toves”);
foreach (string word in bc.Reverse)
 Console.WriteLine(word);

 This code outputs the contents of the bc object in reverse order:

 toves, slithy, the, and, brillig, Twas

366 Part III Creating Components

Defi ning an Enumerator for the Tree<TItem> Class by Using
an Iterator
In the next exercise, you will implement the enumerator for the Tree<TItem> class by using an

iterator. Unlike the preceding set of exercises, which required the data in the tree to be pre-

processed into a queue by the MoveNext method, you can defi ne an iterator that traverses

the tree by using the more natural recursive mechanism, similar to the WalkTree method dis-

cussed in Chapter 18.

Add an enumerator to the Tree<TItem> class

1. Using Visual Studio 2008, open the BinaryTree solution located in the \Microsoft Press

\Visual CSharp Step by Step\Chapter 19\IterarorBinaryTree folder in your Documents

folder. This solution contains another copy of the BinaryTree project you created in

Chapter 18.

2. Display the fi le Tree.cs in the Code and Text Editor window. Modify the defi nition of the

Tree<TItem> class so that it implements the IEnumerable<TItem> interface, as shown in

bold type here:

public class Tree<TItem> : IEnumerable<TItem> where TItem : IComparable<TItem>
{
 ...
}

3. Right-click the IEnumerable<TItem> interface in the class defi nition, point to Implement
Interface, and then click Implement Interface Explicitly.

The IEnumerable<TItem>.GetEnumerator and IEnumerable.GetEnumerator methods are

added to the class.

4. Locate the generic IEnumerable<TItem>.GetEnumerator method. Replace the contents

of the GetEnumerator method as shown in bold type in the following code:

IEnumerator<TItem> IEnumerable<TItem>.GetEnumerator()
{
 if (this.LeftTree != null)
 {
 foreach (TItem item in this.LeftTree)
 {
 yield return item;
 }
 }

 yield return this.NodeData;

Add an enumerator to the Tree<TItem> class

 Chapter 19 Enumerating Collections 367

 if (this.RightTree != null)
 {
 foreach (TItem item in this.RightTree)
 {
 yield return item;
 }
 }
}

It might not look like it at fi rst glance, but this code follows the same recursive

 algorithm that you used in Chapter 18 for printing the contents of a binary tree. If the

LeftTree is not empty, the fi rst foreach statement implicitly calls the GetEnumerator
method (which you are currently defi ning) over it. This process continues until a node

is found that has no left subtree. At this point, the value in the NodeData property is

yielded, and the right subtree is examined in the same way. When the right subtree is

exhausted, the process unwinds to the parent node, outputting the parent’s NodeData

property and examining the right subtree of the parent. This course of action continues

until the entire tree has been enumerated and all the nodes have been output.

Test the new enumerator

1. In Solution Explorer, right-click the BinaryTree solution, point to Add, and then click

Existing Project. In the Add Existing Project dialog box, move to the folder \Microsoft

Press\Visual CSharp Step By Step\Chapter 19\EnumeratorTest, select the EnumeratorTest

project fi le, and then click Open.

This is the project that you created to test the enumerator you developed manually

earlier in this chapter.

2. Right-click the EnumeratorTest project in Solution Explorer, and then click Set as
Startup Project.

3. Expand the References node for the EnumeratorTest project in Solution Explorer.
 Right-click the BinaryTree assembly, and then click Remove.

This action removes the reference to the old BinaryTree assembly (from Chapter 18)

from the project.

4. On the Project menu, click Add Reference. In the Add Reference dialog box, click the

Projects tab. Select the BinaryTree project, and then click OK.

The new BinaryTree assembly appears in the list of references for the EnumeratorTest

project in Solution Explorer.

Note These two steps ensure that the EnumeratorTest project references the version of

the BinaryTree assembly that uses the iterator to create its enumerator rather than the

earlier version.

Test the new enumerator

368 Part III Creating Components
 5. Display the Program.cs fi le for the EnumeratorTest project in the Code and Text Editor
window. Review the Main method in the Program.cs fi le. Recall from testing the earlier

enumerator that this method instantiates a Tree<int> object, fi lls it with some data, and

then uses a foreach statement to display its contents.

 6. Build the solution, correcting any errors if necessary.

 7. On the Debug menu, click Start Without Debugging.

 The program runs and displays the values in the same sequence as before:

 –12, –8, 0, 5, 5, 10, 10, 11, 14, 15

 8. Press Enter and return to Visual Studio 2008.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 20.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Microsoft Visual C# 2008 Express Edition)

and save the project.

Chapter 19 Quick Reference
 To Do this

 Make a class enumerable,

allowing it to support the

foreach construct

Implement the IEnumerable interface, and provide a GetEnumerator
method that returns an IEnumerator object. For example:

public class Tree<TItem> : IEnumerable<TItem>
{
 ...
 IEnumerator<TItem> GetEnumerator()
 {
 ...
 }
}

 Chapter 19 Enumerating Collections 369
 Implement an enumerator

not by using an iterator

Defi ne an enumerator class that implements the IEnumerator
 interface and that provides the Current property and the MoveNext
method (and optionally the Reset method). For example:

public class TreeEnumerator<TItem> : IEnumerator<TItem>
{
 ...
 TItem Current
 {
 get
 {
 ...
 }
 }

 bool MoveNext()
 {
 ...
 }
}

 Defi ne an enumerator by

using an iterator

Implement the enumerator to indicate which items should be

 returned (using the yield statement) and in which order. For example:

IEnumerator<TItem> GetEnumerator()
{
 for (...)
 yield return ...
}

Chapter 20

Querying In-Memory Data by Using
Query Expressions

 After completing this chapter, you will be able to:

 Defi ne Language Integrated Query (LINQ) queries to examine the contents of

 enumerable collections.

 Use LINQ extension methods and query operators.

 Explain how LINQ defers evaluation of a query and how you can force immediate

 execution and cache the results of a LINQ query.

 You have now met most of the features of the C# language. However, we have glossed over

one important aspect of the language that is likely to be used by many applications—the

support that C# provides for querying data. You have seen that you can defi ne structures and

classes for modeling data and that you can use collections and arrays for temporarily storing

data in memory. However, how do you perform common tasks such as searching for items

in a collection that match a specifi c set of criteria? For example, if you have a collection of

Customer objects, how do you fi nd all customers that are located in London, or how can you

fi nd out which town has the most customers for your services? You can write your own code

to iterate through a collection and examine the fi elds in each object, but these types of tasks

occur so often that the designers of C# decided to include features to minimize the amount

of code you need to write. In this chapter, you will learn how to use these advanced C# lan-

guage features to query and manipulate data.

What Is Language Integrated Query (LINQ)?
 All but the most trivial of applications need to process data. Historically, most applications

provided their own logic for performing these operations. However, this strategy can lead to

the code in an application becoming very tightly coupled to the structure of the data that

it processes; if the data structures change, you might need to make a signifi cant number of

changes to the code that handles the data. The designers of the Microsoft .NET Framework

thought long and hard about these issues and decided to make the life of an application de-

veloper easier by providing features that abstract the mechanism that an application uses to

query data from application code itself. These features are called Language Integrated Query,

or LINQ.
 371

372 Part III Creating Components
 The designers of LINQ took an unabashed look at the way in which relational database

 management systems, such as Microsoft SQL Server, separate the language used to query a

database from the internal format of the data in the database. Developers accessing a SQL

Server database issue Structured Query Language (SQL) statements to the database man-

agement system. SQL provides a high-level description of the data that the developer wants

to retrieve but does not indicate exactly how the database management system should

retrieve this data. These details are controlled by the database management system itself.

Consequently, an application that invokes SQL statements does not care how the database

management system physically stores or retrieves data. The format used by the database

management system can change (for example, if a new version is released) without the

 application developer needing to modify the SQL statements used by the application.

 LINQ provides syntax and semantics very reminiscent of SQL, and with many of the same

advantages. You can change the underlying structure of the data being queried without

needing to change the code that actually performs the queries. You should be aware that

although LINQ looks similar to SQL, it is far more fl exible and can handle a wider variety of

logical data structures. For example, LINQ can handle data organized hierarchically, such

as that found in an XML document. However, this chapter concentrates on using LINQ in a

 relational manner.

Using LINQ in a C# Application
 Perhaps the easiest way to explain how to use the C# features that support LINQ is to

work through some simple examples based on the following sets of customer and address

information:

 Customer Information
 CustomerID FirstName LastName CompanyName

 1 Orlando Gee A Bike Store

 2 Keith Harris Bike World

 3 Donna Carreras A Bike Store

 4 Janet Gates Fitness Hotel

 5 Lucy Harrington Grand Industries

 6 David Liu Bike World

 7 Donald Blanton Grand Industries

 8 Jackie Blackwell Fitness Hotel

 9 Elsa Leavitt Grand Industries

 10 Eric Lang Distant Inn

 Chapter 20 Querying In-Memory Data by Using Query Expressions 373
 Address Information
 CompanyName City Country

 A Bike Store New York United States

 Bike World Chicago United States

 Fitness Hotel Ottawa Canada

 Grand Industries London United Kingdom

 Distant Inn Tetbury United Kingdom

 LINQ requires the data to be stored in a data structure that implements the IEnumerable in-

terface, as described in Chapter 19, “Enumerating Collections.” It does not matter what struc-

ture you use (an array, a HashTable, a Queue, or any of the other collection types, or even one

that you defi ne yourself) as long as it is enumerable. However, to keep things straightfor-

ward, the examples in this chapter assume that the customer and address information is held

in the customers and addresses arrays shown in the following code example.

 Note In a real-world application, you would populate these arrays by reading the data from a

fi le or a database. You will learn more about the features provided by the .NET Framework for

retrieving information from a database in Part V of this book, “Managing Data”.

var customers = new[] {
 new { CustomerID = 1, FirstName = “Orlando”, LastName = “Gee”,
 CompanyName = “A Bike Store” },
 new { CustomerID = 2, FirstName = “Keith”, LastName = “Harris”,
 CompanyName = “Bike World” },
 new { CustomerID = 3, FirstName = “Donna”, LastName = “Carreras”,
 CompanyName = “A Bike Store” },
 new { CustomerID = 4, FirstName = “Janet”, LastName = “Gates”,
 CompanyName = “Fitness Hotel” },
 new { CustomerID = 5, FirstName = “Lucy”, LastName = “Harrington”,
 CompanyName = “Grand Industries” },
 new { CustomerID = 6, FirstName = “David”, LastName = “Liu”,
 CompanyName = “Bike World” },
 new { CustomerID = 7, FirstName = “Donald”, LastName = “Blanton”,
 CompanyName = “Grand Industries” },
 new { CustomerID = 8, FirstName = “Jackie”, LastName = “Blackwell”,
 CompanyName = “Fitness Hotel” },
 new { CustomerID = 9, FirstName = “Elsa”, LastName = “Leavitt”,
 CompanyName = “Grand Industries” },
 new { CustomerID = 10, FirstName = “Eric”, LastName = “Lang”,
 CompanyName = “Distant Inn” }
};

374 Part III Creating Components
var addresses = new[] {
 new { CompanyName = “A Bike Store”, City = “New York”, Country = “United States”},
 new { CompanyName = “Bike World”, City = “Chicago”, Country = “United States”},
 new { CompanyName = “Fitness Hotel”, City = “Ottawa”, Country = “Canada”},
 new { CompanyName = “Grand Industries”, City = “London”,
 Country = “United Kingdom”},
 new { CompanyName = “Distant Inn”, City = “Tetbury”, Country = “United Kingdom”}
};

 Note The following sections, “Selecting Data,” “Filtering Data,” “Ordering, Grouping, and

Aggregating Data,” and “Joining Data,” show you the basic capabilities and syntax for querying

data by using LINQ methods. The syntax can become a little complex at times, and you will see

when you reach the section “Using Query Operators” that it is not actually necessary to remem-

ber how the syntax all works. However, it is useful for you to at least take a look at the following

sections so that you can fully appreciate how the query operators provided with C# perform

their tasks.

Selecting Data
 Suppose you want to display a list comprising the fi rst name of each customer in the custom-
ers array. You can achieve this task with the following code:

IEnumerable<string> customerFirstNames =
 customers.Select(cust => cust.FirstName);
foreach (string name in customerFirstNames)
{
 Console.WriteLine(name);
}

 Although this block of code is quite short, it does a lot, and it requires a degree of explana-

tion, starting with the use of the Select method of the customers array.

 The Select method enables you to retrieve specifi c data from the array—in this case, just the

value in the FirstName fi eld of each item in the array. How does it work? The parameter to

the Select method is actually another method that takes a row from the customers array and

returns the selected data from that row. You could defi ne your own custom method to per-

form this task, but the simplest mechanism is to use a lambda expression to defi ne an anony-

mous method, as shown in the preceding example. There are three important things that you

need to understand at this point:

 The type cust is the type of the parameter passed in to the method. You can think of

cust as an alias for the type of each row in the customers array. The compiler deduces

this from the fact that you are calling the Select method on the customers array. You

can use any legal C# identifi er in place of cust.

 Chapter 20 Querying In-Memory Data by Using Query Expressions 375
 The Select method does not actually retrieve the data at this time; it simply returns

an enumerable object that will fetch the data identifi ed by the Select method when

you iterate over it later. We will return to this aspect of LINQ in the section “LINQ and

Deferred Evaluation” later in this chapter.

 The Select method is not actually a method of the Array type. It is an extension method

of the Enumerable class. The Enumerable class is located in the System.Linq namespace

and provides a substantial set of static methods for querying objects that implement

the generic IEnumerable<T> interface.

 The preceding example uses the Select method of the customers array to generate an

IEnumerable<string> object named customerFirstNames. (It is of type IEnumerable<string>

because the Select method returns an enumerable collection of customer fi rst names, which

are strings.) The foreach statement iterates through this collection of strings, printing out the

fi rst name of each customer in the following sequence:

Orlando
Keith
Donna
Janet
Lucy
David
Donald
Jackie
Elsa
Eric

 You can now display the fi rst name of each customer. How do you fetch the fi rst and last

name of each customer? This task is slightly trickier. If you examine the defi nition of the

Enumerable.Select method in the System.Linq namespace in the documentation supplied with

Microsoft Visual Studio 2008, you will see that it looks like this:

public static IEnumerable<TResult> Select<TSource, TResult> (
 IEnumerable<TSource> source,
 Func<TSource, TResult> selector
)

 What this actually says is that Select is a generic method that takes two type parameters

named TSource and TResult, as well as two ordinary parameters named source and selector.
TSource is the type of the collection that you are generating an enumerable set of results for

(customer objects in our example), and TResult is the type of the data in the enumerable set

of results (string objects in our example). Remember that Select is an extension method, so

the source parameter is actually a reference to the type being extended (a generic collection

of customer objects that implements the IEnumerable interface in our example). The selector
parameter specifi es a generic method that identifi es the fi elds to be retrieved. (Func is the

name of a generic delegate type in the .NET Framework that you can use for encapsulat-

ing a generic method.) The method referred to by the selector parameter takes a TSource (in

376 Part III Creating Components
this case, customer) parameter and yields a collection of TResult (in this case, string) objects.

The value returned by the Select method is an enumerable collection of TResult (again string)

objects.

 Note If you need to review how extension methods work and the role of the fi rst parameter to

an extension method, go back and revisit Chapter 12, “Working with Inheritance.”

 The important point to understand from the preceding paragraph is that the Select method

returns an enumerable collection based on a single type. If you want the enumerator to

return multiple items of data, such as the fi rst and last name of each customer, you have at

least two options:

 You can concatenate the fi rst and last names together into a single string in the Select
method, like this:

IEnumerable<string> customerFullName =
 customers.Select(cust => cust.FirstName + " " + cust.LastName);

 You can defi ne a new type that wraps the fi rst and last names and use the Select
 method to construct instances of this type, like this:

class Names
{
 public string FirstName{ get; set; }
 public string LastName{ get; set; }
}
...
IEnumerable<Names> customerName =
 customers.Select(cust => new Names { FirstName = cust.FirstName,
 LastName = cust.LastName });

 The second option is arguably preferable, but if this is the only use that your application

makes of the Names type, you might prefer to use an anonymous type instead of defi ning a

new type specifi cally for a single operation, like this:

var customerName =
 customers.Select(cust => new { FirstName = cust.FirstName, LastName = cust.LastName });

 Notice the use of the var keyword here to defi ne the type of the enumerable collection. The

type of objects in the collection is anonymous, so you cannot specify a specifi c type for the

objects in the collection.

 Chapter 20 Querying In-Memory Data by Using Query Expressions 377
Filtering Data
 The Select method enables you to specify, or project, the fi elds that you want to include

in the enumerable collection. However, you might also want to restrict the rows that the

 enumerable collection contains. For example, suppose you want to list the names of all

 companies in the addresses array that are located in the United States only. To do this, you

can use the Where method, as follows:

IEnumerable<string> usCompanies =
 addresses.Where(addr => String.Equals(addr.Country, “United States”))
 .Select(usComp => usComp.CompanyName);

foreach (string name in usCompanies)
{
 Console.WriteLine(name);
}

 Syntactically, the Where method is similar to Select. It expects a parameter that defi nes a

method that fi lters the data according to whatever criteria you specify. This example makes

use of another lambda expression. The type addr is an alias for a row in the addresses ar-

ray, and the lambda expression returns all rows where the Country fi eld matches the string

“United States”. The Where method returns an enumerable collection of rows containing

every fi eld from the original collection. The Select method is then applied to these rows to

project only the CompanyName fi eld from this enumerable collection to return another

enumerable collection of string objects. (The type usComp is an alias for the type of each

row in the enumerable collection returned by the Where method.) The type of the result

of this complete expression is therefore IEnumerable<string>. It is important to understand

this sequence of operations—the Where method is applied fi rst to fi lter the rows, followed

by the Select method to specify the fi elds. The foreach statement that iterates through this

 collection displays the following companies:

A Bike Store
Bike World

Ordering, Grouping, and Aggregating Data
 If you are familiar with SQL, you are aware that SQL enables you to perform a wide variety

of relational operations besides simple projection and fi ltering. For example, you can specify

that you want data to be returned in a specifi c order, you can group the rows returned ac-

cording to one or more key fi elds, and you can calculate summary values based on the rows

in each group. LINQ provides the same functionality.

 To retrieve data in a particular order, you can use the OrderBy method. Like the Select and

Where methods, OrderBy expects a method as its argument. This method identifi es the

378 Part III Creating Components
 expressions that you want to use to sort the data. For example, you can display the names of

each company in the addresses array in ascending order, like this:

IEnumerable<string> companyNames =
 addresses.OrderBy(addr => addr.CompanyName).Select(comp => comp.CompanyName);

foreach (string name in companyNames)
{
 Console.WriteLine(name);
}

 This block of code displays the companies in the addresses table in alphabetical order:

A Bike Store
Bike World
Distant Inn
Fitness Hotel
Grand Industries

 If you want to enumerate the data in descending order, you can use the OrderByDescending

method instead. If you want to order by more than one key value, you can use the ThenBy or

ThenByDescending method after OrderBy or OrderByDescending.

 To group data according to common values in one or more fi elds, you can use the GroupBy

method. The next example shows how to group the companies in the addresses array by

country:

var companiesGroupedByCountry =
 addresses.GroupBy(addrs => addrs.Country);

foreach (var companiesPerCountry in companiesGroupedByCountry)
{
 Console.WriteLine(“Country: {0}\t{1} companies”,
 companiesPerCountry.Key, companiesPerCountry.Count());
 foreach (var companies in companiesPerCountry)
 {
 Console.WriteLine(“\t{0}”, companies.CompanyName);
 }
}

 By now you should recognize the pattern! The GroupBy method expects a method that

specifi es the fi elds to group the data by. There are some subtle differences between the

GroupBy method and the other methods that you have seen so far, though. The main point

of interest is that you don’t need to use the Select method to project the fi elds to the result.

The enumerable set returned by GroupBy contains all the fi elds in the original source collec-

tion, but the rows are ordered into a set of enumerable collections based on the fi eld identi-

fi ed by the method specifi ed by GroupBy. In other words, the result of the GroupBy method

is an enumerable set of groups, each of which is an enumerable set of rows. In the example

just shown, the enumerable set companiesGroupedByCountry is a set of countries. The items

in this set are themselves enumerable collections containing the companies for each country

 Chapter 20 Querying In-Memory Data by Using Query Expressions 379
in turn. The code that displays the companies in each country uses a foreach loop to iterate

through the companiesGroupedByCountry set to yield and display each country in turn and

then uses a nested foreach loop to iterate through the set of companies in each country.

Notice in the outer foreach loop that you can access the value that you are grouping by using

the Key fi eld of each item, and you can also calculate summary data for each group by using

methods such as Count, Max, Min, and many others. The output generated by the example

code looks like this:

Country: United States 2 companies
 A Bike Store
 Bike World
Country: Canada 1 companies
 Fitness Hotel
Country: United Kingdom 2 companies
 Grand Industries
 Distant Inn

 You can use many of the summary methods such as Count, Max, and Min directly over the

results of the Select method. If you want to know how many companies there are in the ad-
dresses array, you can use a block of code such as this:

int numberOfCompanies = addresses.Select(addr => addr.CompanyName).Count();
Console.WriteLine(“Number of companies: {0}”, numberOfCompanies);

 Notice that the result of these methods is a single scalar value rather than an enumerable

collection. The output from this block of code looks like this:

Number of companies: 5

 I should utter a word of caution at this point. These summary methods do not distinguish

 between rows in the underlying set that contain duplicate values in the fi elds you are project-

ing. What this means is that, strictly speaking, the preceding example shows you only how

many rows in the addresses array contain a value in the CompanyName fi eld. If you wanted

to fi nd out how many different countries are mentioned in this table, you might be tempted

to try this:

int numberOfCountries = addresses.Select(addr => addr.Country).Count();
Console.WriteLine(“Number of countries: {0}”, numberOfCountries);

 The output looks like this:

Number of countries: 5

 In fact, there are only three different countries in the addresses array; it just so happens that

United States and United Kingdom both occur twice. You can eliminate duplicates from the

calculation by using the Distinct method, like this:

int numberOfCountries =
 addresses.Select(addr => addr.Country).Distinct().Count();

380 Part III Creating Components
 The Console.WriteLine statement will now output the expected result:

Number of countries: 3

Joining Data
 Just like SQL, LINQ enables you to join multiple sets of data together over one or more

 common key fi elds. The following example shows how to display the fi rst and last name of

each customer, together with the names of the countries where they are located:

var citiesAndCustomers = customers
 .Select(c => new { c.FirstName, c.LastName, c.CompanyName })
 .Join(addresses, custs => custs.CompanyName, addrs => addrs.CompanyName,
 (custs, addrs) => new {custs.FirstName, custs.LastName, addrs.Country });

foreach (var row in citiesAndCustomers)
{
 Console.WriteLine(row);
}

 The customers’ fi rst and last names are available in the customers array, but the country for

each company that customers work for is stored in the addresses array. The common key be-

tween the customers array and the addresses array is the company name. The Select method

specifi es the fi elds of interest in the customers array (FirstName and LastName), together with

the fi eld containing the common key (CompanyName). You use the Join method to join the

data identifi ed by the Select method with another enumerable collection. The parameters to

the Join method are:

 The enumerable collection with which to join.

 A method that identifi es the common key fi elds from the data identifi ed by the Select
method.

 A method that identifi es the common key fi elds on which to join the selected data.

 A method that specifi es the columns you require in the enumerable result set returned

by the Join method.

 In this example, the Join method joins the enumerable collection containing the FirstName,

LastName, and CompanyName fi elds from the customers array with the rows in the addresses
array. The two sets of data are joined where the value in the CompanyName fi eld in the cus-
tomers array matches the value in the CompanyName fi eld in the addresses array. The result

set comprises rows containing the FirstName and LastName fi elds from the customers array

with the Country fi eld from the addresses array. The code that outputs the data from the cit-
iesAndCustomers collection displays the following information:

{ FirstName = Orlando, LastName = Gee, Country = United States }
{ FirstName = Keith, LastName = Harris, Country = United States }

 Chapter 20 Querying In-Memory Data by Using Query Expressions 381
{ FirstName = Donna, LastName = Carreras, Country = United States }
{ FirstName = Janet, LastName = Gates, Country = Canada }
{ FirstName = Lucy, LastName = Harrington, Country = United Kingdom }
{ FirstName = David, LastName = Liu, Country = United States }
{ FirstName = Donald, LastName = Blanton, Country = United Kingdom }
{ FirstName = Jackie, LastName = Blackwell, Country = Canada }
{ FirstName = Elsa, LastName = Leavitt, Country = United Kingdom }
{ FirstName = Eric, LastName = Lang, Country = United Kingdom }

 Note It is important to remember that collections in memory are not the same as tables in a

relational database and that the data that they contain is not subject to the same data integrity

constraints. In a relational database, it could be acceptable to assume that every customer had a

corresponding company and that each company had its own unique address. Collections do not

enforce the same level of data integrity, meaning that you could quite easily have a customer

referencing a company that does not exist in the addresses array, and you might even have the

same company occurring more than once in the addresses array. In these situations, the results

that you obtain might be accurate but unexpected. Join operations work best when you fully

understand the relationships between the data you are joining.

Using Query Operators
 The preceding sections have shown you many of the features available for querying in-

 memory data by using the extension methods for the Enumerable class defi ned in the

System.Linq namespace. The syntax makes use of several advanced C# language features, and

the resultant code can sometimes be quite hard to understand and maintain. To relieve you

of some of this burden, the designers of C# added query operators to the language to en-

able you to employ LINQ features by using a syntax more akin to SQL.

 As you saw in the examples shown earlier in this chapter, you can retrieve the fi rst name for

each customer like this:

IEnumerable<string> customerFirstNames =
 customers.Select(cust => cust.FirstName);

 You can rephrase this statement by using the from and select query operators, like this:

var customerFirstNames = from cust in customers
 select cust.FirstName;

 At compile time, the C# compiler resolves this expression into the corresponding Select
method. The from operator defi nes an alias for the source collection, and the select opera-

tor specifi es the fi elds to retrieve by using this alias. The result is an enumerable collection

of customer fi rst names. If you are familiar with SQL, notice that the from operator occurs

 before the select operator.

382 Part III Creating Components
 Continuing in the same vein, to retrieve the fi rst and last name for each customer, you can

use the following statement. (You might want to refer to the earlier example of the same

statement based on the Select extension method.)

var customerNames = from c in customers
 select new { c.FirstName, c.LastName };

 You use the where operator to fi lter data. The following example shows how to return the

names of the companies based in the United States from the addresses array:

var usCompanies = from a in addresses
 where String.Equals(a.Country, “United States”)
 select a.CompanyName;

 To order data, use the orderby operator, like this:

var companyNames = from a in addresses
 orderby a.CompanyName
 select a.CompanyName;

 You can group data by using the group operator:

var companiesGroupedByCountry = from a in addresses
 group a by a.Country;

 Notice that, as with the earlier example showing how to group data, you do not provide the

select operator, and you can iterate through the results by using exactly the same code as the

earlier example, like this:

foreach (var companiesPerCountry in companiesGroupedByCountry)
{
 Console.WriteLine(“Country: {0}\t{1} companies”,
 companiesPerCountry.Key, companiesPerCountry.Count());
 foreach (var companies in companiesPerCountry)
 {
 Console.WriteLine(“\t{0}”, companies.CompanyName);
 }
}

 You can invoke the summary functions, such as Count, over the collection returned by an

enumerable collection, like this:

int numberOfCompanies = (from a in addresses
 select a.CompanyName).Count();

 Notice that you wrap the expression in parentheses. If you want to ignore duplicate values,

use the Distinct method, like this:

int numberOfCountries = (from a in addresses
 select a.Country).Distinct().Count();

 Chapter 20 Querying In-Memory Data by Using Query Expressions 383
Tip In many cases, you probably want to count just the number of rows in a collection rather

than the number of values in a fi eld across all the rows in the collection. In this case, you can

 invoke the Count method directly over the original collection, like this:

 int numberOfCompanies = addresses.Count();

 You can use the join operator to combine two collections across a common key. The follow-

ing example shows the query returning customers and addresses over the CompanyName

column in each collection, this time rephrased using the join operator. You use the on clause

with the equals operator to specify how the two collections are related. (LINQ currently

 supports equi-joins only.)

var citiesAndCustomers = from a in addresses
 join c in customers
 on a.CompanyName equals c.CompanyName
 select new { c.FirstName, c.LastName, a.Country };

 Note In contrast with SQL, the order of the expressions in the on clause of a LINQ expression is

important. You must place the item you are joining from (referencing the data in the collection in

the from clause) to the left of the equals operator and the item you are joining with (referencing

the data in the collection in the join clause) to the right.

 LINQ provides a large number of other methods for summarizing information, joining,

grouping, and searching through data; this section has covered just the most common fea-

tures. For example, LINQ provides the Intersect and Union methods, which you can use to

perform setwide operations. It also provides methods such as Any and All that you can use

to determine whether at least one item in a collection or every item in a collection matches

a specifi ed predicate. You can partition the values in an enumerable collection by using the

Take and Skip methods. For more information, see the documentation provided with Visual

Studio 2008.

Querying Data in Tree<TItem> Objects
 The examples you’ve seen so far in this chapter have shown how to query the data in an

array. You can use exactly the same techniques for any collection class that implements

the IEnumerable interface. In the following exercise, you will defi ne a new class for model-

ing employees for a company. You will create a BinaryTree object containing a collection

of Employee objects, and then you will use LINQ to query this information. You will initially

call the LINQ extension methods directly, but then you will modify your code to use query

operators.

384 Part III Creating Components

Retrieve data from a BinaryTree by using the extension methods

1. Start Visual Studio 2008 if it is not already running.

2. Open the QueryBinaryTree solution, located in the \Microsoft Press\Visual CSharp Step

by Step\Chapter 20\QueryBinaryTree folder in your Documents folder. The project con-

tains the Program.cs fi le, which defi nes the Program class with the Main and Entrance

methods that you have seen in previous exercises.

3. In Solution Explorer, right-click the QueryBinaryTree project, point to Add, and then click

Class. In the Add New Item—Query BinaryTree dialog box, type Employee.cs in the

Name box, and then click Add.

4. Add the automatic properties shown here in bold to the Employee class:

class Employee
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Department { get; set; }
 public int Id { get; set; }
}

5. Add the ToString method shown here in bold to the Employee class. Classes in the .NET

Framework use this method when converting the object to a string representation, such

as when displaying it by using the Console.WriteLine statement.

class Employee
{
 ...
 public override string ToString()
 {
 return String.Format(“Id: {0}, Name: {1} {2}, Dept: {3}”,
 this.Id, this.FirstName, this.LastName,
 this.Department);
 }
}

6. Modify the defi nition of the Employee class in the Employee.cs fi le to implement the

IComparable<Employee> interface, as shown here:

class Employee : IComparable<Employee>
{
}

This step is necessary because the BinaryTree class specifi es that its elements must be

“comparable.”

7. Right-click the IComparable<Employee> interface in the class defi nition, point to

Implement Interface, and then click Implement Interface Explicitly.

Retrieve data from a BinaryTree by using the extension methods

 Chapter 20 Querying In-Memory Data by Using Query Expressions 385

 This action generates a default implementation of the CompareTo method. Remember

that the BinaryTree class calls this method when it needs to compare elements when

inserting them into the tree.

8. Replace the body of the CompareTo method with the code shown here in bold. This

implementation of the CompareTo method compares Employee objects based on the

value of the Id fi eld.

int IComparable<Employee>.CompareTo(Employee other)
{
 if (other == null)
 return 1;

 if (this.Id > other.Id)
 return 1;

 if (this.Id < other.Id)
 return -1;

 return 0;
}

 Note For a description of the IComparable interface, refer to Chapter 18, “Introducing

Generics.”

9. In Solution Explorer, right-click the QueryBinaryTree solution, point to Add, and

then click Existing Project. In the Add Existing Project dialog box, move to the folder

Microsoft Press\Visual CSharp Step By Step\Chapter 20\BinaryTree in your Documents

folder, click the BinaryTree project, and then click Open.

 The BinaryTree project contains a copy of the enumerable BinaryTree class that you

implemented in Chapter 19.

10. In Solution Explorer, right-click the QueryBinaryTree project, and then click Add
Reference. In the Add Reference dialog box, click the Projects tab, select the BinaryTree

project, and then click OK.

11. In Solution Explorer, open the Program.cs fi le, and verify that the list of using statements

at the top of the fi le includes the following line of code:

using System.Linq;

12. Add the following using statement to the list at the top of the Program.cs fi le to bring

the BinaryTree namespace into scope:

using BinaryTree;

386 Part III Creating Components

13. In the Entrance method in the Program class, add the following statements shown in

bold type to construct and populate an instance of the BinaryTree class:

static void Entrance()
{
 Tree<Employee> empTree = new Tree<Employee>(new Employee
 { Id = 1, FirstName = “Janet”, LastName = “Gates”, Department = “IT”});
 empTree.Insert(new Employee
 { Id = 2, FirstName = “Orlando”, LastName = “Gee”, Department = “Marketing”});
 empTree.Insert(new Employee
 { Id = 4, FirstName = “Keith”, LastName = “Harris”, Department = “IT” });
 empTree.Insert(new Employee
 { Id = 6, FirstName = “Lucy”, LastName = “Harrington”, Department = “Sales” });
 empTree.Insert(new Employee
 { Id = 3, FirstName = “Eric”, LastName = “Lang”, Department = “Sales” });
 empTree.Insert(new Employee
 { Id = 5, FirstName = “David”, LastName = “Liu”, Department = “Marketing” });
}

14. Add the following statements shown in bold to the end of the Entrance method. This

code uses the Select method to list the departments found in the binary tree.

static void Entrance()
{
 ...
 Console.WriteLine(“List of departments”);
 var depts = empTree.Select(d => d.Department);

 foreach (var dept in depts)
 Console.WriteLine(“Department: {0}”, dept);
}

15. On the Debug menu, click Start Without Debugging.

 The application should output the following list of departments:

List of departments
Department: IT
Department: Marketing
Department: Sales
Department: IT
Department: Marketing
Department: Sales

 Each department occurs twice because there are two employees in each depart-

ment. The order of the departments is determined by the CompareTo method of the

Employee class, which uses the Id property of each employee to sort the data. The fi rst

department is for the employee with the Id value 1, the second department is for the

employee with the Id value 2, and so on.

16. Press Enter to return to Visual Studio 2008.

 Chapter 20 Querying In-Memory Data by Using Query Expressions 387

17. Modify the statement that creates the enumerable collection of departments as shown

here in bold:

var depts = empTree.Select(d => d.Department).Distinct();

 The Distinct method removes duplicate rows from the enumerable collection.

18. On the Debug menu, click Start Without Debugging.

 Verify that the application now displays each department only once, like this:

List of departments
Department: IT
Department: Marketing
Department: Sales

19. Press Enter to return to Visual Studio 2008.

20. Add the following statements to the end of the Entrance method. This block of code

uses the Where method to fi lter the employees and return only those in the IT depart-

ment. The Select method returns the entire row rather than projecting specifi c columns.

Console.WriteLine(“\nEmployees in the IT department”);
var ITEmployees =
 empTree.Where(e => String.Equals(e.Department, “IT”)).Select(emp => emp);

foreach (var emp in ITEmployees)
 Console.WriteLine(emp);

21. Add the code shown here to the end of the Entrance method, after the code from the

preceding step. This code uses the GroupBy method to group the employees found

in the binary tree by department. The outer foreach statement iterates through each

group, displaying the name of the department. The inner foreach statement displays

the names of the employees in each department.

Console.WriteLine(“\nAll employees grouped by department”);
var employeesByDept = empTree.GroupBy(e => e.Department);

foreach (var dept in employeesByDept)
{
 Console.WriteLine(“Department: {0}”, dept.Key);
 foreach (var emp in dept)
 {
 Console.WriteLine(“\t{0} {1}”, emp.FirstName, emp.LastName);
 }
}

388 Part III Creating Components

22. On the Debug menu, click Start Without Debugging. Verify that the output of the

 application looks like this:

List of departments
Department: IT
Department: Marketing
Department: Sales

Employees in the IT department
Id: 1, Name: Janet Gates, Dept: IT
Id: 4, Name: Keith Harris, Dept: IT

All employees grouped by department
Department: IT
 Janet Gates
 Keith Harris
Department: Marketing
 Orlando Gee
 David Liu
Department: Sales
 Eric Lang
 Lucy Harrington

23. Press Enter to return to Visual Studio 2008.

Retrieve data from a BinaryTree by using query operators

1. In the Entrance method, comment out the statement that generates the enumerable

collection of departments, and replace it with the following statement shown in bold,

based on the from and select query operators:

//var depts = empTree.Select(d => d.Department).Distinct();
var depts = (from d in empTree
 select d.Department).Distinct();

2. Comment out the statement that generates the enumerable collection of employees in

the IT department, and replace it with the following code shown in bold:

//var ITEmployees =
// empTree.Where(e => String.Equals(e.Department, “IT”)).Select(emp => emp);
var ITEmployees = from e in empTree
 where String.Equals(e.Department, “IT”)
 select e;

3. Comment out the statement that generates the enumerable collection grouping em-

ployees by department, and replace it with the statement shown here in bold:

//var employeesByDept = empTree.GroupBy(e => e.Department);
var employeesByDept = from e in empTree
 group e by e.Department;

4. On the Debug menu, click Start Without Debugging. Verify that the output of the appli-

cation is the same as before.

5. Press Enter to return to Visual Studio 2008.

Retrieve data from a BinaryTree by using query operators

 Chapter 20 Querying In-Memory Data by Using Query Expressions 389

LINQ and Deferred Evaluation
When you use LINQ to defi ne an enumerable collection, either by using the LINQ extension

methods or by using query operators, you should remember that the application does not

actually build the collection at the time that the LINQ extension method is executed; the col-

lection is enumerated only when you iterate over the collection. This means that the data in

the original collection can change between executing a LINQ query and retrieving the data

that the query identifi es; you will always fetch the most up-to-date data. For example, the

following query (which you saw earlier) defi nes an enumerable collection of U.S. companies:

var usCompanies = from a in addresses
 where String.Equals(a.Country, “United States”)
 select a.CompanyName;

The data in the addresses array is not retrieved and any conditions specifi ed in the Where fi l-

ter are not evaluated until you iterate through the usCompanies collection:

foreach (string name in usCompanies)
{
 Console.WriteLine(name);
}

If you modify the data in the addresses array between defi ning the usCompanies collection

and iterating through the collection (for example, if you add a new company based in the

United States), you will see this new data. This strategy is referred to as deferred evaluation.

You can force evaluation of a LINQ query and generate a static, cached collection. This col-

lection is a copy of the original data and will not change if the data in the collection changes.

LINQ provides the ToList method to build a static List object containing a cached copy of the

data. You use it like this:

var usCompanies = from a in addresses.ToList()
 where String.Equals(a.Country, “United States”)
 select a.CompanyName;

This time, the list of companies is fi xed when you defi ne the query. If you add more U.S. com-

panies to the addresses array, you will not see them when you iterate through the usCompa-
nies collection. LINQ also provides the ToArray method that stores the cached collection as

an array.

 In the fi nal exercise in this chapter, you will compare the effects of using deferred evaluation

of a LINQ query to generating a cached collection.

Examine the effects of deferred and cached evaluation of a LINQ query

1. Return to Visual Studio 2008, displaying the QueryBinaryTree project, and edit the

Program.cs fi le.

Examine the effects of deferred and cached evaluation of a LINQ query

390 Part III Creating Components

2. Comment out the contents of the Entrance method apart from the statements that

construct the empTree binary tree, as shown here:

static void Entrance()
{
 Tree<Employee> empTree = new Tree<Employee>(new Employee
 { Id = 1, FirstName = “Janet”, LastName = “Gates”, Department = “IT” });
 empTree.Insert(new Employee
 { Id = 2, FirstName = “Orlando”, LastName = “Gee”, Department = “Marketing” });
 empTree.Insert(new Employee
 { Id = 4, FirstName = “Keith”, LastName = “Harris”, Department = “IT” });
 empTree.Insert(new Employee
 { Id = 6, FirstName = “Lucy”, LastName = “Harrington”, Department = “Sales” });
 empTree.Insert(new Employee
 { Id = 3, FirstName = “Eric”, LastName = “Lang”, Department = “Sales” });
 empTree.Insert(new Employee
 { Id = 5, FirstName = “David”, LastName = “Liu”, Department = “Marketing” });

 // comment out the rest of the method
 ...
}

 Tip You can comment out a block of code by selecting the entire block in the Code and
Text Editor window and then clicking the Comment Out The Selected Lines button on the

toolbar or by pressing Ctrl+E and then pressing C.

3. Add the following statements to the Entrance method, after building the empTree

 binary tree:

Console.WriteLine(“All employees”);
var allEmployees = from e in empTree
 select e;

foreach (var emp in allEmployees)
 Console.WriteLine(emp);

 This code generates an enumerable collection of employees named allEmployees and

then iterates through this collection, displaying the details of each employee.

4. Add the following code immediately after the statements you typed in the preceding

step:

empTree.Insert(new Employee { Id = 7, FirstName = “Donald”, LastName = “Blanton”,
Department = “IT” });
Console.WriteLine(“\nEmployee added”);

Console.WriteLine(“All employees”);
foreach (var emp in allEmployees)
 Console.WriteLine(emp);

 These statements add a new employee to the empTree tree and then iterate through

the allEmployees collection again.

 Chapter 20 Querying In-Memory Data by Using Query Expressions 391

5. On the Debug menu, click Start Without Debugging. Verify that the output of the

 application looks like this:

All employees
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales

Employee added
All employees
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales
Id: 7, Name: Donald Blanton, Dept: IT

 Notice that the second time the application iterates through the allEmployees
 collection, the list displayed includes Donald Blanton, even though this employee was

added only after the allEmployees collection was defi ned.

6. Press Enter to return to Visual Studio 2008.

7. In the Entrance method, change the statement that generates the allEmployees
 collection to identify and cache the data immediately, as shown here in bold:

var allEmployees = from e in empTree.ToList<Employee>()
 select e;

 LINQ provides generic and nongeneric versions of the ToList and ToArray methods. If

possible, it is better to use the generic versions of these methods to ensure the type

safety of the result. The data returned by the select operator is an Employee object, and

the code shown in this step generates allEmployees as a generic List<Employee> collec-

tion. If you specify the nongeneric ToList method, the allEmployees collection will be a

List of object types.

8. On the Debug menu, click Start Without Debugging. Verify that the output of the
 application looks like this:

All employees
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales

Employee added
All employees

392 Part III Creating Components
Id: 1, Name: Janet Gates, Dept: IT
Id: 2, Name: Orlando Gee, Dept: Marketing
Id: 3, Name: Eric Lang, Dept: Sales
Id: 4, Name: Keith Harris, Dept: IT
Id: 5, Name: David Liu, Dept: Marketing
Id: 6, Name: Lucy Harrington, Dept: Sales

 Notice that this time, the second time the application iterates through the allEmployees
collection, the list displayed does not include Donald Blanton. This is because the query

is evaluated and the results cached before Donald Blanton is added to the empTree bi-

nary tree.

 9. Press Enter to return to Visual Studio 2008.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 21.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 20 Quick Reference
 To Do this

 Project specifi ed fi elds from an

enumerable collection

Use the Select method, and specify a lambda expression that identifi es

the fi elds to project. For example:

var customerFirstNames = customers.Select(cust => cust.
FirstName);

Or use the from and select query operators. For example:

var customerFirstNames =
 from cust in customers
 select cust.FirstName;

 Filter rows from an enumerable

collection

Use the Where method, and specify a lambda expression containing the

criteria that rows should match. For example:

var usCompanies =
 addresses.Where(addr =>
 String.Equals(addr.Country, “United States”)).
 Select(usComp => usComp.CompanyName);

Or use the where query operator. For example:

var usCompanies =
 from a in addresses
 where String.Equals(a.Country, “United States”)
 select a.CompanyName;

 Chapter 20 Querying In-Memory Data by Using Query Expressions 393
 Enumerate data in a specifi c

order

Use the OrderBy method, and specify a lambda expression identifying the

fi eld to use to order rows. For example:

var companyNames =
 addresses.OrderBy(addr => addr.CompanyName).
 Select(comp => comp.CompanyName);

Or use the orderby query operator. For example:

var companyNames =
 from a in addresses
 orderby a.CompanyName
 select a.CompanyName;

 Group data by the values in a

fi eld

Use the GroupBy method, and specify a lambda expression identifying

the fi eld to use to group rows. For example:

var companiesGroupedByCountry =
 addresses.GroupBy(addrs => addrs.Country);

Or use the group by query operator. For example:

var companiesGroupedByCountry =
 from a in addresses
 group a by a.Country;

 Join data held in two different

collections

Use the Join method specifying the collection to join with, the join riteria,

and the fi elds for the result. For example:

var citiesAndCustomers =
 customers.
 Select(c => new { c.FirstName, c.LastName, c.CompanyName }).
 Join(addresses, custs => custs.CompanyName,
 addrs => addrs.CompanyName,
 (custs, addrs) => new {custs.FirstName, custs.LastName,
 addrs.Country });

Or use the join query operator. For example:

var citiesAndCustomers =
 from a in addresses
 join c in customers
 on a.CompanyName equals c.CompanyName
 select new { c.FirstName, c.LastName, a.Country };

 Force immediate generation

of the results for a LINQ query

Use the ToList or ToArray method to generate a list or an array containing

the results. For example:

var allEmployees =
 from e in empTree.ToList<Employee>()
 select e;

Chapter 21

Operator Overloading
 After completing this chapter, you will be able to:

 Implement binary operators for your own types.

 Implement unary operators for your own types.

 Write increment and decrement operators for your own types.

 Understand the need to implement some operators as pairs.

 Implement implicit conversion operators for your own types.

 Implement explicit conversion operators for your own types.

 You have made a great deal of use of the standard operator symbols (such as + and –) to per-

form standard operations (such as addition and subtraction) on types (such as int and double).

Many of the built-in types come with their own predefi ned behaviors for each operator. You

can also defi ne how operators should behave for your own structures and classes, which is

the subject of this chapter.

Understanding Operators
 You use operators to combine operands together into expressions. Each operator has its own

semantics, dependent on the type it works with. For example, the + operator means “add”

when used with numeric types or “concatenate” when used with strings.

 Each operator symbol has a precedence. For example, the * operator has a higher precedence

than the + operator. This means that the expression a + b * c is the same as a + (b * c).

 Each operator symbol also has an associativity to defi ne whether the operator evaluates from

left to right or from right to left. For example, the = operator is right-associative (it evaluates

from right to left), so a = b = c is the same as a = (b = c).

 A unary operator is an operator that has just one operand. For example, the increment

 operator (++) is a unary operator.

 A binary operator is an operator that has two operands. For example, the multiplication

 operator (*) is a binary operator.
 395

396 Part III Creating Components
Operator Constraints
 You have seen throughout this book that C# enables you to overload methods when defi ning

your own types. C# also allows you to overload many of the existing operator symbols for

your own types, although the syntax is slightly different. When you do this, the operators you

implement automatically fall into a well-defi ned framework with the following rules:

 You cannot change the precedence and associativity of an operator. The precedence

and associativity are based on the operator symbol (for example, +) and not on the

type (for example, int) on which the operator symbol is being used. Hence, the expres-

sion a + b * c is always the same as a + (b * c), regardless of the types of a, b, and c.

 You cannot change the multiplicity (the number of operands) of an operator. For

 example, * (the symbol for multiplication), is a binary operator. If you declare a *

 operator for your own type, it must be a binary operator.

 You cannot invent new operator symbols. For example, you can’t create a new operator

symbol, such as ** for raising one number to the power of another number. You’d have

to create a method for that.

 You can’t change the meaning of operators when applied to built-in types. For

 example, the expression 1 + 2 has a predefi ned meaning, and you’re not allowed to

override this meaning. If you could do this, things would be too complicated!

 There are some operator symbols that you can’t overload. For example, you can’t

 overload the dot (.) operator, which indicates access to a class member. Again, if you

could do this, it would lead to unnecessary complexity.

 Tip You can use indexers to simulate [] as an operator. Similarly, you can use properties to

 simulate assignment (=) as an operator, and you can use delegates to simulate a function call as

an operator.

Overloaded Operators
 To defi ne your own operator behavior, you must overload a selected operator. You use

 methodlike syntax with a return type and parameters, but the name of the method is the

keyword operator together with the operator symbol you are declaring. For example, here’s

a user-defi ned structure named Hour that defi nes a binary + operator to add together two

instances of Hour:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }

 Chapter 21 Operator Overloading 397
 public static Hour operator+ (Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }
 ...
 private int value;
}

 Notice the following:

 The operator is public. All operators must be public.

 The operator is static. All operators must be static. Operators are never polymorphic

and cannot use the virtual, abstract, override, or sealed modifi er.

 A binary operator (such as the + operator, shown earlier) has two explicit arguments,

and a unary operator has one explicit argument. (C++ programmers should note that

operators never have a hidden this parameter.)

 Tip When declaring highly stylized functionality (such as operators), it is useful to adopt a

naming convention for the parameters. For example, developers often use lhs and rhs (acronyms

for left-hand side and right-hand side, respectively) for binary operators.

 When you use the + operator on two expressions of type Hour, the C# compiler

 automatically converts your code to a call to the user-defi ned operator. The C# compiler con-

verts this:

Hour Example(Hour a, Hour b)
{
 return a + b;
}

 to this:

Hour Example(Hour a, Hour b)
{
 return Hour.operator+(a,b); // pseudocode
}

 Note, however, that this syntax is pseudocode and not valid C#. You can use a binary

 operator only in its standard infi x notation (with the symbol between the operands).

 There is one fi nal rule that you must follow when declaring an operator (otherwise, your code

will not compile): at least one of the parameters must always be of the containing type. In

the preceding operator+ example for the Hour class, one of the parameters, a or b, must be

an Hour object. In this example, both parameters are Hour objects. However, there could be

times when you want to defi ne additional implementations of operator+ that add, for ex-

ample, an integer (a number of hours) to an Hour object—the fi rst parameter could be Hour,

398 Part III Creating Components
and the second parameter could be the integer. This rule makes it easier for the compiler to

know where to look when trying to resolve an operator invocation, and it also ensures that

you can’t change the meaning of the built-in operators.

Creating Symmetric Operators
 In the preceding section, you saw how to declare a binary + operator to add together two in-

stances of type Hour. The Hour structure also has a constructor that creates an Hour from an

int. This means that you can add together an Hour and an int—you just have to fi rst use the

Hour constructor to convert the int to an Hour. For example:

Hour a = ...;
int b = ...;
Hour sum = a + new Hour(b);

 This is certainly valid code, but it is not as clear or as concise as adding together an Hour and

an int directly, like this:

Hour a = ...;
int b = ...;
Hour sum = a + b;

 To make the expression (a + b) valid, you must specify what it means to add together an

Hour (a, on the left) and an int (b, on the right). In other words, you must declare a binary

+ operator whose fi rst parameter is an Hour and whose second parameter is an int. The

 following code shows the recommended approach:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator+ (Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }

 public static Hour operator+ (Hour lhs, int rhs)
 {
 return lhs + new Hour(rhs);
 }
 ...
 private int value;
}

 Chapter 21 Operator Overloading 399
 Notice that all the second version of the operator does is construct an Hour from its int
 argument and then call the fi rst version. In this way, the real logic behind the operator is held

in a single place. The point is that the extra operator+ simply makes existing functionality eas-

ier to use. Also, notice that you should not provide many different versions of this operator,

each with a different second parameter type—cater to the common and meaningful cases

only, and let the user of the class take any additional steps if an unusual case is required.

 This operator+ declares how to add together an Hour as the left-hand operand and an int
as the right-hand operator. It does not declare how to add together an int as the left-hand

 operand and an Hour as the right-hand operand:

int a = ...;
Hour b = ...;
Hour sum = a + b; // compile-time error

 This is counterintuitive. If you can write the expression a + b, you expect to also be able to

write b + a. Therefore, you should provide another overload of operator+:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator+ (Hour lhs, int rhs)
 {
 return lhs + new Hour(rhs);
 }

 public static Hour operator+ (int lhs, Hour rhs)
 {
 return new Hour(lhs) + rhs;
 }
 ...
 private int value;
}

 Note C++ programmers should notice that you must provide the overload yourself. The

 compiler won’t write the overload for you or silently swap the sequence of the two operands to

fi nd a matching operator.

Operators and Language Interoperability
 Not all languages that execute using the common language runtime (CLR) support

or understand operator overloading. Microsoft Visual Basic is a common example. If

you are creating classes that you want to be able to use from other languages, if you

 overload an operator, you should provide an alternative mechanism that supports

400 Part III Creating Components
the same functionality. For example, suppose you implement operator+ for the Hour
structure:

public static Hour operator+ (Hour lhs, int rhs)
{
 ...
}

 If you need to be able to use your class from a Visual Basic application, you should also

provide an Add method that achieves the same thing:

public static Hour Add(Hour lhs, int rhs)
{
 ...
}

Understanding Compound Assignment
 A compound assignment operator (such as +=) is always evaluated in terms of its associated

operator (such as +). In other words, this:

a += b;

 is automatically evaluated as this:

a = a + b;

 In general, the expression a @= b (where @ represents any valid operator) is always evalu-

ated as a = a @ b. If you have overloaded the appropriate simple operator, the overloaded

version is automatically called when you use its associated compound assignment operator.

For example:

Hour a = ...;
int b = ...;
a += a; // same as a = a + a
a += b; // same as a = a + b

 The fi rst compound assignment expression (a += a) is valid because a is of type Hour, and the

Hour type declares a binary operator+ whose parameters are both Hour. Similarly, the second

compound assignment expression (a += b) is also valid because a is of type Hour and b is of

type int. The Hour type also declares a binary operator+ whose fi rst parameter is an Hour and

whose second parameter is an int. Note, however, that you cannot write the expression b +=
a because that’s the same as b = b + a. Although the addition is valid, the assignment is not,

because there is no way to assign an Hour to the built-in int type.

 Chapter 21 Operator Overloading 401
Declaring Increment and Decrement Operators
 C# allows you to declare your own version of the increment (++) and decrement (––) opera-

tors. The usual rules apply when declaring these operators: they must be public, they must be

static, and they must be unary. Here is the increment operator for the Hour structure:

struct Hour
{
 ...
 public static Hour operator++ (Hour arg)
 {
 arg.value++;
 return arg;
 }
 ...
 private int value;
}

 The increment and decrement operators are unique in that they can be used in prefi x and

postfi x forms. C# cleverly uses the same single operator for both the prefi x and postfi x ver-

sions. The result of a postfi x expression is the value of the operand before the expression

takes place. In other words, the compiler effectively converts this:

Hour now = new Hour(9);
Hour postfix = now++;

 to this:

Hour now = new Hour(9);
Hour postfix = now;
now = Hour.operator++(now); // pseudocode, not valid C#

 The result of a prefi x expression is the return value of the operator. The C# compiler

 effectively converts this:

Hour now = new Hour(9);
Hour prefix = ++now;

 to this:

Hour now = new Hour(9);
now = Hour.operator++(now); // pseudocode, not valid C#
Hour prefix = now;

 This equivalence means that the return type of the increment and decrement operators must

be the same as the parameter type.

402 Part III Creating Components
Operators in Structures and Classes
 It is important to realize that the implementation of the increment operator in the Hour
structure works only because Hour is a structure. If you change Hour into a class but

leave the implementation of its increment operator unchanged, you will fi nd that the

postfi x translation won’t give the correct answer. If you remember that a class is a refer-

ence type and revisit the compiler translations explained earlier, you can see why this

occurs:

Hour now = new Hour(9);
Hour postfix = now;
now = Hour.operator++(now); // pseudocode, not valid C#

 If Hour is a class, the assignment statement postfi x = now makes the variable postfi x re-

fer to the same object as now. Updating now automatically updates postfi x! If Hour is a

structure, the assignment statement makes a copy of now in postfi x, and any changes to

now leave postfi x unchanged, which is what we want.

 The correct implementation of the increment operator when Hour is a class is as

follows:

class Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static Hour operator++(Hour arg)
 {
 return new Hour(arg.value + 1);
 }
 ...
 private int value;
}

 Notice that operator++ now creates a new object based on the data in the original. The

data in the new object is incremented, but the data in the original is left unchanged.

Although this works, the compiler translation of the increment operator results in a new

object being created each time it is used. This can be expensive in terms of memory

use and garbage collection overhead. Therefore, it is recommended that you limit op-

erator overloads when you defi ne types. This recommendation applies to all operators,

and not just to the increment operator.

 Chapter 21 Operator Overloading 403
Defi ning Operator Pairs
 Some operators naturally come in pairs. For example, if you can compare two Hour values by

using the != operator, you would expect to be able to also compare two Hour values by using

the == operator. The C# compiler enforces this very reasonable expectation by insisting that

if you defi ne either operator== or operator!=, you must defi ne them both. This neither-or-

both rule also applies to the < and > operators and the <= and >= operators. The C# com-

piler does not write any of these operator partners for you. You must write them all explicitly

yourself, regardless of how obvious they might seem. Here are the == and != operators for

the Hour structure:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }
 ...
 public static bool operator==(Hour lhs, Hour rhs)
 {
 return lhs.value == rhs.value;
 }

 public static bool operator!=(Hour lhs, Hour rhs)
 {
 return lhs.value != rhs.value;
 }
 ...
 private int value;
}

 The return type from these operators does not actually have to be Boolean. However, you

would have to have a very good reason for using some other type, or these operators could

become very confusing!

 Note If you defi ne operator== and operator!=, you should also override the Equals and

GetHashCode methods inherited from System.Object. The Equals method should exhibit exactly

the same behavior as operator==. (You should defi ne one in terms of the other.) The

GetHashCode method is used by other classes in the Microsoft .NET Framework. (When you use

an object as a key in a hash table, for example, the GetHashCode method is called on the object

to help calculate a hash value. For more information, see the .NET Framework Reference docu-

mentation supplied with Visual Studio 2008.) All this method needs to do is return a distinguish-

ing integer value. (Don’t return the same integer from the GetHashCode method of all your

objects, however, as this will nullify the effectiveness of the hashing algorithms.)

404 Part III Creating Components
Implementing an Operator
 In the following exercise, you will complete another digital clock application. This version of

the code is similar to the exercise in Chapter 17, “Interrupting Program Flow and Handling

Events.” However, in this version, the delegate method (which is called every second) does

not receive the current hour, minute, and second values when the event is raised. Instead, the

delegate method keeps track of the time itself by updating three fi elds, one each for the hour,
minute, and second values. The type of these three fi elds is Hour, Minute, and Second, respec-

tively, and they are all structures. However, the application will not yet compile, because the

Minute structure is not fi nished. In the fi rst exercise, you will fi nish the Minute structure by

implementing its missing addition operators.

Write the operator+ overloads

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the Operators project, located in the \Microsoft Press\Visual CSharp Step by Step

\Chapter 21\Operators folder in your Documents folder.

 3. In the Code and Text Editor window, open the Clock.cs fi le and locate the declarations

of the hour, minute, and second fi elds at the end of the class.

These fi elds hold the clock’s current time:

class Clock
{
 ...
 private Hour hour;
 private Minute minute;
 private Second second;
}

 4. Locate the tock method of the Clock class. This method is called every second to update

the hour, minute, and second fi elds.

 The tock method looks like this:

private void tock()
{
 this.second++;
 if (this.second == 0)
 {
 this.minute++;
 if (this.minute == 0)
 {
 this.hour++;
 }
 }
}

Write the operator+ overloads

 Chapter 21 Operator Overloading 405

 The constructors for the Clock class contain the following statement that subscribes

to the tick event of the pulsed fi eld so that this method is called whenever the event is

raised. (The pulsed fi eld is a Ticker that uses a DispatcherTimer object to generate an

event every second, as described in the exercises in Chapter 17.)

this.pulsed.tick += tock;

5. On the Build menu, click Build Solution.

 The build fails and displays the following error message:

Operator ‘==’ cannot be applied to operands of type ‘Operators.Minute’ and ‘int’.

 The problem is that the tock method contains the following if statement, but the

 appropriate operator== is not declared in the Minute structure:

if (minute == 0)
{
 hour++;
}

 Your fi rst task is to implement this operator for the Minute structure.

6. In the Code and Text Editor window, open the Minute.cs fi le.

7. In the Minute structure, implement a version of operator== that accepts a Minute as

its left-hand operand and an int as its right-hand operand. Don’t forget that the return

type of this operator should be a bool.

 The completed operator should look exactly as shown in bold here:

struct Minute
{
 ...
 public static bool operator==(Minute lhs, int rhs)
 {
 return lhs.value == rhs;
 }
 ...
 private int value;
}

8. On the Build menu, click Build Solution.

 The build fails again and displays a different error message:

The operator ‘Operators.Minute.operator ==(Operators.Minute, int)’ requires a matching
operator “!=” to also be defined.

 The problem now is that you have implemented a version of operator== but have not

implemented its required operator!= partner.

9. Implement a version of operator!= that accepts a Minute as its left-hand operand and

an int as its right-hand operand.

406 Part III Creating Components
 The completed operator should look exactly as shown in bold here:

struct Minute
{
 ...
 public static bool operator!=(Minute lhs, int rhs)
 {
 return lhs.value != rhs;
 }
 ...
 private int value;
}

 10. On the Build menu, click Build Solution.

 This time, the project builds without errors.

 11. On the Debug menu, click Start Without Debugging.

 The application runs and displays a digital clock that updates itself every second.

 12. Close the application, and return to the Visual Studio 2008 programming environment.

Understanding Conversion Operators
 Sometimes it is necessary to convert an expression of one type to another. For example, the

following method is declared with a single double parameter:

class Example
{
 public static void MyDoubleMethod(double parameter)
 {
 ...
 }
}

 You might reasonably expect that only values of type double could be used as argu-

ments when calling MyDoubleMethod, but this is not so. The C# compiler also allows

MyDoubleMethod to be called with an argument whose type is not double, but only as long

as that value can be converted to a double. The compiler will generate code that performs

this conversion when the method is called.

Providing Built-In Conversions
 The built-in types have some built-in conversions. For example, an int can be implicitly

 converted to a double. An implicit conversion requires no special syntax and never throws an

exception:

Example.MyDoubleMethod(42); // implicit int-to-double conversion

 Chapter 21 Operator Overloading 407
 An implicit conversion is sometimes called a widening conversion, as the result is wider than

the original value—it contains at least as much information as the original value, and nothing

is lost.

 On the other hand, a double cannot be implicitly converted to an int:

class Example
{
 public static void MyIntMethod(int parameter)
 {
 ...
 }
}
...
Example.MyIntMethod(42.0); // compile-time error

 Converting from a double to an int runs the risk of losing information, so it will not be done

automatically. (Consider what would happen if the argument to MyIntMethod were 42.5—

how should this be converted?) A double can be converted to an int, but the conversion re-

quires an explicit notation (a cast):

Example.MyIntMethod((int)42.0);

 An explicit conversion is sometimes called a narrowing conversion, as the result is narrower
than the original value (it can contain less information) and can throw an Overfl owException.

C# allows you to provide conversion operators for your own user-defi ned types to control

whether it is sensible to convert values to other types and whether these conversions are

 implicit or explicit.

Implementing User-Defi ned Conversion Operators
 The syntax for declaring a user-defi ned conversion operator is similar to that for declaring an

overloaded operator. A conversion operator must be public and must also be static. Here’s a

conversion operator that allows an Hour object to be implicitly converted to an int:

struct Hour
{
 ...
 public static implicit operator int (Hour from)
 {
 return this.value;
 }

 private int value;
}

 The type you are converting from is declared as the single parameter (in this case, Hour), and

the type you are converting to is declared as the type name after the keyword operator (in

this case, int). There is no return type specifi ed before the keyword operator.

408 Part III Creating Components
 When declaring your own conversion operators, you must specify whether they are implicit

conversion operators or explicit conversion operators. You do this by using the implicit and

explicit keywords. For example, the Hour to int conversion operator mentioned earlier is im-

plicit, meaning that the C# compiler can use it implicitly (without requiring a cast):

class Example
{
 public static void MyOtherMethod(int parameter) { ... }
 public static void Main()
 {
 Hour lunch = new Hour(12);
 Example.MyOtherMethod(lunch); // implicit Hour to int conversion
 }
}

 If the conversion operator had been declared explicit, the preceding example would not have

compiled, because an explicit conversion operator requires an explicit cast:

Example.MyOtherMethod((int)lunch); // explicit Hour to int conversion

 When should you declare a conversion operator as explicit or implicit? If a conversion is

 always safe, does not run the risk of losing information, and cannot throw an exception, it can

be defi ned as an implicit conversion. Otherwise, it should be declared as an explicit conver-

sion. Converting from an Hour to an int is always safe—every Hour has a corresponding int
value—so it makes sense for it to be implicit. An operator that converts a string to an Hour
should be explicit, as not all strings represent valid Hours. (The string “7” is fi ne, but how

would you convert the string “Hello, World” to an Hour?)

Creating Symmetric Operators, Revisited
 Conversion operators provide you with an alternative way to resolve the problem of

 providing symmetric operators. For example, instead of providing three versions of operator+

(Hour + Hour, Hour + int, and int + Hour) for the Hour structure, as shown earlier, you can

provide a single version of operator+ (that takes two Hour parameters) and an implicit int to

Hour conversion, like this:

struct Hour
{
 public Hour(int initialValue)
 {
 this.value = initialValue;
 }

 public static Hour operator+(Hour lhs, Hour rhs)
 {
 return new Hour(lhs.value + rhs.value);
 }

 Chapter 21 Operator Overloading 409

 public static implicit operator Hour (int from)
 {
 return new Hour (from);
 }
 ...
 private int value;
}

If you add an Hour to an int (in either order), the C# compiler automatically converts the int
to an Hour and then calls operator+ with two Hour arguments:

void Example(Hour a, int b)
{
 Hour eg1 = a + b; // b converted to an Hour
 Hour eg2 = b + a; // b converted to an Hour
}

Adding an Implicit Conversion Operator
 In the following exercise, you will modify the digital clock application from the preceding

exercise. You will add an implicit conversion operator to the Second structure and remove the

operators that it replaces.

Write the conversion operator

1. Return to Visual Studio 2008, displaying the Operators project. Display the Clock.cs fi le

in the Code and Text Editor window, and examine the tock method again:

private void tock()
{
 this.second++;
 if (this.second == 0)
 {
 this.minute++;
 if (this.minute == 0)
 {
 this.hour++;
 }
 }
}

 Notice the statement if (this.second == 0) shown in bold in the preceding code

 example. This fragment of code compares a Second to an int using the == operator.

2. Display the Second.cs fi le in the Code and Text Editor window.

 The Second structure currently contains three overloaded implementations of

 operator== and three overloaded implementations of operator!=. Each opera-

tor is overloaded for the parameter type pairs (Second, Second), (Second, int), and

(int, Second).

Write the conversion operator

410 Part III Creating Components

3. In the Second structure, comment out the four versions of operator== and operator!=

that take one Second and one int parameter. (Do not comment out the operators that

take two Second parameters.) The following two operators should be the only versions

of operator== and operator!= remaining in the Second structure:

struct Second
{
 ...
 public static bool operator==(Second lhs, Second rhs)
 {
 return lhs.value == rhs.value;
 }

 public static bool operator!=(Second lhs, Second rhs)
 {
 return lhs.value != rhs.value;
 }

 ...
}

4. On the Build menu, click Build Solution.

 The build fails with the following error message:

Operator ‘==’ cannot be applied to the operands of type ‘Operators.Second’ and ‘int’

 Removing the operators that compare a Second and an int cause the statement if (this.
second == 0) highlighted in step 1 to fail to compile.

5. In the Code and Text Editor window, add an implicit conversion operator to the Second

structure that converts from an int to a Second.

 The conversion operator should appear as shown in bold here:

struct Second
{
 ...
 public static implicit operator Second (int arg)
 {
 return new Second(arg);
 }
 ...
}

6. On the Build menu, click Build Solution.

 The program successfully builds this time because the conversion operator and the

remaining two operators together provide the same functionality as the four deleted

operator overloads. The only difference is that using an implicit conversion operator is

potentially a little slower than not using an implicit conversion operator.

7. On the Debug menu, click Start Without Debugging.

 Verify that the application still works correctly.

 Chapter 21 Operator Overloading 411
 8. Close the application, and return to the Visual Studio 2008 programming environment.

 If you want to continue to the next chapter:

 Keep Visual Studio 2008 running, and turn to Chapter 22.

 If you want to exit Visual Studio 2008 now:

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 21 Quick Reference
 To Do this

 Implement an operator Write the keywords public and static, followed by the return type,

 followed by the operator keyword, followed by the operator symbol

 being declared, followed by the appropriate parameters between

parentheses. For example:

struct Hour
{
 ...
 public static bool operator==(Hour lhs, Hour rhs)
 {
 ...
 }
 ...
}

 Declare a conversion

operator

Write the keywords public and static, followed by the keyword implicit
or explicit, followed by the operator keyword, followed by the type be-

ing converted to, followed by the type being converted from as a single

parameter between parentheses. For example:

struct Hour
{
 ...
 public static implicit operator Hour(int arg)
 {
 ...
 }
 ...
}

Microsoft Visual C# 2008 Step by Step

Part IV

Working with Windows
Applications

In this part:
Chapter 22. Introducing Windows Presentation Foundation 415
Chapter 23. Working with Menus and Dialog Boxes . 451
Chapter 24. Performing Validation . 473
 413

Chapter 22

Introducing Windows Presentation
Foundation

 After completing this chapter, you will be able to:

 Create Microsoft Windows Presentation Foundation (WPF) applications.

 Use common WPF controls such as labels, text boxes, and buttons.

 Defi ne styles for WPF controls.

 Change the properties of WPF forms and controls at design time and through code at

run time.

 Handle events exposed by WPF forms and controls.

 Now that you have completed the exercises and examined the examples in the fi rst three

parts of this book, you should be well versed in the C# language. You have learned how to

write programs and create components by using C#, and you should understand many of the

fi ner points of the language, such as extension methods, lambda expressions, and the distinc-

tion between value and reference types. You now have the essential language skills, and in

Part IV you will expand upon them and use C# to take advantage of the graphical user inter-

face (GUI) libraries provided as part of the Microsoft .NET Framework. In particular, you will

see how to use the objects in the System.Windows namespace to create WPF applications.

 In this chapter, you learn how to build a basic WPF application by using the common

 components that are a feature of most GUI applications. You see how to set the properties of

WPF forms and controls by using the Design View and Properties windows, and also by using

Extensible Application Markup Language, or XAML. You also learn how to use WPF styles to

build user interfaces that can be easily adapted to conform to your organization’s presenta-

tion standards. Finally, you learn how to intercept and handle some of the events that WPF

forms and controls expose.

Creating a WPF Application
 As an example, you are going to create an application that a user can use to input and

 display details for members of the Middleshire Bell Ringers Association, an esteemed group

of the fi nest campanologists. Initially, you will keep the application very simple, concentrat-

ing on laying out the form and making sure that it all works. On the way, you learn about

some of the features that WPF provides for building highly adaptable user interfaces. In later
 415

416 Part IV Working with Windows Applications

 chapters, you will provide menus and learn how to implement validation to ensure that the

data that is entered makes sense. The following graphic shows what the application will look

like after you have completed it. (You can see the completed version by building and running

the BellRingers project in the \Microsoft Press\Visual CSharp Step by Step\Chapter 22

\Completed BellRingers\ folder in your Documents folder.)

Creating a Windows Presentation Foundation Application
In this exercise, you’ll start building the Middleshire Bell Ringers Association application by

creating a new project, laying out the form, and adding controls to the form. You have been

using existing WPF applications in Microsoft Visual Studio 2008 in previous chapters, so much

of the fi rst couple of exercises will be a review for you.

Create the Middleshire Bell Ringers Association project

1. Start Visual Studio 2008 if it is not already running.

2. If you are using Visual Studio 2008 Standard Edition or Visual Studio 2008 Professional

Edition, perform the following operations to create a new WPF application:

2.1. On the File menu, point to New, and then click Project.

The New Project dialog box opens.

2.2. In the Project Types pane, click Visual C#.

2.3. In the Templates pane, click the WPF Application icon.

2.4. In the Location fi eld, type \Microsoft Press\Visual CSharp Step By Step\
Chapter 22 under your Documents folder.

Create the Middleshire Bell Ringers Association project

 Chapter 22 Introducing Windows Presentation Foundation 417

2.5. In the Name fi eld, type BellRingers.

2.6. Click OK.

3. If you are using Microsoft Visual C# 2008 Express Edition, perform the following tasks

to create a new graphical application.

3.1. On the Tools menu, click Options.

3.2. In the Options dialog box, click Projects and Solutions in the tree view in the left

pane.

3.3. In the right pane, in the Visual Studio projects location text box, specify the

 location Microsoft Press\Visual CSharp Step By Step\Chapter 22 under your

Documents folder.

3.4. Click OK.

3.5. On the File menu, click New Project.

3.6. In the New Project dialog box, click the WPF Application icon.

3.7. In the Name fi eld, type BellRingers.

3.8. Click OK.

 The new project is created and contains a blank form called Window1.

Examine the form and the Grid layout

1. Examine the form in the XAML pane underneath the Design View window. Notice that

the XAML defi nition of the form looks like this:

<Window x:Class=”BellRingers.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Window1” Height=”300” Width=”300”>
 <Grid>

 </Grid>
</Window>

 The Class attribute specifi es the fully qualifi ed name of the class that implements

the form. In this case, it is called Window1 in the BellRingers namespace. The WPF

Application template uses the name of the application as the default namespace for

forms. The xmlns attributes specify the XML namespaces that defi ne the schemas used

by WPF; all the controls and other items that you can incorporate into a WPF applica-

tion have defi nitions that live in these namespaces. (If you are not familiar with XML

namespaces, you can ignore these xmlns attributes for now.) The Title attribute specifi es

the text that appears in the title bar of the form, and the Height and Width attributes

Examine the form and the Grid layout

418 Part IV Working with Windows Applications

specify the default height and width of the form. You can modify these values either

by changing them in the XAML pane or by using the Properties window. You can also

change the value of these and many other properties dynamically by writing C# code

that executes when the form runs.

2. Click the Window1 form in the Design View window. In the Properties window, locate

and click the Title property, and then type Middleshire Bell Ringers Association –
Members to change the text in the title bar of the form.

 Notice that the value in the Title attribute of the form changes in the XAML pane, and

the new title is displayed in the title bar of the form in the Design View window.

 Note The Window1 form contains a child control that you will examine in the next step. If

the Properties window displays the properties for a System.Windows.Controls.Grid control,

click the Window1 text on the Window1 form. This action selects the form rather than the

grid, and the Properties window then displays the properties for the System.Windows.
Window control.

3. In the XAML pane, notice that the Window element contains a child element called

Grid.

 In a WPF application, you place controls such as buttons, text boxes, and labels in a

panel on a form. The panel manages the layout of the controls it contains. The default

panel added by the WPF Application template is the Grid, with which you can specify

exactly the location of your controls at design time. Other panels are available that

provide different styles of layout. For example, StackPanel automatically places controls

in a vertical arrangement, with each control arranged directly beneath its immediate

predecessor. Another example is WrapPanel, which arranges controls in a row from left

to right and then wraps the content to the next line when the current row is full. A pri-

mary purpose of a layout panel is to govern how the controls are positioned if the user

resizes the window at run time; the controls are automatically resized and repositioned

according to the type of the panel.

 Note The Grid panel is fl exible but complex. By default, you can think of the Grid panel as

defi ning a single cell into which you can drop controls. However, you can set the proper-

ties of a Grid panel to defi ne multiple rows and columns (hence its name), and you can

drop controls into each of the cells defi ned by these rows and columns. In this chapter, we

keep things simple and use only a single cell.

4. In the Design View window, click the Window1 form, and then click the Toolbox tab.

5. In the Common section, click Button, and then click in the upper-right part of the form.

 Chapter 22 Introducing Windows Presentation Foundation 419

 A button control that displays two connectors anchoring it to the top and right edges

of the form is added to the form, like this:

Connectors

Anchor points

 Although you clicked the form, the Button control is added to the Grid control

 contained in the form. The grid occupies the entire form apart from the title bar at

the top. The connectors show that the button is anchored to the top and right edges

of the grid.

6. Examine the code in the XAML pane. The Grid element and its contents should now

look something like this (your values for the Margin property might vary):

<Grid>
 <Button HorizontalAlignment=”Right” Margin=”0,84,34,0”
 Name=”button1” Width=”75” Height=”23” VerticalAlignment=”Top”>Button</Button>
</Grid>

 Note Throughout this chapter, lines from the XAML pane are shown split and indented so

they will fi t on the printed page.

 When you place a control on a grid, you can connect any or all of the anchor points to

the corresponding edge of the grid. By default, the Design View window connects the

control to the nearest edges. If you place the control toward the lower left of the grid,

it will be connected to the bottom and left edges of the grid.

 The HorizontalAlignment and VerticalAlignment properties of the button indicate the

edges to which the button is currently connected, and the Margin property indicates

the distance to those edges. Recall from Chapter 1, “Welcome to C#,” that the Margin

property contains four values specifying the distance from the left, top, right, and bot-

tom edges of the grid, respectively. In the XAML fragment just shown, the button is

84 units from the top edge of the grid and 34 units from the right edge. (Each unit is

1/96th of an inch.) Margin values of 0 indicate that the button is not connected to the

corresponding edge. When you run the application, the WPF runtime will endeavor to

maintain these distances even if you resize the form.

420 Part IV Working with Windows Applications

7. On the Debug menu, click Start Without Debugging to build and run the application.

8. When the form appears, resize the window. Notice that as you drag the edges of the

form around, the distance of the button from the top and right edges of the form

 remains fi xed.

9. Close the form, and return to Visual Studio 2008.

10. In the Design View window, click the button control, and then click the left anchor point

to attach the control to the left edge of the form, as shown in the following image:

 In the XAML pane, notice that the HorizontalAlignment property is no longer specifi ed.

The default value for the HorizontalAlignment and VerticalAlignment properties is a val-

ue called Stretch, which indicates that the control is anchored to both opposite edges.

Also notice that the Margin property now specifi es a nonzero value for the left margin.

 Note You can click the anchor point that is connected to the edge of the grid to remove

the connection.

11. On the Debug menu, click Start Without Debugging to build and run the application

again.

12. When the form appears, experiment by making the form narrower and wider. Notice

that the button no longer moves because it is anchored to the left and right edges of

the form. Instead, the button gets wider or narrower as the edges move.

13. Close the form, and return to Visual Studio 2008.

14. In the Design View window, add a second Button control to the form from the Toolbox,

and position it near the middle of the form.

 Chapter 22 Introducing Windows Presentation Foundation 421

15. In the XAML pane, set the Margin property values to 0, remove the VerticalAlignment
and HorizontalAlignment properties if they appear, and set the Width and Height
 properties, as shown here:

<Button Margin=”0,0,0,0” Name=”button2” Width=”75” Height=”23”>Button</Button>

Tip You can also set many of the properties of a control, such as Margin, by using the

Properties window. However, you cannot set all properties by using the Properties window,

and sometimes it is simply easier to type values directly into the XAML pane as long as you

enter the values carefully.

Note If you don’t set the Width and Height properties of the button control, the button

fi lls the entire form.

16. On the Debug menu, click Start Without Debugging to build and run the application

once more.

17. When the form appears, resize the form. Notice that as the form shrinks or grows the

new button relocates itself to try to maintain its relative position on the form with re-

spect to all four sides (it tries to stay in the center of the form). The new button control

even travels over the top of the fi rst button control if you shrink the height of the form.

18. Close the form, and return to Visual Studio 2008.

As long as you are consistent in your approach, by using layout panes, such as the Grid, you

can build forms that look right regardless of the user’s screen resolution without having to

write complex code to determine when the user has resized a window. Additionally, with

WPF, you can modify the look and feel of the controls an application uses, again without hav-

ing to write lots of complex code. With these features together, you can build applications

that can easily be customized to conform to any house style required by your organization.

You will examine some of these features in the following exercises.

Add a background image to the form

1. In the Design View window, click the Window1 form.

2. In the Toolbox, in the Common section, click Image, and then click anywhere on

the form. You will use this image control to display an image on the background

of the form.

Add a background image to the form

422 Part IV Working with Windows Applications

 Note You can use many other techniques to display an image in the background of a

Grid. The method shown in this exercise is probably the simplest, although other strategies

can provide more fl exibility.

3. In the XAML pane, set the Margin property of the image control, and remove any other

property values apart from the Name, as shown here:

<Image Margin=”0,0,0,0” Name=”image1”/>

 The image control expands to occupy the grid fully, although the two button controls

remain visible.

4. In Solution Explorer, right-click the BellRingers project, point to Add, and then click

Existing Item. In the Add Existing Item – BellRingers dialog box, move to the folder

Microsoft Press\Visual CSharp Step By Step\Chapter 22 under your Documents folder. In

the File name box, type Bell.gif, and then click Add.

 This action adds the image fi le Bell.gif as a resource to your application. The Bell.gif fi le

contains a sketch of a ringing bell.

5. In the XAML pane, modify the defi nition of the image control as shown here. Notice

that you must replace the closing tag delimiter (/>) of the image control with an ordi-

nary tag delimiter character (>) and add a closing </Image> tag:

<Image Margin=”0,0,0,0” Name=”image1” >
 <Image.Source>
 <BitmapImage UriSource=”Bell.gif” />
 </Image.Source>
</Image>

 The purpose of an image control is to display an image. You can specify the source of

the image in a variety of ways. The example shown here loads the image from the fi le

Bell.gif that you just added as a resource to the project.

 The image should now appear on the form, like this:

 Chapter 22 Introducing Windows Presentation Foundation 423

 There is a problem, however. The image is not in the background, and it totally ob-

scures the two button controls. The issue is that, unless you specify otherwise, all con-

trols placed on a layout panel have an implied z-order that renders controls added

lower down in the XAML description over the top of controls added previously.

 Note The term z-order refers to the relative depth positions of items on the z-axis of a

three-dimensional space (the y-axis being vertical and the x-axis being horizontal). Items

with a higher value for the z-order appear in front of those items with a lower value.

 There are at least two ways you can move the image control behind the buttons. The

fi rst is to move the XAML defi nitions of the buttons so that they appear after the im-

age control, and the second is to explicitly specify a value for the ZIndex property for

the control. Controls with a higher ZIndex value appear in front of those on the same

panel with a lower ZIndex. If two controls have the same ZIndex value, their relative

precedence is determined by the order in which they occur in the XAML description,

as before.

 Note A panel is a control that acts as a container for other controls and determines how

they are laid out with respect to one another. The Grid control is an example of a panel

control. You will see other examples of panel controls later in this section of the book. You

can place more than one panel on a form.

6. In the XAML pane, set the ZIndex properties of the button and image controls as shown

in bold type in the following code:

<Button Panel.ZIndex=”1” Margin=”169,84,34,0”
 Name=”button1” Height=”23” VerticalAlignment=”Top”>Button</Button>
<Button Panel.ZIndex=”1” Height=”23” Margin=”0,0,0,0”
 Name=”button2” Width=”76”>Button</Button>
<Image Panel.ZIndex=”0” Margin=”0,0,0,0” Name=”image1” >
 <Image.Source>
 <BitmapImage UriSource=”Bell.gif” />
 </Image.Source>
</Image>

 The two buttons should now reappear in front of the image.

 With WPF, you can modify the way in which controls such as buttons, text boxes, and labels

present themselves on a form. You will investigate this feature in the next exercise.

424 Part IV Working with Windows Applications

Create a style to manage the look and feel of controls on the form

1. In the XAML pane, modify the defi nition of the fi rst button on the form, as shown in

bold type in the following code. Notice that it is good practice to split the XAML de-

scription of a control that contains composite child property values such as Button.
Resource over multiple lines to make the code easier to read and maintain:

<Button Style=”{DynamicResource buttonStyle}” Panel.ZIndex=”1” Margin =”169,84,34,0”
Name=”button1” Height=”23” VerticalAlignment=”Top”>
 <Button.Resources>
 <Style x:Key=”buttonStyle”>
 <Setter Property=”Button.Background” Value=”Gray”/>
 <Setter Property=”Button.Foreground” Value=”White”/>
 <Setter Property=”Button.FontFamily” Value=”Comic Sans MS”/>
 </Style>
 </Button.Resources>
 Button
</Button>

You can use the <Style> element of a control to set default values for the properties of

that control. (Styles can do other things as well, as you will see later in this chapter.) This

example specifi es the values for the background and foreground colors of the button

as well as the font used for the text on the button. You should notice that the button

displayed in the Design View window changes its appearance to match the property

values specifi ed for the style.

Styles are resources, and you add them to a Resources element for the control. You

can give each style a unique name by using the Key property. You can then reference

the new style from the Style property of the control. The syntax {DynamicResource
buttonStyle} creates a new style object based on the named style and then applies

this style to the button.

Note When you compile a WPF window, Visual Studio adds any resources included with

the window to a collection associated with the window. Strictly speaking, the Key property

doesn’t specify the name of the style but rather an identifi er for the resource in this collec-

tion. You can specify the Name property as well if you want to manipulate the resource in

your C# code, but controls reference resources by specifying the Key value for that re-

source. Controls and other items that you add to a form should have their Name property

set because, as with resources, this is how you reference these items in code.

Styles have scope. If you attempt to reference the buttonStyle style from the second

button on the form, it will have no effect. Instead, you can create a copy of this style

and add it to the Resources element of the second button, and then reference it, like

this:

<Grid>
 <Button Style=”{DynamicResource buttonStyle}” Panel.ZIndex=”1”
 Margin =”169,84,34,0” Name=”button1” Height=”23”
 VerticalAlignment=”Top”>

Create a style to manage the look and feel of controls on the form

 Chapter 22 Introducing Windows Presentation Foundation 425

 <Button.Resources>
 <Style x:Key=”buttonStyle”>
 <Setter Property=”Button.Background” Value=”Gray”/>
 <Setter Property=”Button.Foreground” Value=”White”/>
 <Setter Property=”Button.FontFamily” Value=”Comic Sans MS”/>
 </Style>
 </Button.Resources>
 Button
 </Button>
 <Button Style=”{DynamicResource buttonStyle}” Panel.ZIndex=”1” Height=”23”
 Margin=”0,0,0,0” Name=”button2” Width=”76”>
 <Button.Resources>
 <Style x:Key=”buttonStyle”>
 <Setter Property=”Button.Background” Value=”Gray”/>
 <Setter Property=”Button.Foreground” Value=”White”/>
 <Setter Property=”Button.FontFamily” Value=”Comic Sans MS”/>
 </Style>
 </Button.Resources>
 Button
 </Button>
 ...
</Grid>

 However, this approach can get very repetitive and becomes a maintenance nightmare

if you need to change the style of buttons. A much better strategy is to defi ne the style

as a resource for the window, and then you can reference it from all controls in that

window.

2. In the XAML pane, add a <Window.Resources> element above the grid, move the

defi nition of the buttonStyle style to this new element, and then delete the <Button.
Resources> element from both buttons. Reference the new style from both buttons,

and split the defi nition of the button2 control over multiple lines to make it more read-

able. The updated code for the entire XAML description of the form is as follows, with

the resource defi nition and references to the resource shown in bold type:

<Window x:Class=”BellRingers.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Middleshire Bell Ringers Association - Members”
 Height=”300” Width=”300”>
 <Window.Resources>
 <Style x:Key=”buttonStyle”>
 <Setter Property=”Button.Background” Value=”Gray”/>
 <Setter Property=”Button.Foreground” Value=”White”/>
 <Setter Property=”Button.FontFamily” Value=”Comic Sans MS”/>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Style=”{StaticResource buttonStyle}” Panel.ZIndex=”1”
 Margin =”169,84,34,0” Name=”button1” Height=”23” VerticalAlignment=”Top”>
 Button
 </Button>

426 Part IV Working with Windows Applications

 <Button Style=”{StaticResource buttonStyle}” Panel.ZIndex=”1” Height=”23”
 Margin=”0,0,0,0” Name=”button2” Width=”76”>
 Button
 </Button>
 <Image Panel.ZIndex=”0” Margin=”0,0,0,0” Name =”image1”>
 <Image.Source>
 <BitmapImage UriSource=”Bell.gif” />
 </Image.Source>
 </Image>
 </Grid>
</Window>

 Notice that both buttons now appear in the Design View window using the same style.

 Note The code you have just entered references the button style by using the

StaticResource rather than the DynamicResource keyword. The scoping rules of static re-

sources are like those of C# in that they require you to defi ne a resource before you can

reference it. In step 1 of this exercise, you referenced the buttonStyle style above the XAML

code that defi ned it, so the style name was not actually in scope. This out-of-scope refer-

ence works because using DynamicResource defers until run time the time at which the

resource reference is resolved, at which point the resource should have been created.

 Generally speaking, static resources are more effi cient than dynamic ones are because they

are resolved when the application is built, but dynamic resources give you more fl exibility.

For example, if the resource itself changes as the application executes (you can write code

to change styles at run time), any controls referencing the style using StaticResource will

not be updated, but any controls referencing the style using DynamicResource will be.

 There are many other differences between the behavior of static and dynamic resources

and restrictions on when you can reference a resource dynamically. For more information,

consult the .NET Framework documentation provided with Visual Studio 2008.

 There is still a little bit of repetition involved in the defi nition of the style; each of the

properties (background, foreground, and font family) explicitly state that they are but-

ton properties. You can remove this repetition by specifying the TargetType attribute in

the Style tag.

3. Modify the defi nition of the style to specify the TargetType attribute, like this:

<Style x:Key=”buttonStyle” TargetType=”Button”>
 <Setter Property=”Background” Value=”Gray”/>
 <Setter Property=”Foreground” Value=”White”/>
 <Setter Property=”FontFamily” Value=”Comic Sans MS”/>
</Style>

 You can add as many buttons as you like to the form, and you can style them all using

the buttonStyle style. But what about other controls, such as labels and text boxes?

4. In the Design View window, click the Window1 form, and then click the Toolbox tab.

In the Common section, click TextBox, and then click anywhere in the lower half of

the form.

 Chapter 22 Introducing Windows Presentation Foundation 427

5. In the XAML pane, change the defi nition of the text box control and specify the

Style attribute shown in bold type in the following example, attempting to apply the

 buttonStyle style:

<TextBox Style=”{StaticResource buttonStyle}” Height=”21” Margin=”114,0,44,58”
Name=”textBox1” VerticalAlignment=”Bottom” />

 Not surprisingly, attempting to set the style of a text box to a style intended for a but-

ton fails. The Design View window displays the error message “The document root

element has been altered or an unexpected error has been encountered in updating

the designer. Click here to reload.” If you click the message as indicated, the form disap-

pears from the Design View window and is replaced with the following message:

 Don’t panic; you will now fi x your mistake!

6. In the XAML pane, modify the Key property and change the TargetType to Control in

the defi nition of the style, and then modify the references to the style in the button

and text box controls as shown in bold type here:

<Window x:Class=”BellRingers.Window1”
 ...>
 <Window.Resources>
 <Style x:Key=”bellRingersStyle” TargetType=”Control”>
 <Setter Property=”Background” Value=”Gray”/>
 <Setter Property=”Foreground” Value=”White”/>
 <Setter Property=”FontFamily” Value=”Comic Sans MS”/>
 </Style>
 </Window.Resources>
 <Grid>
 <Button Style=”{StaticResource bellRingersStyle}” ...>
 Button
 </Button>
 <Button Style=”{StaticResource bellRingersStyle}” ...>
 Button
 </Button>
 ...
 <TextBox ... Style=”{StaticResource bellRingersStyle}” ... />
 </Grid>
</Window>

 Because the style no longer applies exclusively to buttons, it makes sense to rename it.

Setting the TargetType attribute of a style to Control specifi es that the style can be ap-

plied to any control that inherits from the Control class. In the WPF model, many differ-

ent types of controls, including text boxes and buttons, inherit from the Control class.

However, you can provide Setter elements only for properties that explicitly belong

428 Part IV Working with Windows Applications

to the Control class. (Buttons have some additional properties that are not part of the

Control class; if you specify any of these button-only properties, you cannot set the

TargetType to Control.)

7. In the Design View window, click the Reload the designer link. The form should now

 appear. Notice that the text box is rendered with a gray background.

8. On the Debug menu, click Start Without Debugging to build and run the application.

Type some text in the text box, and verify that it appears in white using the Comic Sans

MS font.

 Unfortunately, the choice of colors makes it a little diffi cult to see the text caret when

you click the text box and type text. You will fi x this in a following step.

9. Close the form, and return to Visual Studio 2008.

10. In the XAML pane, edit the bellRingersStyle style and add the <Style.Triggers> element

shown in bold type in the following code. (If you get an error message that the

TriggerCollection is sealed, simply rebuild the solution.)

<Style x:Key=”bellRingersStyle” TargetType=”Control”>
 <Setter Property=”Background” Value=”Gray”/>
 <Setter Property=”Foreground” Value=”White”/>
 <Setter Property=”FontFamily” Value=”Comic Sans MS”/>
 <Style.Triggers>
 <Trigger Property=”IsMouseOver” Value=”True”>
 <Setter Property=”Background” Value=”Blue” />
 </Trigger>
 </Style.Triggers>
</Style>

 A trigger specifi es an action to perform when a property value changes. The

 bellRingersStyle style detects a change in the IsMouseOver property to temporarily

modify the background color of the control the mouse is over.

 Note Don’t confuse triggers with events. Triggers respond to transient changes in

 property values. If the value in the triggering property reverts, the triggered action is

 undone. In the example shown previously, when the IsMouseOver property is no longer

true for a control, the Background property is set back to its original value. Events specify

an action to perform when a signifi cant incident (such as the user clicking a button) occurs

in an application; the actions performed by an event are not undone when the incident is

fi nished.

11. On the Debug menu, click Start Without Debugging to build and run the application

again. This time, when you click the text box, it turns blue so that you can see the text

caret more easily. The text box reverts to its original gray color when you move the

mouse away. Notice that the buttons do not behave in quite the same way. Button con-

trols already implement this functionality and turn a paler shade of blue when you place

the mouse over them. This default behavior overrides the trigger specifi ed in the style.

 Chapter 22 Introducing Windows Presentation Foundation 429

12. Close the form, and return to Visual Studio 2008.

 Note An alternative approach that you can use to apply a font globally to all controls on

a form is to set the text properties of the window holding the controls. These properties

include FontFamily, FontSize, and FontWeight. However, styles provide additional facilities,

such as triggers, and you are not restricted to setting font-related properties. If you specify

the text properties for a window and apply a style to controls in the window, the controls’

style takes precedence over the window’s text properties.

How a WPF Application Runs
 A WPF application can contain any number of forms—you can add forms to an applica-

tion by using the Add Window command on the Project menu in Visual Studio 2008.

How does an application know which form to display when an application starts? If you

recall from Chapter 1, this is the purpose of the App.xaml fi le. If you open the App.xaml

fi le for the BellRingers project, you will see that it looks like this:

<Application x:Class=”BellRingers.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 StartupUri=”Window1.xaml”>
 <Application.Resources>

 </Application.Resources>
</Application>

 When you build a WPF application, the compiler converts this XAML defi nition to an

Application object. The Application object controls the lifetime of the application and is

responsible for creating the initial form that the application displays. You can think of

the Application object as providing the Main method for the application. The key prop-

erty is StartupUri, which specifi es the XAML fi le for the window that the Application ob-

ject should create. When you build the application, this property is converted to code

that creates and opens the specifi ed WPF form. If you want to display a different form,

you simply need to change the value of the StartupUri property.

 It is important to realize that the StartupUri property refers to the name of the XAML

fi le and not the class implementing the window in this XAML fi le. If you rename the

class from the default (Window1), the fi le name does not change (it is still Window1.

xaml). Similarly, if you change the name of the fi le, the name of the window class de-

fi ned in this fi le does not change. It can become confusing if the window class and

XAML fi le have different names, so if you do want to rename things, be consistent and

change both the fi le name and the window class name.

430 Part IV Working with Windows Applications
Adding Controls to the Form
 So far, you have created a form, set some properties, added a few controls, and defi ned a

style. To make the form useful, you need to add some more controls and write some code

of your own. The WPF library contains a varied collection of controls. The purposes of some

are fairly obvious—for example, TextBox, ListBox, CheckBox, and ComboBox—whereas other,

more powerful, controls might not be so familiar.

Using WPF Controls
 In the next exercise, you will add controls to the form that a user can use to input details

about members of the bell ringers association. You will use a variety of controls, each suited

to a particular type of data entry.

 You will use TextBox controls for entering the fi rst name and last name of the member. Each

member belongs to a “tower” (where bells hang). The Middleshire district has several towers,

but the list is static—new towers are not built very often, and hopefully, old towers do not to

fall down with any great frequency either. The ideal control for handling this type of data is a

ComboBox. The form also records whether the member is the tower “captain” (the person in

charge of the tower who conducts the other ringers). A CheckBox is the best sort of control

for this; it can be either selected (True) or cleared (False).

Tip CheckBox controls can actually have three states if the IsThreeState property is set to True.

The three states are true, false, and null. These states are useful if you are displaying information

that has been retrieved from a relational database. Some columns in a table in a database allow

null values, indicating that the value held is not defi ned or is unknown.

 The application also gathers statistical information about when members joined the associa-

tion and how much bell-ringing experience they have (up to 1 year, between 1 and 4 years,

between 5 and 9 years, and 10 or more years). You can use a group of options, or radio but-

tons, to indicate the member’s experience—radio buttons provide a mutually exclusive set

of values. The older Microsoft Windows Forms library provides the DateTimePicker control

for selecting and displaying dates, and this control is ideal for indicating the date that the

member joined the association. There is one small snag, however: The WPF library does not

provide an equivalent control. You can either implement your own custom control to provide

this functionality or use Windows Forms interoperability and the WindowsFormsHost control

to add the DateTimePicker control to a WPF form. You will adopt the latter approach in this

application.

 Finally, the application records the tunes the member can ring—rather confusingly, these

tunes are referred to as “methods” by the bell-ringing fraternity. Although a bell ringer rings

only one bell at a time, a group of bell ringers under the direction of the tower captain can

 Chapter 22 Introducing Windows Presentation Foundation 431

ring their bells in different sequences and play simple music. There are a variety of bell-

ringing methods, and they have rather quaint-sounding names such as Plain Bob, Reverse

Canterbury, Grandsire, Stedman, Kent Treble Bob, and Old Oxford Delight. New methods are

being written with alarming regularity, so the list of methods can vary over time. In a real-

world application, you would store this list in a database. In this application, you will use a

small selection of methods that you will hard-wire into the form. (You will see how to access

and retrieve data from a database in Part V of this book, “Managing Data.”) A good control

for displaying this information and indicating whether a member can ring a method is a

ListBox containing a list of CheckBox controls.

When the user has entered the member’s details, the Add button will validate and store the

data. The user can click Clear to reset the controls on the form and cancel any data entered.

Add controls to the form

1. Ensure that Window1.xaml is displayed in the Design View window. Remove the two

button controls and the text box control from the form.

2. In the XAML pane, change the Height property of the form to 470 and the Width

 property to 600, as shown in bold type here:

<Window x:Class=”BellRingers.Window1”
 ...
 Title=”...” Height=”470” Width=”600”>
 ...
</Window>

3. In the Design View window, click the Window1 form. From the Toolbox, drag a Label
control onto the form, and place it near the upper-left corner. Do not worry about

 positioning and sizing the label precisely because you will do this task for several

 controls later.

4. In the XAML pane, change the text for the label to First Name, as shown in bold type

here:

<Label ...>First Name</Label>

Tip You can also change the text displayed by a label and many other controls by setting

the Content property in the Properties window.

5. In the Design View window, click the Window1 form. From the Toolbox, drag a TextBox

control onto the form to the right of the label.

 Tip You can use the guide lines displayed by the Design View window to help align

 controls. (The guide lines are displayed after you drop the control on the form.)

Add controls to the form

432 Part IV Working with Windows Applications

6. In the XAML pane, change the Name property of the text box to fi rstName, as shown

here in bold type:

<TextBox ... Name=”firstName” .../>

7. Add a second Label control to the form. Place it to the right of the fi rstName text box.

In the XAML pane, change the text for the label to Last Name.

8. Add another TextBox control to the form, and position it to the right of the Last Name
label. In the XAML pane, change the Name property of this text box to lastName.

9. Add a third Label control to the form, and place it directly under the First Name label.

In the XAML pane, change the text for the label to Tower.

10. Add a ComboBox control to the form. Place it under the fi rstName text box and to the

right of the Tower label. In the XAML pane, change the Name property of this combo

box to towerNames.

11. Add a CheckBox control to the form. Place it under the lastName text box and to the

right of the towerNames combo box. In the XAML pane, change the Name property

of the check box to isCaptain, and change the text displayed by this check box to

Captain.

12. Add a fourth Label to the form, and place it under the Tower label. In the XAML pane,

change the text for this label to Member Since.

13. In Solution Explorer, right-click the References folder under the BellRingers proj-

ect, and then click Add Reference. In the Add Reference dialog box, click the .NET

tab, hold down the CTRL key while you select the System.Windows.Forms and

WindowsFormsIntegration assemblies, and then click OK.

 In the following steps, you will add a WindowsFormsHost control to the form to hold a

DateTimePicker control. These controls require the application to reference the System.
Windows.Forms and WindowsFormsIntegration assemblies.

14. In the XAML pane, add the following XML namespace declaration shown in bold type

to the Window1 form. This declaration brings the types in the Windows Forms library

into scope and establishes wf as an alias for this namespace:

<Window x:Class=”BellRingers.Window1”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:wf=”clr-namespace:System.Windows.Forms;assembly=System.Windows.Forms”
 Title=...>
 ...
</Window>

 Chapter 22 Introducing Windows Presentation Foundation 433

15. On the Build menu, click Build Solution.

 This step is necessary to enable the Visual Studio 2008 window to resolve the

 references to the System.Windows.Forms namespace correctly before you add Windows

Forms controls to the application.

16. From the Toolbox, in the Controls section, add a WindowsFormsHost control to the

form, and place it under the towerNames combo box.

 Note After you position the WindowsFormsHost control, it becomes invisible. Don’t worry

too much about placing this control because you will modify the control’s properties in the

XAML description in the next exercise. Additionally, the XAML pane might display a warn-

ing stating that the type WindowsFormsHost was not found. As long as you have added

the references to the System.Windows.Forms and WindowsFormsIntegration assemblies to

the project, you can ignore this warning.

17. In the XAML pane, change the Name property of the WindowsFormsHost control to

hostMemberSince. Still in the XAML pane, add a Windows Forms DateTimePicker con-

trol as a child property to the WindowsFormsHost control, and name it memberSince.

(As with other child properties, you must change the closing tag delimiter (/>) of the

WindowsFormsHost control to an ordinary delimiter character (>) and add a closing

</WindowsFormsHost> tag for the WindowsFormsHost control.) The completed XAML

code for the WindowsFormsHost control should look like this:

<WindowsFormsHost ... Name=”hostMemberSince” ...>
 <wf:DateTimePicker Name=”memberSince”/>
</WindowsFormsHost>

 The DateTimePicker control should appear on the form and display the current date.

Depending on how your Visual Studio windows are arranged, you might need to scroll

to see the new control.

18. Add a GroupBox control from the Containers section of the Toolbox to the form, and

place it under the Member Since label. In the XAML pane, change the Name property

of the group box to yearsExperience, and change the Header property to Experience.

The Header property changes the label that appears on the form for the group box.

19. Add a StackPanel control to the form, and place it inside the yearsExperience group

box. In the XAML pane, verify that the StackPanel control occurs inside the XAML code

for the GroupBox control, like this:

<GroupBox Header=”Experience” ... Name=”yearsExperience” ...>
 <StackPanel ... Name=”stackPanel1” ... />
</GroupBox>

434 Part IV Working with Windows Applications

20. Add a RadioButton control to the form, and place it inside the StackPanel control you

just added. Add three more RadioButton controls to the StackPanel control. They

should automatically be arranged vertically.

21. In the XAML pane, change the Name property of each radio button and the text it

 displays, as shown here in bold type:

<GroupBox...>
 <StackPanel ...>
 <RadioButton ... Name=”novice” ...>Up to 1 year</RadioButton>
 <RadioButton ... Name=”intermediate” ...>1 to 4 years</RadioButton>
 <RadioButton ... Name=”experienced” ...>5 to 9 years</RadioButton>
 <RadioButton ... Name=”accomplished” ...>10 or more years</RadioButton>
 </StackPanel>
</GroupBox>

22. Add a ListBox control to the form, and place it to the right of the GroupBox control. In

the XAML pane, change the Name property of the list box to methods.

23. Add a Button control to the form, and place it near the bottom on the lower-left side

of the form, underneath the GroupBox control. In the XAML pane, change the Name

property of this button to add, and change the text displayed by this button to Add.

24. Add another Button control to the form, and place it near the bottom to the right of

the Add button. In the XAML pane, change the Name property of this button to clear,
and change the text displayed by this button to Clear.

 You have now added all the required controls to the form. The next step is to tidy up the

layout. The following table lists the layout properties and values you should assign to each

of the controls. Using the XAML pane or the Properties window, make these changes. The

margins and alignment of the controls are designed to keep the controls in place if the user

resizes the form. Also notice that the margin values specifi ed for the radio buttons are rela-

tive to each preceding item in the StackPanel control containing them; the fi rst radio button

is 10 units from the top of the StackPanel control, and the remaining radio buttons have a

gap between them of 20 units vertically.

Control Property Value

 label1 Height 23

 Margin 29, 25, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 75

 fi rstName Height 21

 Margin 121, 25, 0, 0

 Chapter 22 Introducing Windows Presentation Foundation 435
Control Property Value

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 175

 label2 Height 23

 Margin 305, 25, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 75

 lastName Height 21

 Margin 380, 25, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 175

 label3 Height 23

 Margin 29, 72, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 75

 towerNames Height 21

 Margin 121, 72, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 275

 isCaptain Height 21

 Margin 420, 72, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 75

 Label4 Height 23

 Margin 29, 134, 0, 0

 VerticalAlignment Top

436 Part IV Working with Windows Applications
Control Property Value

 HorizontalAlignment Left

 Width 90

 hostMemberSince Height 23

 Margin 121, 134, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 275

 yearsExperience Height 200

 Margin 29, 174, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 258

 stackPanel1 Height 151

 Width 224

 Novice Height 16

 Margin 0, 10, 0, 0

 Width 120

 Intermediate Height 16

 Margin 0, 20, 0, 0

 Width 120

 Experienced Height 16

 Margin 0, 20, 0, 0

 Width 120

 Accomplished Height 16

 Margin 0, 20, 0, 0

 Width 120

 Methods Height 200

 Margin 310, 174, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 245

 Chapter 22 Introducing Windows Presentation Foundation 437

Control Property Value

 Add Height 23

 Margin 188, 388, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 75

 Clear Height 23

 Margin 313, 388, 0, 0

 VerticalAlignment Top

 HorizontalAlignment Left

 Width 75

 As a fi nishing touch, you will next apply a style to the controls. You can use the bellRingers-
Style style for controls such as the buttons and text boxes, but the labels, combo box, group

box, and radio buttons should probably not be displayed on a gray background.

Apply styles to the controls, and test the form

1. In the XAML pane, add the bellRingersFontStyle shown in bold type in the following

code to the <Windows.Resources> element. Leave the existing bellRingersStyle style in

place. Notice that this style changes the font only of controls that reference this style.

<Window.Resources>
 <Style x:Key=”bellRingersFontStyle” TargetType=”Control”>
 <Setter Property=”FontFamily” Value=”Comic Sans MS”/>
 </Style>
 <Style x:Key=”bellRingersStyle” TargetType=”Control”>
 ...
 </Style>
</Window.Resources>

2. In the XAML pane, apply the bellRingersFontStyle style to the label1 control, as shown

in bold type here:

<Label Style=”{StaticResource bellRingersFontStyle}” ...>First Name</Label>

 Apply the same style to the following controls:

 label2

 label3

 isCaptain

 towerNames

Apply styles to the controls, and test the form

438 Part IV Working with Windows Applications

 label4

 yearsExperience

 methods

 Note Applying the style to the yearsExperience group box and the methods list box

 automatically causes the style to be used by the items displayed in these controls.

3. Apply the bellRingersStyle style to the following controls:

 fi rstName

 lastName

 add

 clear

4. On the Debug menu, click Start Without Debugging.

 The form when it runs should look like the following image:

 Notice that the Methods list box is currently empty. You will add code to populate it in

a later exercise.

5. Click the drop-down arrow in the Tower combo box. The list of towers is currently

 empty. Again, you will write code to fi ll this combo box in a later exercise.

6. Close the form, and return to Visual Studio 2008.

 Chapter 22 Introducing Windows Presentation Foundation 439

Changing Properties Dynamically
You have been using the Design View window, the Properties window, and the XAML pane

to set properties statically. When the form runs, it would be useful to reset the value of each

control to an initial default value. To do this, you will need to write some code (at last). In the

following exercises, you will create a private method called Reset. Later, you will invoke the

Reset method when the form fi rst starts as well as when the user clicks the Clear button.

Create the Reset method

1. In the Design View window, right-click the form, and then click View Code. The Code
and Text Editor window opens and displays the Window1.xaml.cs fi le so that you can

add C# code to the form.

2. Add the following Reset method, shown in bold type, to the Window1 class:

public partial class Window1 : Window
{
 ...
 public void Reset()
 {
 firstName.Text = String.Empty;
 lastName.Text = String.Empty;
 }
}

The two statements in this method ensure that the fi rstName and lastName text boxes

are blank by assigning an empty string to their Text property.

You also need to initialize the properties for the remaining controls on the form and

populate the towerNames combo box and the methods list box.

If you recall, the towerName combo box will contain a list of all the bell towers in the

Middleshire district. This information would usually be held in a database, and you

would write code to retrieve the list of towers and populate the ComboBox. For this

example, the application will use a hard-coded collection. A ComboBox has a property

called Items that contains a list of the data to be displayed.

3. Add the following string array called towers, shown in bold type, which contains a

 hard-coded list of tower names, to the Window1 class:

public partial class Window1 : Window
{
 private string[] towers = { “Great Shevington”, “Little Mudford”,
 “Upper Gumtree”, “Downley Hatch” };
 ...
}

Create the Reset methodt

440 Part IV Working with Windows Applications

4. In the Reset method, after the code you have already written, add the following

 statements shown in bold type to clear the towerNames combo box (this is important

because otherwise you could end up with many duplicate values in the list) and add the

towers found in the towers array. The statement after the foreach loop causes the fi rst

tower to be displayed as the default value:

public void Reset()
{
 ...
 towerNames.Items.Clear();
 foreach (string towerName in towers)
 {
 towerNames.Items.Add(towerName);
 }
 towerNames.Text = towerNames.Items[0] as string;
}

 Note You can also specify hard-coded values at design time in the XAML description of a

combo box, like this:

<ComboBox Text=”towerNames”>
 <ComboBox.Items>
 <ComboBoxItem>
 Great Shevington
 </ComboBoxItem>
 <ComboBoxItem>
 Little Mudford
 </ComboBoxItem>
 <ComboBoxItem>
 Upper Gumtree
 </ComboBoxItem>
 <ComboBoxItem>
 Downley Hatch
 </ComboBoxItem>
 </ComboBox.Items>
</ComboBox>

5. You must populate the methods list box with a list of bell-ringing methods. Like a

combo box, a list box has a property called Items that contains a collection of values to

be displayed. Also, like the ComboBox, it could be populated from a database. However,

as before, you will simply supply some hard-coded values for this example. Add the

 Chapter 22 Introducing Windows Presentation Foundation 441

following string array shown in bold type, which contains the list of methods, to the

Window1 class:

public partial class Window1 : Window
{
 ...
 private string[] ringingMethods = { “Plain Bob”, “Reverse Canterbury”,
 “Grandsire”, “Stedman”, “Kent Treble Bob”, “Old Oxford Delight”,
 “Winchendon Place”, “Norwich Surprise”, “Crayford Little Court” };
 ...
}

6. The methods list box should display a list of check boxes rather than ordinary text

strings. With the fl exibility of the WPF model, you can specify a variety of different

types of content for controls such as list boxes and combo boxes. Add the following

code shown in bold type to the Reset method to fi ll the methods list box with the meth-

ods in the ringingMethods array. Notice that this time each item is a check box. You can

specify the text displayed by the check box by setting its Content property, and you can

specify the spacing between items in the list by setting the Margin property; this code

inserts a spacing of 10 units after each item:

public void Reset()
{
 ...
 methods.Items.Clear();
 CheckBox method;
 foreach (string methodName in ringingMethods)
 {
 method = new CheckBox();
 method.Margin = new Thickness(0, 0, 0, 10);
 method.Content = methodName;
 methods.Items.Add(method);
 }
}

 Note Most WPF controls have a Content property that you can use to set and read the

value displayed by that control. This property is actually an object, so you can set it to

 almost any type, as long as it makes sense to display it!

7. The isCaptain check box should default to false. To do this, you need to set the

IsChecked property. Add the following statement shown in bold type to the Reset
method:

public void Reset()
{
 ...
 isCaptain.IsChecked = false;
}

442 Part IV Working with Windows Applications

8. The form contains four radio buttons that indicate the number of years of bell-ringing

experience the member has. A radio button is similar to a CheckBox in that it can con-

tain a true or false value. However, the power of radio buttons increases when you put

them together in a GroupBox. In this case, the radio buttons form a mutually exclusive

collection—at most, only one radio button in a group can be selected (set to true), and

all the others will automatically be cleared (set to false). By default, none of the buttons

will be selected. You should rectify this by setting the IsChecked property of the novice

radio button. Add the following statement shown in bold type to the Reset method:

public void Reset()
{
 ...
 novice.IsChecked = true;
}

9. You should ensure that the Member Since DateTimePicker control defaults to the

 current date. You can do this by setting the Value property of the control. You can

 obtain the current date from the static Today method of the DateTime class.

 Add the following code shown in bold type to the Reset method to initialize the

DateTimePicker control.

public void Reset()
{
 ...
 System.Windows.Forms.DateTimePicker memberDate =
 hostMemberSince.Child as System.Windows.Forms.DateTimePicker;
 memberDate.Value = DateTime.Today;
}

 Notice that to access an object in a WindowsFormsHost container, you refer-

ence the Child property of the container and then cast it to the appropriate type.

Additionally, notice that the DateTimePicker class is defi ned in the System.Windows.
Forms namespace. Typically, you add a using statement for the fi le defi ning a class to

bring the namespace of the class into scope, but you should not do this when integrat-

ing Windows Forms controls into a WPF application. The reason is that the System.
Windows.Forms namespace contains many controls that use the same names as those

in the WPF library, so adding a using statement would make all references to these

 controls ambiguous!

10. Finally, you need to arrange for the Reset method to be called when the form is fi rst

displayed. A good place to do this is in the Window1 constructor. Insert a call to the

Reset method after the statement that calls the InitializeComponent method, as shown

in bold type here:

public Window1()
{
 InitializeComponent();
 this.Reset();
}

 Chapter 22 Introducing Windows Presentation Foundation 443
 11. On the Debug menu, click Start Without Debugging to verify that the project builds and

runs.

 12. When the form opens, click the Tower combo box.

 You will see the list of bell towers, and you can select one of them.

 13. Click the drop-down arrow on the right side of the Member Since date/time picker.

 You will be presented with a calendar of dates. The default value will be the current

date. You can click a date and use the arrows to select a month. You can also click the

month name to display the months as a drop-down list, and click the year so that you

can select a year by using a numeric up-down control.

 14. Click each of the radio buttons in the Experience group box.

 Notice that you cannot select more than one radio button at a time.

 15. In the Methods list box, click some of the methods to select the corresponding check

box. If you click a method a second time, it clears the corresponding check box, just as

you would expect.

 16. Click the Add and Clear buttons.

 Currently these buttons don’t do anything. You will add this functionality in the fi nal set

of exercises in this chapter.

 17. Close the form, and return to Visual Studio 2008.

Handling Events in a WPF Form
 If you are familiar with Microsoft Visual Basic, Microsoft Foundation Classes (MFC), or any

of the other tools available for building GUI applications for Windows, you are aware that

Windows uses an event-driven model to determine when to execute code. In Chapter 17,

“Interrupting Program Flow and Handling Events,” you saw how to publish your own events

and subscribe to them. WPF forms and controls have their own predefi ned events that you

can subscribe to, and these events should be suffi cient to handle the requirements of most

user interfaces.

Processing Events in Windows Forms
 The developer’s task is to capture the events that are relevant to the application and write the

code that responds to these events. A familiar example is the Button control, which raises a

“Somebody clicked me” event when a user clicks it with the mouse or presses Enter when the

button has the focus. If you want the button to do something, you write code that responds

to this event. This is what you will do in the next exercise.

444 Part IV Working with Windows Applications

Handle the Click event for the Clear button

1. Display the Window1.xaml fi le in the Design View window. Double-click the Clear
 button on the form.

The Code and Text Editor window appears and creates a method called clear_Click. This

is an event method that will be invoked when the user clicks the Clear button. Notice

that the event method takes two parameters: the sender parameter (an object) and

an additional arguments parameter (a RoutedEventArgs object). The WPF runtime will

populate these parameters with information about the source of the event and with

any additional information that might be useful when handling the event. You will not

use these parameters in this exercise.

 WPF controls can raise a variety of events. When you double-click a control or a form in

the Design View window, Visual Studio generates the stub of an event method for the

default event for the control; for a button, the default event is the Click event. (If you

double-click a text box control, Visual Studio generates the stub of an event method for

handling the TextChanged event.)

2. When the user clicks the Clear button, you want the form to be reset to its default

 values. In the body of the clear_Click method, call the Reset method, as shown here in

bold type:

private void clear_Click(object sender, RoutedEventArgs e)
{
 this.Reset();
}

Users will click the Add button when they have fi lled in all the data for a member and

want to store the information. The Click event for the Add button should validate the

information entered to ensure that it makes sense (for example, should you allow a

tower captain to have less than one year of experience?) and, if it is okay, arrange for

the data to be sent to a database or other persistent store. You will learn more about

validation and storing data in later chapters. For now, the code for the Click event of

the Add button will simply display a message box echoing the data input.

3. Return to the Design View window displaying the Window1.xaml form. In the XAML

pane, locate the element that defi nes the Add button, and begin entering the following

code shown in bold type:

<Button ... Click=”>Add</Button>

 Notice that as you type the opening quotation mark after the text Click=, a shortcut

menu appears, displaying two items: <New Event Handler> and clear_Click. If two but-

tons perform a common action, you can share the same event handler method be-

tween them, such as clear_Click. If you want to generate an entirely new event handling

method, you can select the <New Event Handler> command instead.

Handle the Click event for thek Clear buttonr

 Chapter 22 Introducing Windows Presentation Foundation 445

4. On the shortcut menu, double-click the <New Event Handler> command.

 The text add_Click appears in the XAML code for the button.

 Note You are not restricted to handling the Click event for a button. When you edit the

XAML code for a control, the IntelliSense list displays the properties and events for the

control. To handle an event other than the Click event, simply type the name of the event,

and then select or type the name of the method that you want to handle this event. For

a complete list of events supported by each control, see the Visual Studio 2008

 documentation.

5. Switch to the Code and Text Editor window displaying the Window1.xaml.cs fi le.

 Notice that the add_Click method has been added to the Window1 class.

 Tip You don’t have to use the default names generated by Visual Studio 2008 for the

event handler methods. Rather than clicking the <New Event Handler> command on the

shortcut menu, you can just type the name of a method. However, you must then manu-

ally add the method to the window class. This method must have the correct signature; it

should return a void and take two arguments—an object parameter and a RoutedEventArgs
parameter.

 Important If you later decide to remove an event method such as add_Click from the

Window1.xaml.cs fi le, you must also edit the XAML defi nition of the corresponding control

and remove the Click=”add_Click” reference to the event; otherwise, your application

will not compile.

6. Add the following code shown in bold type to the add_Click method:

private void add_Click(object sender, RoutedEventArgs e)
{
 string nameAndTower = String.Format(
 “Member name: {0} {1} from the tower at {2} rings the following methods:”,
 firstName.Text, lastName.Text, towerNames.Text);
 StringBuilder details = new StringBuilder();
 details.AppendLine(nameAndTower);
 foreach (CheckBox cb in methods.Items)
 {
 if (cb.IsChecked.Value)
 {
 details.AppendLine(cb.Content.ToString());
 }
 }
 MessageBox.Show(details.ToString(), “Member Information”);
}

446 Part IV Working with Windows Applications

 This block of code creates a string variable called nameAndTower that it fi lls with the

name of the member and the tower to which the member belongs.

 Notice how the code accesses the Text property of the text box and combo box

 controls to read the current values of those controls. Additionally, the code uses the

static String.Format method to format the result. The String.Format method operates in

a similar manner to the Console.WriteLine method, except that it returns the formatted

string as its result rather than displaying it on the screen.

 The code then creates a StringBuilder object called details. The method uses this

StringBuilder object to build a string representation of the information it will display.

The text in the nameAndTower string is used to initially populate the details object. The

code then iterates through the Items collection in the methods list box. If you recall, this

list box contains check box controls. Each check box is examined in turn, and if the user

has selected it, the text in the Content property of the check box is appended to the

details StringBuilder object.

 Note You could use ordinary string concatenation instead of a StringBuilder object, but

the StringBuilder class is far more effi cient and is the recommended approach for perform-

ing the kind of tasks required in this code. In the .NET Framework and C#, the string data

type is immutable; when you modify the value in a string, the runtime actually creates a

new string containing the modifi ed value and then discards the old string. Repeatedly

modifying a string can cause your code to become ineffi cient because a new string must

be created in memory at each change (the old strings will eventually be garbage collect-

ed). The StringBuilder class, in the System.Text namespace, is designed to avoid this inef-

fi ciency. You can add and remove characters from a StringBuilder object using the Append,

Insert, and Remove methods without creating a new object each time.

 Finally, the MessageBox class provides static methods for displaying dialog boxes on the

screen. The Show method used here displays the contents of the details string in the

body of the message box and will put the text “Member Information” in the title bar.

Show is an overloaded method, and there are other variants that you can use to specify

icons and buttons to display in the message box.

7. On the Debug menu, click Start Without Debugging to build and run the application.

8. Type some sample data for the member’s fi rst name and last name, select a tower, and

pick a few methods. Click the Add button, and verify that the Member Information mes-

sage box appears, displaying the details of the new member and the methods he or she

can ring.

9. Click the Clear button, and verify that the controls on the form are reset to the correct

default values.

10. Close the form, and return to Visual Studio 2008.

 Chapter 22 Introducing Windows Presentation Foundation 447

In the fi nal exercise in this chapter, you will add an event handler to handle the Closing event

for the window so that users can confi rm that they really want to quit the application. The

Closing event is raised when the user attempts to close the form but before the form actually

closes. You can use this event to prompt the user to save any unsaved data or even ask the

user whether he or she really wants to close the form—if not, you can cancel the event in the

event handler and prevent the form from closing.

Handle the Closing event for the form

1. In the Design View window, in the XAML pane, begin entering the code shown in bold

type to the XAML description of the Window1 window:

<Window x:Class=”BellRingers.Window1”
 ...
 Title=”...” ... Closing=”>

2. When the shortcut menu appears after you type the opening quotation mark,

 double-click the <New Event Handler> command.

 Visual Studio generates an event method called Window_Closing and associates it with

the Closing event for the form, like this:

<Window x:Class=”BellRingers.Window1”
 ...
 Title=”...” ... Closing=”Window_Closing”>

3. Switch to the Code and Text Editor window displaying the Window1.xaml.cs fi le.

 A stub for the Window_Closing event method has been added to the Window1 class:

private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
{

}

 Observe that the second parameter for this method has the type CancelEventArgs. The

CancelEventArgs class has a Boolean property called Cancel. If you set Cancel to true in

the event handler, the form will not close. If you set Cancel to false (the default value),

the form will close when the event handler fi nishes.

4. Add the following statements shown in bold type to the memberFormClosing method:

private void Window_Closing(object sender, System.ComponentModel.CancelEventArgs e)
{
 MessageBoxResult key = MessageBox.Show(
 “Are you sure you want to quit”,
 “Confirm”,
 MessageBoxButton.YesNo,
 MessageBoxImage.Question,
 MessageBoxResult.No);
 e.Cancel = (key == MessageBoxResult.No);
}

Handle the Closing event for the form

448 Part IV Working with Windows Applications

 These statements display a message box asking the user to confi rm whether to quit

the application. The message box will contain Yes and No buttons and a question mark

icon. The fi nal parameter, MessageBoxResult.No, indicates the default button if the user

simply presses the Enter key—it is safer to assume that the user does not want to exit

the application than to risk accidentally losing the details that the user has just typed.

When the user clicks either button, the message box will close and the button clicked

will be returned as the value of the method (as a MessageBoxResult—an enumeration

identifying which button was clicked). If the user clicks No, the second statement will

set the Cancel property of the CancelEventArgs parameter (e) to true, preventing the

form from closing.

5. On the Debug menu, click Start Without Debugging to run the application.

6. Try to close the form. In the message box that appears, click No.

 The form should continue running.

7. Try to close the form again. This time, in the message box, click Yes.

 The form closes, and the application fi nishes.

 You have now seen how to use the essential features of WPF to build a functional user in-

terface. WPF contains many more features than we have space to go into here, especially

concerning some of its really cool capabilities for handling two-dimensional and three-

dimensional graphics and animation. If you want to learn more about WPF, you can consult a

book such as Applications = Code + Markup: A Guide to the Microsoft Windows Presentation
Foundation, by Charles Petzold (Microsoft Press, 2006).

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 23.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

 Chapter 22 Introducing Windows Presentation Foundation 449
Chapter 22 Quick Reference
 To Do this

 Create a WPF application Use the WPF Application template.

 Add controls to a form Drag the control from the Toolbox onto the form.

 Change the properties of a form or

control

Click the form or control in the Design View window. Then do

one of the following:

 In the Properties window, select the property you want to

change and enter the new value.

 In the XAML pane, specify the property and value in the

<Window> element or the element defi ning the control.

 View the code behind a form Do one of the following:

 On the View menu, click Code.

 Right-click in the Design View window, and then click View
Code.

 In Solution Explorer, expand the folder corresponding to the

.xaml fi le for the form, and then double-click the .xaml.cs

fi le that appears.

 Defi ne a set of mutually exclusive radio

buttons.

Add a panel control, such as StackPanel, to the form. Add the

radio buttons to the panel. All radio buttons in the same panel

are mutually exclusive.

 Populate a combo box or a list box by

using C# code

Use the Add method of the Items property. For example:

towerNames.Items.Add(“Upper Gumtree”);

You might need to clear the Items property fi rst, depending on

whether you want to retain the existing contents of the list. For

example:

towerNames.Items.Clear();

 Initialize a check box or radio button

control

Set the IsChecked property to true or false. For example:

novice.IsChecked = true;

 Handle an event for a control or form In the XAML pane, add code to specify the event, and then

either select an existing method that has the appropriate sig-

nature or click the <Add New Event> command on the shortcut

menu that appears, and then write the code that handles the

event in the event method that is created.

Chapter 23

Working with Menus and
Dialog Boxes

 After completing this chapter, you will be able to:

 Create menus for Microsoft Windows Presentation Foundation (WPF) applications by

using the Menu and MenuItem classes.

 Perform processing in response to menu events when a user clicks a menu command.

 Create context-sensitive pop-up menus by using the ContextMenu class.

 Manipulate menus through code and create dynamic menus.

 Use Windows common dialog boxes in an application to prompt the user for the

name of a fi le.

 In Chapter 22, “Introducing Windows Presentation Foundation,” you saw how to create a

simple WPF application made up of a selection of controls and events. Many professional

Microsoft Windows–based applications also provide menus containing commands and

 options, giving the user the ability to perform various tasks related to the application. In

this chapter, you will learn how to create menus and add them to forms by using the Menu

control. You will see how to respond when the user clicks a command on a menu. You’ll learn

how to create pop-up menus whose contents vary according to the current context. Finally,

you will fi nd out about the common dialog classes supplied as part of the WPF library. With

these dialog classes, you can prompt the user for frequently used items, such as fi les and

printers, in a quick, easy, and familiar manner.

Menu Guidelines and Style
 If you look at most Windows-based applications, you’ll notice that some items on the menu

bar tend to appear repeatedly in the same place, and the contents of these items are often

predictable. For example, the File menu is typically the fi rst item on the menu strip, and on

this menu you typically fi nd commands for creating a new document, opening an existing

document, saving the document, printing the document, and exiting the application.

 Note The term document means the data that the application manipulates. In Microsoft Offi ce

Excel, it would be a worksheet; in the Bell Ringers application that you created in Chapter 22, it

could be the details of a new member.
 451

452 Part IV Working with Windows Applications
 The order in which these commands appear tends to be the same across applications; for

example, the Exit command is invariably the last command on the File menu. There might be

other application-specifi c commands on the File menu as well.

 An application often has an Edit menu containing commands such as Cut, Paste, Clear, and

Find. There are usually some additional application-specifi c menus on the menu bar, but

again, convention dictates that the fi nal menu is the Help menu, which contains access to

Help as well as “about” information, which contains copyright and licensing details for the

application. In a well-designed application, most menus are predictable and help ensure that

the application is easy to learn and use.

 Tip Microsoft publishes a full set of guidelines for building intuitive user interfaces, including

menu design, on the Microsoft Web site at http://msdn2.microsoft.com/en-us/library
/Aa286531.aspx.

Menus and Menu Events
 WPF provides the Menu control as a container for menu items. The Menu control provides

a basic shell for defi ning a menu. Like most aspects of WPF, the Menu control is very fl ex-

ible so that you can defi ne a menu structure consisting of almost any type of WPF control.

You are probably familiar with menus that contain text items that you can click to perform

a command. WPF menus can also contain buttons, text boxes, combo boxes, and so on. You

can defi ne menus by using the XAML pane in the Design View window, and you can also con-

struct menus at run time by using Microsoft Visual C# code. Laying out a menu is only half

of the story. When a user clicks a command on a menu, the user expects something to hap-

pen! Your application acts on the commands by trapping menu events and executing code in

much the same way as handling control events.

Creating a Menu
 In the following exercise, you will use the XAML pane to create menus for the Middleshire

Bell Ringers Association application. You will learn how to manipulate and create menus

through code later in this chapter.

Create the application menu

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. Open the BellRingers solution located in the \Microsoft Press\Visual CSharp Step by

Step\Chapter 23\BellRingers folder in your Documents folder. This is a copy of the

 application that you built in Chapter 22.

Create the application menu

 Chapter 23 Working with Menus and Dialog Boxes 453

3. Display Window1.xaml in the Design View window. (Double-click Window1.xaml in

Solution Explorer.)

4. From the Toolbox, drag a DockPanel control from the Controls section anywhere onto

the form. In the Properties window, set the Width property of the DockControl to Auto,

set the HorizontalAlignment property to Stretch, set the VerticalAlignment property to

Top, and set the Margin property to 0.

 Note Setting the Margin property to 0 is the same as setting it to 0, 0, 0, 0.

 The DockControl control should appear at the top of the form, occupying the full width

of the form. (It will cover the First Name, Last Name, Tower, and Captain user interface

elements.)

 The DockPanel control is a panel control that you can use for controlling the arrange-

ment of other controls that you place on it, like the Grid and StackPanel controls that

you met in Chapter 22. You can add a menu directly to a form, but it is better practice

to place it on a DockPanel because you can then more easily manipulate the menu and

its positioning on the form. For example, if you want to place the menu at the bot-

tom or on one side, you can relocate the entire menu elsewhere on the form simply by

moving the panel either at design time or at run time by executing code.

5. From the Toolbox, drag a Menu control from the Controls section onto the DockPanel
control. In the Properties window, set the DockPanel.Dock property to Top, set the

Width property to Auto, set the HorizontalAlignment property to Stretch, and set the

VerticalAlignment property to Top.

 The Menu control appears as a gray bar across the top of the DockPanel. If you examine

the code for the DockPanel and Menu controls in the XAML pane, they should look like

this:

<DockPanel Height=”100” HorizontalAlignment=”Stretch” Margin=”0”
 Name=”dockPanel1” VerticalAlignment=”Top” Width=”Auto”>
 <Menu Height=”22” Name=”menu1” Width=”Auto” DockPanel.Dock=”Top”
 VerticalAlignment=”Top”>
</DockPanel>

 The HorizontalAlignment property does not appear in the XAML code because the

value “Stretch” is the default value for this property.

 Note Throughout this chapter, lines from the XAML pane are shown split and indented so

that they fi t on the printed page.

454 Part IV Working with Windows Applications

6. In the XAML pane, modify the defi nition of the Menu control and add the MenuItem

elements as shown in bold type in the following code. Notice that MenuItem elements

appear as children of the Menu control, so replace the closing tag delimiter (/>) of the

Menu element with a regular tag delimiter (>), and place a separate closing </Menu>

element at the end.

<Menu Height=”22” Name=”menu1” Width=”Auto” DockPanel.Dock=”Top”
 VerticalAlignment=”Top” HorizontalAlignment=”Stretch” >
 <MenuItem Header=”_File” />
 <MenuItem Header=”_Help” />
</Menu>

 The Header attribute of the MenuItem element specifi es the text that appears for the

menu item. The underscore (_) in front of a letter provides fast access to that menu

item when the user presses the Alt key and the letter following the underscore (in this

case, Alt+F for File or Alt+H for Help). This is another common convention. At run time,

when the user presses the Alt key, the F at the start of File appears underscored. Do not

use the same access key more than once on any menu because you will confuse the

user (and probably the application).

 Note The Properties window for the Menu control displays a property called Items. If you

click this property and then click the ellipsis button that appears in this property, the

Collection Editor appears. At the time of writing, the current release of Visual Studio 2008

(Beta 2) allows you to use this window to remove items from a menu, change the order of

items on a menu, and set the properties of these items, but it does not allow you to add

new items to a menu. Consequently, in this chapter you will use the XAML pane to defi ne

the structure of your menus.

7. On the Debug menu, click Start Without Debugging to build and run the application.

 When the form appears, you should see the menu at the top of the window under-

neath the title bar. Press the Alt key; the menu should get the focus, and the “F” in “File”

and the “H” in “Help” should both be underscored, like this:

 If you click either menu item, nothing currently happens because you have not defi ned

the child menus that each of these items will contain.

8. Close the form and return to Visual Studio 2008.

 Chapter 23 Working with Menus and Dialog Boxes 455

9. In the XAML pane, modify the defi nition of the _File menu item, and add the child

menu items together with a closing </MenuItem> element as shown here in bold type:

<MenuItem Header=”_File” >
 <MenuItem Header=”_New Member” Name=”newMember” />
 <MenuItem Header=”_Save Member Details” Name=”saveMember” />
 <Separator/>
 <MenuItem Header=”E_xit” Name=”exit” />
</MenuItem>

 This XAML code adds New Member, Save Member Details, and Exit as commands to the

File menu. The <Separator/> element appears as a bar when the menu is displayed and

is conventionally used to group related menu items.

10. Modify the defi nition of the _Help menu item, and add the child menu item as shown

in bold type here:

<MenuItem Header=”_Help” >
 <MenuItem Header=”_About Middleshire Bell Ringers” Name=”about” />
</MenuItem>

11. On the Debug menu, click Start Without Debugging to build and run the application.

 When the form appears, click the File menu. You should see the child menu items, like

this:

 You can also click the Help menu to display the About Middleshire Bell Ringers child

menu item.

12. Close the form, and return to Visual Studio 2008.

 As a further touch, you can add icons to menu items. Many applications, including

Visual Studio 2008, make use of icons in menus to provide an additional visual cue.

13. In Solution Explorer, right-click the BellRingers project, point to Add, and then click

Existing Item. In the Add Existing Item – BellRingers dialog box, move to the folder

Microsoft Press\Visual CSharp Step By Step\Chapter 23 under your Documents folder, in

the File name box type “Ring.bmp” “Face.bmp” “Note.bmp” (including the quota-

tion marks), and then click Add.

 This action adds the three image fi les as resources to your application.

456 Part IV Working with Windows Applications

14. In the XAML pane, modify the defi nitions of the newMember, saveMember, and about
menu items and add MenuItem.Icon child elements that refer to each of the three icon

fi les you added to the project in the preceding step, as shown in bold type here:

<Menu Height=”22” Name=”menu1” ... >
 <MenuItem Header=”_File” >
 <MenuItem Header=”_New Member” Name=”newMember” >
 <MenuItem.Icon>
 <Image Source=”face.bmp”/>
 </MenuItem.Icon>
 </MenuItem>
 <MenuItem Header=”_Save Member Details” Name=”saveMember” >
 <MenuItem.Icon>
 <Image Source=”note.bmp”/>
 </MenuItem.Icon>
 </MenuItem>
 <Separator/>
 <MenuItem Header=”E_xit” Name=”exit”/>
 </MenuItem>
 <MenuItem Header=”_Help”>
 <MenuItem Header=”_About Middleshire Bell Ringers” Name=”about” >
 <MenuItem.Icon>
 <Image Source=”ring.bmp”/>
 </MenuItem.Icon>
 </MenuItem>
 </MenuItem>
</Menu>

15. The fi nal tweak is to ensure that the text for the menu items is styled in a consistent

manner with the rest of the form. In the XAML pane, edit the defi nition of the top-level

menu1 element and set the Style property to the BellRingersFontStyle style, as shown in

bold type here:

<Menu Style=”{StaticResource bellRingersFontStyle}” ... Name=”menu1” ... >

 Note that the child menu items automatically inherit the style from the top-level menu

item that contains them.

16. On the Debug menu, click Start Without Debugging to build and run the application

again.

 When the form appears, click the File menu. You should now see that the text of

the menu items is displayed in the correct font and that the icons appear with the child

menu items, like this:

17. Close the form, and return to Visual Studio 2008.

 Chapter 23 Working with Menus and Dialog Boxes 457
Types of Menu Items
 You have been using the MenuItem element to add child menu items to a Menu con-

trol. You have seen that you can specify the items in the top-level menu as MenuItem

elements and then add nested MenuItem elements to defi ne your menu structure.

The nested MenuItem elements can themselves contain further nested MenuItem ele-

ments if you want to create cascading menus. In theory, you can continue this process

to a very deep level, but in practice you should probably not go beyond two levels of

nesting.

 However, you are not restricted to using the MenuItem element. You can also add com-

bo boxes, text boxes, and most other types of controls to WPF menus. For example, the

following menu structure contains a button and a combo box:

<Menu ...>
 <MenuItem Header=”Miscellaneous”>
 <Button>Add new member</Button>
 <ComboBox Text=”Towers”>
 <ComboBox.Items>
 <ComboBoxItem>
 Great Shevington
 </ComboBoxItem>
 <ComboBoxItem>
 Little Mudford
 </ComboBoxItem>
 <ComboBoxItem>
 Upper Gumtree
 </ComboBoxItem>
 <ComboBoxItem>
 Downley Hatch
 </ComboBoxItem>
 </ComboBox.Items>
 </ComboBox>
 </MenuItem>
</Menu>

 At run time, the menu structure looks like this:

 Although you have great freedom when designing your menus, you should

endeavor to keep things simple and not be too elaborate. A menu such as this is

not very intuitive!

458 Part IV Working with Windows Applications

Handling Menu Events
 The menu that you have built so far looks very pretty, but none of the items do anything

when you click them. To make them functional, you have to write code to handle the various

menu events. Several different events can occur when a user selects a menu item. Some are

more useful than others are. The most frequently used event is the Click event, which oc-

curs when the user clicks the menu item. You typically trap this event to perform the tasks

 associated with the menu item.

In the following exercise, you will learn more about menu events and how to process them.

You will create Click events for the newMember and exit menu items.

The purpose of the New Member command is so that the user can enter the details of a new

member. Therefore, until the user clicks New Member, all fi elds on the form should be dis-

abled, as should the Save Member Details command. When the user clicks the New Member
command, you want to enable all the fi elds, reset the contents of the form so that the user

can start adding information about a new member, and enable the Save Member Details
command.

Handle the and menu item events

1. In the XAML pane, click the defi nition of the fi rstName text box. In the Properties
window, clear the IsEnabled property. (This action sets IsEnabled to False in the XAML

defi nition.)

Repeat this process for the lastName, towerNames, isCaptain, hostMemberSince,

yearsExperience, methods, add, and clear controls and for the saveMember menu item.

2. In the Design View window, in the XAML pane, begin entering the code shown here in

bold type in the XAML description of the _New Member menu item:

<MenuItem Header=”_New Member” Click=”>

3. When the shortcut menu appears after you type the opening quotation mark,

 double-click the <New Event Handler> command.

Visual Studio generates an event method called newMember_Click and associates it

with the Click event for the menu item.

Tip Always give a menu item a meaningful name when you defi ne event methods for it. If

you don’t, Visual Studio generates an event method called MenuItem_Click for the Click

event. If you then create Click event methods for other menu items that also don’t have

names, they are called MenuItem_Click_1, MenuItem_Click_2, and so on. If you have several

of these event methods, it can be diffi cult to work out which event method belongs to

which menu item.

Handle the and menu item events

 Chapter 23 Working with Menus and Dialog Boxes 459

4. Switch to the Code and Text Editor window displaying the Window1.xaml.cs fi le. (On the

View menu, click Code.)

 The newMember_Click event method will have been added to the bottom of the

Window1 class defi nition:

private void newMember_Click(object sender, RoutedEventArgs e)
{

}

5. Add the following statements shown in bold type to the memberFormClosing method:

private void newMember_Click(object sender, RoutedEventArgs e)
{
 this.Reset();
 saveMember.IsEnabled = true;
 firstName.IsEnabled = true;
 lastName.IsEnabled = true;
 towerNames.IsEnabled = true;
 isCaptain.IsEnabled = true;
 hostMemberSince.IsEnabled = true;
 yearsExperience.IsEnabled = true;
 methods.IsEnabled = true;
 add.IsEnabled = true;
 clear.IsEnabled = true;
}

 This code calls the Reset method and then enables all the controls. If you remember

from Chapter 22, the Reset method resets the controls on the form to their default

values. (If you don’t recall how the Reset method works, scroll the Code and Text Editor
window to display the method and refresh your memory.)

 Next, you need to create a Click event method for the Exit command. This method

should cause the form to close.

6. Return to the Design View window displaying the Window1.xaml fi le. Use the technique

you followed in step 2 to create a Click event method for the exit menu item called

exit_Click.

7. Switch to the Code and Text Editor window. In the body of the exitClick method, type

the statement shown in bold type in the following code:

private void newMember_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

 The Close method of a form attempts to close the form. Remember that if the form

intercepts the Closing event, it can prevent the form from closing. The Middleshire

Bell Ringers Association application does precisely this, and it asks the user if he or she

wants to quit. If the user says no, the form does not close and the application continues

to run.

460 Part IV Working with Windows Applications

 The next step is to handle the saveMember menu item. When the user clicks this menu item,

the data on the form should be saved to a fi le. For the time being, you will save the informa-

tion to an ordinary text fi le called Members.txt in the current folder. Later, you will modify

the code so that the user can select an alternative fi le name and location.

Handle the menu item event

1. Return to the Design View window displaying the Window1.xaml fi le. In the XAML pane,

locate the defi nition of the saveMember menu item and use the <New Event Handler>

command to specify a Click event method called saveMember_Click. (This is the default

name generated by the <New Event Handler> command.)

2. In the Code and Text Editor window displaying the Window1.xaml.cs fi le, scroll to the

top of the fi le and add the following using statement to the list:

using System.IO;

3. Locate the saveMember_Click event method at the end of the fi le. Add the following

statements shown in bold type to the body of the method:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 using (StreamWriter writer = new StreamWriter(“Members.txt”))
 {
 writer.WriteLine(“First Name: {0}”, firstName.Text);
 writer.WriteLine(“Last Name: {0}”, lastName.Text);
 writer.WriteLine(“Tower: {0}”, towerNames.Text);
 writer.WriteLine(“Captain: {0}”, isCaptain.IsChecked.ToString());
 System.Windows.Forms.DateTimePicker memberDate =
 hostMemberSince.Child as System.Windows.Forms.DateTimePicker;
 writer.WriteLine(“Member Since: {0}”, memberDate.Value.ToString());
 writer.WriteLine(“Methods: “);
 foreach (CheckBox cb in methods.Items)
 {
 if (cb.IsChecked.Value)
 {
 writer.WriteLine(cb.Content.ToString());
 }
 }

 MessageBox.Show(“Member details saved”, “Saved”);
 }
}

 This block of code creates a StreamWriter object that the method uses for writing text

to the Member.txt fi le. Using the StreamWriter class is very similar to displaying text in

a console application by using the Console object—you can simply use the WriteLine

method.

Handle the menu item event

 Chapter 23 Working with Menus and Dialog Boxes 461

When the details have all been written out, a message box is displayed giving the user

some feedback (always a good idea).

4. The Add button and its associated event method are now obsolete, so in the Design
View window delete the Add button. In the Code and Text Editor window, comment out

the add_Click method.

5. In the newMember_Click method, comment out the following statement:

// add.IsEnabled = true;

 The remaining menu item is the about menu item, which should display a dialog box

 providing information about the version of the application, the publisher, and any other

 useful information. You will add an event method to handle this event in the next exercise.

Handle the menu item event

1. On the Project menu, click Add Window.

2. In the Add New Item – BellRingers dialog box, in the Templates pane, click Window
(WPF). In the Name text box, type About.xaml, and then click Add.

When you have added the appropriate controls, you will display this window when the

user clicks the About Middleshire Bell Ringers command on the Help menu.

Note Visual Studio provides the About Box windows template. However, this template

generates a Windows Forms window rather than a WPF window.

3. In the Design View window, click the About.xaml form. In the Properties window,

change the Title property to About Middleshire Bell Ringers, set the Width property

to 300, and set the Height property to 156. Set the ResizeMode property to NoResize

to prevent the user from changing the size of the window.

4. In the Name box at the top of the Properties window, type AboutBellRingers.

5. Add two label controls and a button control to the form. In the XAML pane, modify the

properties of these three controls as shown here in bold type (feel free to change the

text displayed by the buildDate label if you prefer):

<Window x:Class=”BellRingers.About”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”About Middleshire Bell Ringers” Height=”156” Width=”300”
 Name=”AboutBellRingers” ResizeMode=”NoResize”>
 <Grid>
 <Label Margin=”80,20,0,0” Name=”version” Height=”30”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Width=”75”>Version 1.0</Label>

Handle the menu item event

462 Part IV Working with Windows Applications

 <Label Margin=”80,50,0,0” Name=”buildDate” Height=”30”
 VerticalAlignment=”Top” HorizontalAlignment=”Left”
 Width=”160”>Build date: September 2007</Label>
 <Button Margin=”100,85,0,0” Name=”ok” HorizontalAlignment=”Left” Width=”78”
 Height=”23” VerticalAlignment=”Top”>OK</Button>
 </Grid>
</Window>

 The completed form should look like this:

6. In the Design View window, double-click the OK button.

 Visual Studio generates an event method for the Click event of the button and adds the

ok_Click method to the About.xaml.cs fi le.

7. In the Code and Text Editor window displaying the About.xaml.cs fi le, add the statement

shown in bold type to the ok_Click method:

private void ok_Click(object sender, RoutedEventArgs e)
{
 this.Close();
}

 When the user clicks the OK button, the window will close.

8. Return to the Design View window displaying the Window1.xaml fi le. In the XAML pane,

locate the defi nition of the about menu item and use the <New Event Handler> com-

mand to specify a Click event method called about_Click. (This is the default name gen-

erated by the <New Event Handler> command.)

9. In the Code and Text Editor window displaying the Window1.xaml.cs fi le, add the

 following statements shown in bold to the about_Click method:

private void about_Click(object sender, RoutedEventArgs e)
{
 About aboutWindow = new About();
 aboutWindow.ShowDialog();
}

 This code creates a new instance of the About window and then calls the ShowDialog

method to display it. The ShowDialog method does not return until the About window

closes (when the user clicks the OK button).

 Chapter 23 Working with Menus and Dialog Boxes 463

Test the menu events

1. On the Debug menu, click Start Without Debugging to build and run the application.

Notice that all the fi elds on the form are disabled.

2. Click the File menu.

The Save Member Details command is disabled.

3. On the File menu, click New Member.

 The fi elds on the form are now available.

4. Input some details for a new member.

5. Click the File menu again.

 The Save Member Details command is now available.

6. On the File menu, click Save Member Details.

 After a short delay, the message “Member details saved” appears. Click OK in this mes-

sage box.

7. Using Windows Explorer, move to the \Microsoft Press\Visual CSharp Step by Step\

Chapter 23\BellRingers\BellRingers\bin\Debug folder under your Documents folder.

 You should see a fi le called Members.txt in this folder.

8. Double-click Members.txt to display its contents using Notepad.

 This fi le should contain the details of the new member.

9. Close Notepad, and return to the Middleshire Bell Ringers application.

10. On the Help menu, click About Middleshire Bell Ringers.

 The About window appears. Notice that you cannot resize this window, and you cannot

click any items on the Members form while the About window is still visible.

11. Click OK to return to the Members form.

12. On the File menu, click Exit.

 The form tries to close. You are asked if you are sure you want to close the form. If you

click No, the form remains open; if you click Yes, the form closes and the application

fi nishes.

13. Click Yes to close the form.

Test the menu events

464 Part IV Working with Windows Applications
Shortcut Menus
 Many Windows-based applications make use of pop-up menus that appear when you right-

click a form or control. These menus are usually context-sensitive and display commands that

are applicable only to the control or form that currently has the focus. They are usually re-

ferred to as context or shortcut menus. You can easily add shortcut menus to a WPF applica-

tion by using the ContextMenu class.

Creating Shortcut Menus
 In the following exercises, you will create two shortcut menus. The fi rst shortcut menu is

 attached to the fi rstName and lastName text box controls and allows the user to clear these

controls. The second shortcut menu is attached to the form and contains commands for

 saving the currently displayed member’s information and for clearing the form.

Note Text box controls are associated with a default shortcut menu that provides Cut, Copy,

and Paste commands for performing text editing. The shortcut menu that you will defi ne in the

following exercise will override this default menu.

Create the and shortcut menu

 1. In the Design View window displaying Window1.xaml, add the following ContextMenu

element shown in bold type to the end of the window resources in the XAML pane

 after the style defi nitions:

<Window.Resources>
 ...
 <ContextMenu x:Key=”textBoxMenu” Style=”{StaticResource bellRingersFontStyle}”>
 </ContextMenu>
</Window.Resources>

This shortcut menu will be shared by the fi rstName and lastName text boxes. Adding

the shortcut menu to the window resources makes it available to any controls in the

window.

 2. Add the following MenuItem element shown in bold type to the textBoxMenu shortcut

menu:

<Window.Resources>
 ...
 <ContextMenu x:Key=”textBoxMenu” Style=”{StaticResource bellRingersFontStyle}”>
 <MenuItem Header=”Clear Name” Name=”clearName” />
 </ContextMenu>
</Window.Resources>

Create the and shortcut menu

 Chapter 23 Working with Menus and Dialog Boxes 465

 This code adds to the shortcut menu a menu item called clearName with the legend

“Clear Name”.

3. In the XAML pane, modify the defi nitions of the fi rstName and lastName text box

 controls, and add the ContextMenu property, shown here in bold type:

<TextBox ... Name=”firstName” ContextMenu=”{StaticResource textBoxMenu}” ... />
...
<TextBox ... Name=”lastName” ContextMenu=”{StaticResource textBoxMenu}” ... />

 The ContextMenu property determines which menu (if any) will be displayed when the

user right-clicks the control.

4. Return to the defi nition of the textBoxMenu style, and to the clearText menu item add a

Click event method called clearName_Click. (This is the default name generated by the

<New Event Handler> command.)

<MenuItem Header=”Clear Text” Name=”clearText” Click=”clearName_Click” />

5. In the Code and Text Editor window displaying Window1.xaml.cs, add the follow-

ing statements to the clearName_Click event method that the <New Event Handler>

 command generated:

firstName.Text = String.Empty;
lastName.Text = String.Empty;

 This code clears both text boxes when the user clicks the Clear Name command on the

shortcut menu.

6. On the Debug menu, click Start Without Debugging to build and run the application.

When the form appears, click File, and then click New Member.

7. Type a name in the First Name and Last Name text boxes. Right-click the First Name

text box. On the shortcut menu, click the Clear Name command, and verify that both

text boxes are cleared.

8. Type a name in the First Name and Last Name text boxes. This time, right-click the Last
Name text box. On the shortcut menu, click the Clear Name command and again verify

that both text boxes are cleared.

9. Right-click anywhere on the form outside the First Name and Last Name text boxes.

 Only the First Name and Last Name text boxes have shortcut menus, so no pop-up

menu should appear.

10. Close the form, and return to Visual Studio 2008.

 Now you can add the second shortcut menu, which contains commands that the user can

use to save member information and to clear the fi elds on the form. To provide a bit of varia-

tion, and to show you how easy it is to create shortcut menus dynamically, in the following

466 Part IV Working with Windows Applications

exercise you will create the shortcut menu by using code. The best place to put this code is

in the constructor of the form. You will then add code to enable the shortcut menu for the

 window when the user creates a new member.

Create the window shortcut menu

1. Switch to the Code and Text Editor window displaying the Window1.xaml.cs fi le.

2. Add the following private variable shown in bold type to the Window1 class:

public partial class Window1 : Window
{
 ...
 private ContextMenu windowContextMenu = null;
 ...
}

3. Locate the constructor for the Window1 class. This is actually the fi rst method in the

class and is called Window1. Add the statements shown in bold type after the code that

calls the Reset method to create the menu items for saving member details:

public Window1()
{
 InitializeComponent();
 this.Reset();

 MenuItem saveMemberMenuItem = new MenuItem();
 saveMemberMenuItem.Header = “Save Member Details”;
 saveMemberMenuItem.Click += new RoutedEventHandler(saveMember_Click);
}

 This code sets the Header property for the menu item and then specifi es that the Click

event should invoke the saveMember_Click event method; this is the same method that

you wrote in an earlier exercise in this chapter. The RoutedEventHandler type is a del-

egate that represents methods for handling the events raised by many WPF controls.

(For more information about delegates and events, refer to Chapter 17, “Interrupting

Program Flow and Handling Events.”)

4. In the Window1 constructor, add the following statements shown in bold type to create

the menu items for clearing the fi elds on the form and resetting them to their default

values:

public Window1()
{
 ...
 MenuItem clearFormMenuItem = new MenuItem();
 clearFormMenuItem.Header = “Clear Form”;
 clearFormMenuItem.Click += new RoutedEventHandler(clear_Click);
}

 This menu item invokes the clear_Click event method when clicked by the user.

Create the window shortcut menu

 Chapter 23 Working with Menus and Dialog Boxes 467

5. In the Window1 constructor, add the following statements shown in bold type to

construct the shortcut menu and populate it with the two menu items you have just

created:

public Window1()
{
 ...
 windowContextMenu = new ContextMenu();
 windowContextMenu.Items.Add(saveMemberMenuItem);
 windowContextMenu.Items.Add(clearFormMenuItem);
}

 The ContextMenu type contains a collection called Items that holds the menu items.

6. At the end of the newMember_Click event method, add the statement shown in bold

type to associate the context menu with the form:

private void newMember_Click(object sender, RoutedEventArgs e)
{
 ...
 this.ContextMenu = windowContextMenu;
}

 Notice that the application associates the shortcut menu with the form only when the

new member functionality is available. If you were to set the ContextMenu property of

the form in the constructor, the Save Member Details and Clear Details shortcut menu

items would be available even when the controls on the form were disabled, which is

not how you want this application to behave.

 Tip You can disassociate a shortcut menu from a form by setting the ContextMenu

 property of the form to null.

7. On the Debug menu, click Start Without Debugging to build and run the application.

8. When the form appears, right-click the form and verify that the shortcut menu does

not appear.

9. On the File menu, click New Member, and then input some details for a new member.

10. Right-click the form. On the shortcut menu, click Clear Form and verify that the fi elds

on the form are reset to their default values.

11. Input some more member details. Right-click the form. On the shortcut menu, click

Save Member Details. Verify that the “Member details saved” message box appears, and

then click OK.

12. Close the form, and return to Visual Studio 2008.

468 Part IV Working with Windows Applications
Windows Common Dialog Boxes
 The Bell Ringers application now lets you save member information, but it always saves data

to the same fi le, overwriting anything that is already there. Now is the time to address this

issue.

 A number of everyday tasks require the user to specify some sort of information. For

 example, if the user wants to open or save a fi le, the user is usually asked which fi le to open

or where to save it. You might have noticed that the same dialog boxes are used by many

different applications. This is not a result of a lack of imagination by applications developers;

it is just that this functionality is so common that Microsoft has standardized it and made

it available as a “common dialog box”—a component supplied with the Microsoft Windows

operating system that you can use in your own applications. The Microsoft .NET Framework

class library provides the OpenFileDialog and SaveFileDialog classes, which act as wrappers

for these common dialog boxes.

Using the SaveFileDialog Class
 In the following exercise, you will use the SaveFileDialog class. In the BellRingers application,

when the user saves details to a fi le, you will prompt the user for the name and location of

the fi le by displaying the Save File common dialog box.

Use the class

 1. In the Code and Text Editor window displaying Window1.xaml.cs, add the following

 using statement to the list at the top of the fi le:

using Microsoft.Win32;

 The SaveFileDialog class is in the Microsoft.Win32 namespace.

 2. Locate the saveMember_Click method, and add the code shown in bold type to the

start of this method, replacing YourName with the name of your own account:

private void saveMember_Click(object sender, RoutedEventArgs e)
{
 SaveFileDialog saveDialog = new SaveFileDialog();
 saveDialog.DefaultExt = “txt”;
 saveDialog.AddExtension = true;
 saveDialog.FileName = “Members”;
 saveDialog.InitialDirectory = @”C:\Users\YourName\Documents\”;
 saveDialog.OverwritePrompt = true;
 saveDialog.Title = “Bell Ringers”;
 saveDialog.ValidateNames = true;
 ...
}

 Chapter 23 Working with Menus and Dialog Boxes 469
Note If you are using Windows XP, replace the statement that sets the InitialDirectory property

of the saveDialog object with the following code:

saveDialog.InitialDirectory = @”C:\Documents and Settings\YourName\My Documents\”;

 This code creates a new instance of the SaveFileDialog class and sets its properties. The

following table describes the purpose of these properties.

 Property Description

 DefaultExt The default fi le name extension to use if the user does not

specify the extension when providing the fi le name.

 AddExtension Enables the dialog box to add the fi le name extension

indicated by the DefaultExt property to the name of the

fi le specifi ed by the user if the user omits the extension.

 FileName The name of the currently selected fi le. You can populate

this property to specify a default fi le name, or clear it if

you don’t want a default fi le name.

 InitialDirectory The default directory to be used by the dialog box.

 OverwritePrompt Causes the dialog box to warn the user when an attempt

is made to overwrite an existing fi le with the same name.

For this to work, the ValidateNames property must also

be set to true.

 Title A string that is displayed on the title bar of the dialog box.

 ValidateNames Indicates whether fi le names are validated. It is used by

some other properties, such as OverwritePrompt. If the

ValidateNames property is set to true, the dialog box

also checks to verify that any fi le name typed by the user

 contains only valid characters.

 3. Add the following statements shown in bold type to the saveMember_Click method,

and enclose the previous code that creates the StreamWriter object and writes the

member details to a fi le in an if statement:

if (saveDialog.ShowDialog().Value)
{
 using (StreamWriter writer = new StreamWriter(“Members.txt”))
 {
 // existing code
 ...
 }
}

 The ShowDialog method displays the Save File dialog box. The Save File dialog box
is modal, which means that the user cannot continue using any other forms in the

470 Part IV Working with Windows Applications

application until she has closed this dialog box by clicking one of its buttons. The Save
File dialog box has a Save button and a Cancel button. If the user clicks Save, the value
returned by the ShowDialog method is true; otherwise, it is false.

 The ShowDialog method prompts the user for the name of a fi le to save to but does

not actually do any saving—you still have to supply that code yourself. All it does is

provide the name of the fi le that the user has selected in the FileName property.

4. In the saveMember_Click method, modify the statement that creates the StreamWriter
object as shown in bold type here:

using (StreamWriter writer = new StreamWriter(saveDialog.FileName))
{
 ...
}

 The saveMember_Click method will now write to the fi le specifi ed by the user rather

than to Members.txt.

5. On the Debug menu, click Start Without Debugging to build and run the application.

6. On the File menu, click New Member, and then add some details for a new member.

7. On the File menu, click Save Member Details.

 The Save File dialog box should appear, with the caption “Bell Ringers.” The default

folder should be your Documents folder, and the default fi le name should be Members,

as shown in the following image:

 If you omit the fi le name extension, .txt is added automatically when the fi le is saved. If

you pick an existing fi le, the dialog box warns you before it closes.

8. Change the value in the File name text box to TestMember, and then click Save.

9. In the Bell Ringers application, verify that the “Member details saved” message appears,

click OK, and then close the application.

 Chapter 23 Working with Menus and Dialog Boxes 471

 10. Using Windows Explorer, move to your Documents folder.

 Verify that the TestMember.txt fi le has been created.

 11. Double-click the fi le, and verify that it contains the details of the member that you

added. Close Notepad when you have fi nished.

 You can use a similar technique for opening a fi le: create an OpenFileDialog object, activate

it by using the ShowDialog method, and retrieve the FileName property when the method

returns if the user has clicked the Open button. You can then open the fi le, read its contents,

and populate the fi elds on the screen. For more details on using the OpenFileDialog class,

consult the MSDN Library for Visual Studio 2008.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 24.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Microsoft Visual C# 2008 Express Edition)

and save the project.

Chapter 23 Quick Reference
 To Do this

 Create a menu for a form Add a DockPanel control, and place it at the top of the form. Add a Menu

control to the DockPanel control.

 Add menu items to a menu Add MenuItem elements to the Menu control. Specify the text for a menu

item by setting the Header property, and give each menu item a name by

specifying the Name property. You can optionally specify properties so

that you can display features such as icons and child menus. You can add

an access key to a menu item by prefi xing the appropriate letter with an

underscore character.

 Create a separator bar in a

menu

Add a Seperator element to the menu.

 Enable or disable a menu item Set the IsEnabled property to True or False in the Properties window at

design time, or write code to set the IsEnabled property of the menu item

to true or false at run time.

 Perform an action when the

user clicks a menu item

Select the menu item, and specify an event method for the Click event.

Add your code to the event method.

 Create a shortcut menu Add a ContextMenu to the window resources. Add items to the shortcut

menu just as you add items to an ordinary menu.

 Associate a shortcut menu

with a form or control

Set the ContextMenu property of the form or control to refer to the

shortcut menu.

472 Part IV Working with Windows Applications
 Create a shortcut menu

 dynamically

Create a ContextMenu object. Populate the Items collection of this

 object with MenuItem objects defi ning each of the menu items. Set the

ContextMenu property of the form or control to refer to the shortcut

menu.

 Prompt the user for the name

of a fi le to save

Use the SaveFileDialog class. Display the dialog box by using the

ShowDialog method. When the dialog box closes, the FileName property

of the SaveFileDialog instance contains the name of the fi le selected by

the user.

Chapter 24

Performing Validation
 After completing this chapter, you will be able to:

 Examine the information entered by a user to ensure that it does not violate any

 application or business rules.

 Use data binding validation rules to validate information entered by a user.

 Perform validation effectively but unobtrusively.

 In the previous two chapters, you have seen how to create a Microsoft Windows Presentation

Foundation (WPF) application that uses a variety of controls for data entry. You created

menus to make the application easier to use. You have learned how to trap events raised by

menus, forms, and controls so that your application can actually do something besides just

look pretty. Although careful design of a form and the appropriate use of controls can help

to ensure that the information entered by a user makes sense, you often need to perform ad-

ditional checks. In this chapter, you will learn how to validate the data entered by a user run-

ning an application to ensure that it matches any business rules specifi ed by the application’s

requirements.

Validating Data
 The concept of input validation is simple enough, but it is not always easy to implement,

especially if validation involves cross-checking data the user has entered into two or more

controls. The underlying business rule might be relatively straightforward, but all too often,

the validation is performed at an inappropriate time, making the form diffi cult (and infuriat-

ing) to use.

Strategies for Validating User Input
 You can employ many strategies to validate the information entered by the users of your

applications. A common technique that many Microsoft Windows developers familiar with

previous versions of the Microsoft .NET Framework use is to handle the LostFocus event of

controls. The LostFocus event is raised when the user moves away from a control. You can

add code to this event to examine the data in the control that the user is vacating and en-

sure that it matches the requirements of the application before allowing the cursor to move

away. The problem with this strategy is that often you need to cross-check data entered into

one control against the values in others, and the validation logic can become quite convo-

luted; you frequently end up repeating similar logic in the LostFocus event handler for sev-
 473

474 Part IV Working with Windows Applications
eral controls. Additionally, you have no power over the sequence in which the user moves

from control to control. Users can move through the controls on a form in any order, so you

 cannot always assume that every control contains a valid value if you are cross-checking a

particular control against others on the form.

 Another fundamental issue with this strategy is that it can tie the validation logic of the

 presentation elements of an application too closely to the business logic. If the business

 requirements change, you might need to modify the validation logic, and maintenance can

become a complex task.

 With WPF, you can defi ne validation rules as part of the business model used by your

 applications. You can then reference these rules from the Extensible Application Markup

Language (XAML) description of the user interface. To do this, you defi ne the classes required

by the business model and then bind properties of the user interface controls to proper-

ties exposed by these classes. At run time, WPF can create instances of these classes. When

you modify the data in a control, the data can be automatically copied back to the specifi ed

property in the appropriate business model class instance and validated. You will learn more

about data binding in Part V, “Managing Data,” of this book. For the purposes of this chapter,

we will concentrate on the validation rules that you can associate with data binding.

An Example—Customer Information Maintenance
 Consider a simple scenario. You have been asked to build a Customer Information

 maintenance application. Part of the application needs to record the essential details of a

customer, including the customer’s title, name, and gender. You decide to create a form like

the one shown in the following graphic.

 You need to ensure that the user’s input is consistent: the title (Mr, Mrs, Miss, or Ms) must

match the selected gender (Male or Female), and vice versa.

 Chapter 24 Performing Validation 475

Performing Validation by Using Data Binding
In the following exercises, you will examine the Customer Information application and add

validation rules by using data binding. As a cautionary step, you will see how easy it is to get

the validation timing wrong and render an application almost unusable!

Examine the Customer Details form

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. Open the CustomerDetails project, located in the \Microsoft Press\Visual CSharp Step

By Step\Chapter 24\CustomerDetails folder in your Documents folder.

3. On the Debug menu, click Start Without Debugging to build and run the application.

4. When the form appears, click the drop-down arrow in the Title combo box, and then

click Mr.

5. In the Gender group box, click the Female radio button.

6. On the File menu, click Save, and verify that the “Customer saved” message box

appears.

 The application does not actually save any data. The important point is that if it did, the

information saved would have been inconsistent because the application does not cur-

rently perform any checking. Ideally, all customers should have a name, and the values

specifi ed for the Title and Gender controls should match.

7. Click OK, and then close the form and return to Visual Studio 2008.

The fi rst step in adding the necessary validation logic is to create a class that can model a

customer. You will start by learning how to use this class to ensure that the user always enters

a fi rst name and last name for the customer.

Create the Customer class with validation logic for enforcing entry of a name

1. In Solution Explorer, right-click the CustomerDetails project, point to Add, and then click

Class.

2. In the Add New Item – CustomerDetails dialog box, in the Name text box, type

Customer.cs, and then click Add.

3. In the Code and Text Editor window displaying the Customer.cs fi le, add to the Customer
class the private foreName and lastName fi elds shown in bold type here:

class Customer
{
 private string foreName;
 private string lastName;
}

Examine the Customer Details form

Create the Customer class with validation logic for enforcing entry of a namer

476 Part IV Working with Windows Applications

4. Add the following public ForeName property to the Customer class as shown in bold

type, based on the foreName fi eld you added in the preceding step:

class Customer
{
 ...
 public string ForeName
 {
 get { return this.foreName; }
 set
 {
 if (String.IsNullOrEmpty(value))
 {
 throw new ApplicationException
 (“Specify a forename for the customer”);
 }
 else
 {
 this.foreName = value;
 }
 }
 }
}

 The property set accessor examines the value supplied for the fi rst name, and if it is

empty, it raises an exception with a suitable message.

5. Add to the Customer class the LastName property shown in bold type in the following

code. This property follows a similar pattern to that of the ForeName property:

class Customer
{
 ...
 public string LastName
 {
 get { return this.lastName; }
 set
 {
 if (String.IsNullOrEmpty(value))
 {
 throw new ApplicationException
 (“Specify a last name for the customer”);
 }
 else
 {
 this.lastName = value;
 }
 }
 }
}

 Now that you have created the Customer class, the next step is to bind the foreName and

lastName text boxes on the form to the corresponding properties of the class.

 Chapter 24 Performing Validation 477

Bind the text box controls on the form to properties in the Customer class

1. In Solution Explorer, double-click the CustomerForm.xaml fi le to display the form in the

Design View window.

2. In the XAML pane, add the XML namespace declaration shown here in bold type to the

Window defi nition:

<Window x:Class=”CustomerDetails.CustomerForm”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 xmlns:cust=”clr-namespace:CustomerDetails”
 Title=”Customer Details” Height=”273” Width=”370” ResizeMode=”NoResize”>
...

With this declaration in place, you can reference the types in the CustomerDetails
namespace in the XAML code for the window.

3. Add the following Window.Resources element shown in bold type to the window:

<Window x:Class=”CustomerDetails.CustomerForm”
 ...
 ...ResizeMode=”NoResize”>
 <Window.Resources>
 <cust:Customer x:Key=”customerData” />
 </Window.Resources>
 <Grid>
 ...

This resource creates a new instance of the Customer class. You can reference this

 instance by using the key value, customerData, elsewhere in the XAML defi nition of the

window.

4. Find the defi nition of the foreName text box in the XAML pane, and modify it as shown

here in bold type (make sure that you replace the closing delimiter tag (/>) for the

TextBox control with an ordinary delimiter (>) and that you add a closing </TextBox>

tag):

<TextBox Height=”21” Margin=”70,74,0,0” Name=”foreName” VerticalAlignment=”Top”
 HorizontalAlignment=”Left” Width=”120” >
 <TextBox.Text>
 <Binding Source="{StaticResource customerData}" Path="ForeName" />
 </TextBox.Text>
</TextBox>

This code binds the data displayed in the Text property of this text box to the value in

the ForeName property of the customerData object. If the user updates the value in the

foreName text box on the form, the new data is automatically copied to the customer-
Data object. Remember that the ForeName property in the Customer class checks that

the user has actually specifi ed a value and not just blanked it out.

Bind the text box controls on the form to properties in the Customer classr

478 Part IV Working with Windows Applications

5. Modify the defi nition of the binding that you added in the preceding step and add a

Binding.ValidationRules child element, as shown here in bold type:

<TextBox Height=”21” Margin=”70,74,0,0” Name=”foreName” VerticalAlignment=”Top”
 HorizontalAlignment=”Left” Width=”120” >
 <TextBox.Text>
 <Binding Source=”{StaticResource customerData}” Path=”ForeName” >
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

 With the ValidationRules element of a binding, you can specify the validation that

the application should perform when the user enters data in this control. The

ExceptionValidationRule element is a built-in rule that checks for any exceptions thrown

by the application when the data in this control changes. If it detects any exceptions, it

highlights the control so that the user can see that there is a problem with the input.

6. Add the equivalent binding and binding rule to the lastName text box, associating it

with the LastName property of the customerData object, as follows:

<TextBox Height=”21” Margin=”210,74,0,0” Name=”lastName” VerticalAlignment=”Top”
 HorizontalAlignment=”Left” Width=”120” >
 <TextBox.Text>
 <Binding Source=”{StaticResource customerData}” Path=”LastName” >
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
 </Binding>
 </TextBox.Text>
</TextBox>

7. On the Debug menu, click Start Without Debugging to build and run the application.

8. When the form appears, type your name in the foreName and lastName text boxes,

and then click the title combo box.

 Nothing noteworthy should happen.

9. Click the foreName text box, delete the fi rst name that you entered, and then click the

title combo box again.

 This time, the foreName text box is highlighted with a red border.

10. Enter a value in the foreName text box again, and delete the value in the lastName text

box. On the File menu, click Save.

 Notice that the red border has disappeared from the foreName text box but, rather

surprisingly, there is no red border around the lastName text box.

 Chapter 24 Performing Validation 479

11. In the message box, click OK, and then click the title combo box.

The red border now appears around the lastName text box.

12. Close the form, and return to Visual Studio 2008.

There are at least two questions that you should be asking yourself at this point:

 Why doesn’t the form always detect when the user has forgotten to enter a value in a

text box? The answer is that the validation occurs only when the text box loses its focus.

This in turn happens only when the user moves the focus to another control on the

form. Menus are not actually treated as though they are part of the form (they are han-

dled differently), so when you select a menu item you are not moving to another con-

trol on the form, and hence the text box has not yet lost its focus. Only when you click

the title combo box (or some other control) does the focus move and the validation oc-

cur. Additionally, the foreName and lastName text boxes are initially empty. If you move

from the foreName text box to the lastName text box and then on to the title combo

box without typing anything, the validation will not be performed. Only when you type

something and then delete it does the validation run. You will address these problems

later in this chapter.

 How can I get the form to display a meaningful error message rather than just

 highlighting that there is a problem with the input in a control? You can capture the

message generated by an exception and display it elsewhere on the form. You will see

how to do this in the following exercise.

Add a style to display exception messages

1. In the Design View window displaying the CustomerForm.xaml fi le, in the XAML pane,

add the following style shown in bold type to the Window.Resources element:

<Window.Resources>
 <cust:Customer x:Key=”customerData” />
 <Style x:Key=”errorStyle” TargetType=”Control”>
 <Style.Triggers>
 <Trigger Property=”Validation.HasError” Value=”True”>
 <Setter Property=”ToolTip”
 Value=”{Binding RelativeSource={x:Static RelativeSource.
Self},Path=(Validation.Errors)[0].ErrorContent}” />
 </Trigger>
 </Style.Triggers>
 </Style>
</Window.Resources>

This style contains a trigger that detects when the Validation.HasError property of the

control is set to true. This occurs if a binding validation rule for the control generates

an exception. The trigger sets the ToolTip property of the current control to display the

Add a style to display exception messages

480 Part IV Working with Windows Applications

text of the exception. Detailed explanation of the binding syntax shown here is outside

the scope of this book, but the binding source {Binding RelativeSource={x:Static
RelativeSource.Self} is a reference to the current control, and the binding path

(Validation.Errors)[0].ErrorContent associates the fi rst exception message

found in this binding source with the ToolTip property. (An exception could throw fur-

ther exceptions, all of which generate their own messages. The fi rst message is usually

the most signifi cant, though.)

2. Apply the errorStyle style to the foreName and lastName text box controls, as shown in

bold type here:

<TextBox Style=”{StaticResource errorStyle}” ... Name=”foreName” ... >
 ...
</TextBox>
<TextBox Style=”{StaticResource errorStyle}” ... Name=”lastName” ... >
 ...
</TextBox>

3. On the Debug menu, click Start Without Debugging to build and run the application.

4. When the form appears, type your name in the foreName and lastName text boxes,

and then click the title combo box.

5. Click the foreName text box, delete the fi rst name that you entered, and then click the

title combo box again.

 The foreName text box is highlighted with a red border.

 Note Make sure that you actually delete the contents of the foreName text box rather

than just overtyping the text with spaces.

6. Click the Title combo box again to hide the list of titles, and then rest the mouse

pointer on the foreName text box. A ScreenTip should appear, displaying the message

“Specify a forename for the customer,” like this:

 This is the message raised by the exception you added to the ForeName property of

the Customer class.

 Chapter 24 Performing Validation 481

7. Clear the lastName text box, and then click the Title combo box. Click the Title combo

box again to hide the list, and then rest the mouse pointer on the lastName text box

and verify that the tooltip “Specify a last name for the customer” appears.

8. Close the form, and return to Visual Studio 2008.

There are still some issues left to fi x, but you will correct them after you have seen how to

validate the title and gender of customers.

Add properties to validate the customer title and gender

1. Switch to the Code and Text Editor window displaying the Customer.cs fi le.

2. Add the Title and Gender enumerations shown here in bold type to the fi le above the

Customer class.

enum Title { Mr, Mrs, Miss, Ms }
enum Gender { Male, Female }

class Customer
{
 ...
}

 You will use these enumerations to specify the types of the Title and Gender properties

of the Customer class.

3. Add the title and gender private fi elds to the Customer class, as shown in bold type

here:

class Customer
{
 private string foreName;
 private string lastName;
 private Title title;
 private Gender gender;
 ...
}

4. Add the private method to the Customer class as shown in bold type here:

class Customer
{
 ...
 private bool checkTitleAndGender(Title proposedTitle, Gender proposedGender)
 {
 bool retVal = false;

 if (proposedGender.Equals(Gender.Male))
 {
 retVal = (proposedTitle.Equals(Title.Mr)) ? true : false;
 }

Add properties to validate the customer title and gender

482 Part IV Working with Windows Applications

 if (proposedGender.Equals(Gender.Female))
 {
 retVal = (proposedTitle.Equals(Title.Mr)) ? false : true;
 }

 return retVal;
 }
}

 This method examines the values in the proposedTitle and proposedGender parameters

and tests them for consistency. If the values in proposedTitle and proposedGender are

consistent, this method returns true; otherwise, it returns false.

 Note You might not be familiar with the ternary operator (indicated by the ? and :) used

in this method. It operates like a condensed if … else statement. It has the following form:

 boolean expression ? true result : false result

 The Boolean expression is evaluated. If it yields true, the expression between the question

mark (?) and the colon (:) is evaluated and used as the result of the entire expression; oth-

erwise, the expression after the colon (:) is evaluated and used as the result.

5. Add the public Title and Gender properties shown here in bold type to the Customer
class. The type of the Title property is the Title enumeration, and the type of the

Gender property is the Gender enumeration:

class Customer
{
 ...
 public Title Title
 {
 get { return this.title; }
 set
 {
 this.title = value;
 if (!checkTitleAndGender(value, this.gender))
 {
 throw new ApplicationException(
 “The title must match the gender of the customer”);
 }
 }
 }

 public Gender Gender
 {
 get { return this.gender; }
 set
 {
 this.gender = value;
 if (!checkTitleAndGender(this.title, value))

 Chapter 24 Performing Validation 483

 {
 throw new ApplicationException(
 “The gender must match the title of the customer”);
 }
 }
 }
}

 The set accessors of these properties call the checkTitleAndGender method to verify

that the title and the gender fi elds match, and they raise an exception if the fi elds do

not match.

6. Add the ToString method shown here in bold type to the Customer class:

class Customer
{
 ...
 public override string ToString()
 {
 return this.Title.ToString() + “ “ + this.ForeName + “ “ +
 this.LastName + “ - “ + this.Gender.ToString();
 }
}

 You will use this method to display the details of customers when you save them to

verify that the data is correct.

 The next step is to bind the title combo box and the male and female radio buttons on the

form to these new properties. However, if you stop and think for a moment, you will realize

that there are a couple of small problems. First, you need to bind the Text property of the

title combo box to the Title property of the Customer object created by the form. The type of

the Text property is string. The type of the Title property is Title (an enumeration). You must

convert between string and Title values for the binding to work. Fortunately, with the binding

mechanism implemented by WPF, you can specify a converter class to perform actions such

as this.

 The second problem is similar. You need to bind the IsChecked property of each radio but-

ton (which is a boolean value) to the Gender property of the Customer object (which has the

Gender type). Again, you can create a converter class to convert between a boolean value

and a Gender value, but you also need to indicate which of the two radio buttons has been

clicked. When you click either of these radio buttons, you are setting the Gender property,

but you are setting it to a different value in each case. If the IsChecked property of the

male radio button is set to true, you should set the Gender property to Gender.Male. If the

IsChecked property of the female radio button is set to true, you should set the Gender prop-

erty to Gender.Female. Happily, those clever people in the WPF team at Microsoft thought

of this as well, and you can pass a parameter to a converter method that will let you indicate

which radio button has been clicked.

484 Part IV Working with Windows Applications

 Converter methods reside in their own classes that must implement the IValueConverter
 interface. This interface defi nes two methods: Convert, which converts from the type used by

the property in the class that is providing the data for the binding to the type displayed on

the form, and ConvertBack, which converts the data from the type displayed on the form to

the type required by the class.

Create the converter classes and methods

1. In the Customer.cs fi le, add the following using statement to the list at the top of the

fi le.

using System.Windows.Data;

The IValueConverter interface is defi ned in this namespace.

2. Add the TitleConverter class shown here to the fi le.

[ValueConversion(typeof(string), typeof(Title))]
public class TitleConverter : IValueConverter
{
}

The text in brackets directly above the class is an example of an attribute. An attribute

provides descriptive metadata for a class. The ValueConversion attribute is used by tools

such as the WPF designer in the Design View window to verify that you are applying the

class correctly when you reference it. The parameters to the ValueConversion attribute

specify the type of the value displayed by the form (string) and the type of the value in

the corresponding property in the class (Title). You will see more examples of attributes

in later chapters in this book.

3. In the TitleConverter class, add the Convert method shown here in bold type:

public class TitleConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 Title title = (Title)value;
 return title.ToString();
 }
}

 The signature of the Convert method is defi ned by the IValueConverter interface. The

value parameter is the value in the class that you are converting from. (You can ignore

the other parameters for now.) The return value from this method is the data bound to

the property on the form. In this case, the Convert method converts a Title value to a

string. Notice that the value parameter is passed in as an object, so you need to cast it

to the appropriate type before attempting to use it.

Create the converter classes and methods

 Chapter 24 Performing Validation 485

4. Add the following ConvertBack method shown in bold type to the TitleConverter class:

public class TitleConverter : IValueConverter
{
 ...
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 Title retVal = Title.Miss;

 switch ((string)value)
 {
 case “Mr” : retVal = Title.Mr;
 break;
 case “Mrs” : retVal = Title.Mrs;
 break;
 case “Ms” : retVal = Title.Ms;
 break;
 case “Miss”: retVal = Title.Miss;
 break;
 }
 return retVal;
 }
}

 In the ConvertBack method, the value parameter is now the value from the form that

you are converting back to a value of the appropriate type for the class. In this case, the

ConvertBack method converts the data from a string (displayed in the Text property in

the combo box) to the corresponding Title value.

5. After the TitleConverter class, add the GenderConverter class shown here to the

Customer.cs fi le:

[ValueConversion(typeof(bool), typeof(Gender))]
public class GenderConverter : IValueConverter
{
}

 This time, the class will convert between Gender values and the Boolean values corre-

sponding to the radio buttons on the form.

6. Add the Convert method shown in bold type in the following code to the

GenderConverter class:

public class GenderConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 string radioButtonId = (string)parameter;
 Gender gender = (Gender)value;
 bool retVal = false;

486 Part IV Working with Windows Applications

 if (String.Equals(radioButtonId, “Female”) && gender.Equals(Gender.Female))
 retVal = true;

 if (String.Equals(radioButtonId, “Male”) && gender.Equals(Gender.Male))
 retVal = true;

 return retVal;
 }
}

 On this occasion, the method makes use of the parameter parameter. When you

 reference a converter from a form, you can specify additional data to be passed in.

This is useful if more than one control must bind its values to the same property in a

class. You can use this parameter to determine which control is calling the converter

method. When you add the binding for the radio buttons to the form in the next ex-

ercise, you will specify a parameter of “Male” for the male radio button and “Female”

for the female radio button. The Convert method examines the data in this parameter

and compares it with the data in the value parameter. If the parameter parameter is

“Female”, the converter has been called for the female radio button. If the value pa-

rameter contains the value Gender.Female, the customer object is also female, and the

method returns true. If the parameter parameter is “Female” but the value parameter

is Gender.Male, the customer object is male and the method returns false. The method

uses the same logic if the parameter parameter is “Male”.

7. Add the ConvertBack method shown here in bold type to the GenderConverter class:

public class GenderConverter : IValueConverter
{
 ...
 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 if (String.Equals((string)parameter, “Female”))
 return Gender.Female;
 else
 return Gender.Male;
 }
}

 This method looks to be suspiciously simple, and it is. The important point to realize is

that the converter method is called only when the user changes the value on the form.

In the case of a radio button, a user can only select it; the user can never clear it. A

radio button is cleared only when another radio button in the same group is selected.

This means that you don’t need to check the value parameter because it will always be

true. You only need to return a Gender value based on the parameter parameter.

 Chapter 24 Performing Validation 487

Bind the combo box and radio button controls on the form to the properties in
the Customer class

1. Return to the Design View window displaying the CustomerForm.xaml fi le.

2. In the XAML pane, add a TitleConverter object as a resource to the window, and specify

a key value of titleConverter. Add a GenderConverter object as another resource, with a

key value of genderConverter, as shown in bold type here:

<Window.Resources>
 <cust:Customer x:Key=”customerData” />
 <cust:TitleConverter x:Key=”titleConverter” />
 <cust:GenderConverter x:Key=”genderConverter” />
 ...
</Window.Resources>

3. Locate the defi nition of the title combo box control, and style the control by using

the errorStyle style. After the list of combo box items, add the XAML code shown here

in bold type to bind the Text property of the combo box to the Title property in the

customerData object, specifying the titleConverter resource as the object providing the

converter methods:

<ComboBox Style=”{StaticResource errorStyle}” ... Name=”title” ...>
 <ComboBox.Items>
 ...
 </ComboBox.Items>
 <ComboBox.Text>
 <Binding Source=”{StaticResource customerData}” Path=”Title”
 Converter=”{StaticResource titleConverter}” >
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </ComboBox.Text>
</ComboBox>

4. Modify the defi nition for the male radio button. As shown in bold type in the following

code, apply the errorStyle style, remove the IsChecked=”True” property from the defi ni-

tion of the radio button, and add XAML code to bind the IsChecked property to the

Gender property of the customerData object. Specify the genderConverter object as the

resource providing the converter methods, and set the ConverterParameter property to

“Male”:

<RadioButton Style=”{StaticResource errorStyle}” Height=”16” Name=”male”
 Width=”120” Margin=”0,20,0,0” >
 Male
 <RadioButton.IsChecked>
 <Binding Source=”{StaticResource customerData}” Path=”Gender”
 Converter=”{StaticResource genderConverter}” ConverterParameter=”Male”>
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>

Bind the combo box and radio button controls on the form to the properties in
the Customer classr

488 Part IV Working with Windows Applications

 </Binding>
 </RadioButton.IsChecked>
</RadioButton>

5. Modify the defi nition for the female radio button in a similar manner, but set the

ConverterParameter property to “Female”:

<RadioButton Style=”{StaticResource errorStyle}” Height=”16” Name=”female”
 Width=”120” Margin=”0,10,0,0” >
 Female
 <RadioButton.IsChecked>
 <Binding Source=”{StaticResource customerData}” Path=”Gender”
 Converter=”{StaticResource genderConverter}” ConverterParameter=”Female”>
 <Binding.ValidationRules>
 <ExceptionValidationRule />
 </Binding.ValidationRules>
 </Binding>
 </RadioButton.IsChecked>
</RadioButton>

6. On the View menu, click Code to switch to the Code and Text Editor window displaying

the CustomerForm.xaml.cs fi le.

7. Change the code in the saveCustomer_Click method, as shown here in bold type:

private void saveCustomer_Click(object sender, RoutedEventArgs e)
{
 Binding customerBinding =
 BindingOperations.GetBinding(this.title, ComboBox.TextProperty);
 Customer customer = customerBinding.Source as Customer;
 MessageBox.Show(customer.ToString(), “Saved”);
}

 This code displays the details of the customer in the message box. (It still does not ac-

tually save the customer information anywhere.) The static GetBinding method of the

BindingOperations class returns a reference to the object to which the specifi ed proper-

ty is bound. In this case, the GetBinding method retrieves the object bound to the Text
property of the title combo box. This should be the same object referred to by the cus-
tomerData resource. In fact, the code could have queried any of the bound properties

of the foreName, lastName, male, and female controls to retrieve the same reference.

The reference is returned as a Binding object. The code then casts this Binding object

into a Customer object before displaying its details.

 Important The remaining steps in this exercise are necessary because of a bug in the

current release of the .NET Framework. When you select a radio button, any other radio

buttons in the same group are automatically cleared. However, the cleared radio buttons

also lose their bindings, and validation no longer works if you select them again. The fi x is

to rebuild and reattach the bindings for all cleared radio buttons each time a radio button

is selected. In this example, whenever the user selects the male radio button, the applica-

tion must rebuild and reattach the binding for the female button, and vice versa. This bug

should be corrected in a future release of the .NET Framework.

 Chapter 24 Performing Validation 489

8. Add the private method shown here in bold type to the CustomerForm class:

public partial class CustomerForm : Window
{
 ...
 private Binding rebuildBinding(string parameter)
 {
 Binding customerBinding =
 BindingOperations.GetBinding(this.title, ComboBox.TextProperty);
 Customer customer = customerBinding.Source as Customer;
 Binding binding = new Binding();
 binding.Source = customer;
 binding.Path = new PropertyPath(“Gender”);
 binding.Converter = new GenderConverter();
 binding.ConverterParameter = parameter;
 binding.ValidationRules.Add(new ExceptionValidationRule());
 return binding;
 }
}

 This method creates a new binding for the Gender radio buttons. The fi rst two state-

ments should be familiar; they retrieve a reference to the customerData object cre-

ated by the form. The remaining steps create a new binding object that references the

Gender property of the customerData object as its source and adds a reference to a

GenderConverter converter object, as required by the radio buttons. The parameter
variable is a string that will be passed in to this method and will contain the text “Male”

or “Female” depending on which radio button the method is re-creating the binding

for. Finally, the code adds the ExceptionValidationRule validation rule to the binding

before returning the binding back to the caller. Take the time to compare this code with

the XAML description of the binding for either of the two radio buttons.

9. Return to the Design View window displaying the CustomerForm.xaml fi le. In the

XAML pane, locate the defi nition of the male radio button and specify a Checked event

method called male_Checked. (This is the default name generated by the <New Event
Handler> command.)

<RadioButton ... Name=”male” ... Checked=”male_Checked”>

10. In the defi nition of the female radio button, specify a Checked event method called

female_Checked.

<RadioButton ... Name=”female” ... Checked=”female_Checked”>

11. Switch to the Code and Text Editor window displaying the CustomerForm.xaml.cs fi le.

Add the code shown here in bold type to the male_Checked and female_Checked

methods:

public partial class CustomerForm : Window
{
 ...
 private void male_Checked(object sender, RoutedEventArgs e)

490 Part IV Working with Windows Applications

 {
 Binding binding = rebuildBinding(“Female”);
 if (this.female != null)
 {
 this.female.SetBinding(RadioButton.IsCheckedProperty, binding);
 BindingExpression femaleBe =
 this.female.GetBindingExpression(RadioButton.IsCheckedProperty);
 femaleBe.UpdateTarget();
 }
 }

 private void female_Checked(object sender, RoutedEventArgs e)
 {
 Binding binding = rebuildBinding(“Male”);
 if (this.male != null)
 {
 this.male.SetBinding(RadioButton.IsCheckedProperty, binding);
 BindingExpression maleBe =
 this.male.GetBindingExpression(RadioButton.IsCheckedProperty);
 maleBe.UpdateTarget();
 }
 }
}

 This male_Checked method rebuilds and reattaches the binding for the female radio

button. The code then creates a BindingExpression object that provides a mechanism

for synchronizing the state of the female radio button on the form with the Gender
property of the underlying Customer object. The UpdateTarget method ensures that the

female radio button indicates the correct value for the Gender property; if the Gender
property of the Customer object is Female, the IsChecked property of the female radio

button will be set to true; otherwise, it will be set to false.

The female_Checked method performs the same tasks for the male radio button.

Run the application, and test the validation

1. On the Debug menu, click Start Without Debugging to build and run the application.

Notice that the default title is “Mr” and the default gender is “Male”.

2. In the Title combo box, click “Mrs”.

The checkTitleAndGender method in the Customer class generates an exception

 because the title and the gender don’t agree. The Title box is highlighted with a red

border. Rest the mouse pointer on the Title combo box, and verify that the ScreenTip

text “The title must match the gender of the customer” appears.

3. In the Title combo box, click “Mr”.

Verify that the error disappears.

Run the application, and test the validation

 Chapter 24 Performing Validation 491

4. In the Gender group box, click the Female radio button.

 Again, the checkTitleAndGender method generates an exception, and the Female radio

button appears highlighted with a red border. Rest the mouse pointer on the Female

combo box, and verify that the ScreenTip text “The gender must match the title of the

customer” appears.

5. On the File menu, click Save.

 A message box appears, displaying the title (“Mr”) and the gender (“Female”) of the

customer. Although the form contains erroneous and missing data (you have not

 entered a name), you can still save the data!

6. Click OK, and then type a name in the foreName and lastName text boxes, but do not

click away from the lastName text box.

7. On the File menu, click Save again.

 The message box now includes the fi rst name of the customer but not the last name.

This happens because the lastName text box on the form has not lost the focus.

Remember from earlier that data binding validation for a text box occurs only when the

user clicks another control on the form. The same applies to the data itself; by default,

it is copied to the customerDetails object only when the text box loses the focus. In fact,

it is the act of copying the data from the form to the customerDetails object that trig-

gers the validation.

8. Click OK, and then click the Title combo box. Set the title to “Mrs”. On the File menu,

click Save.

 This time, the message box displays the fi rst name and last name of the customer. Also,

although the title (“Mrs”) and gender (“Female”) now match, the radio button still fl ags

an error.

9. Click OK, close the application, and return to Visual Studio 2008.

Changing the Point at Which Validation Occurs
 The issue with the Customer Information application is that the validation is performed

at the wrong time, is inconsistently applied, and does not actually prevent the user from

 saving inconsistent data. You just need an alternative approach to handling the valida-

tion. The solution is to check the user’s input only when the user saves the data. This way,

you can ensure that the user has fi nished entering all the data and that it is consistent. If

there are any problems, you can display an error message and prevent the data from be-

ing saved until the problems have been corrected. In the following exercise, you will modify

the Customer Information application to postpone validation until the user attempts to

save the customer information.

492 Part IV Working with Windows Applications

Validate data explicitly

1. Return to the Design View window displaying CustomerForm.xaml. In the XAML pane,

modify the binding for the title combo box and set the UpdateSourceTrigger property

to “Explicit”, as shown in bold type here:

<ComboBox ... Name=”title” ...>
...
 <ComboBox.Text>
 <Binding Source=”{StaticResource customerData}” Path=”Title”
 Converter=”{StaticResource titleConverter}” UpdateSourceTrigger=”Explicit” >
 ...
 </Binding>
 </ComboBox.Text>
</ComboBox>

 The UpdateSourceTrigger property governs when the information entered by the user

is sent back to the underlying Customer object and validated. Setting this property to

“Explicit” postpones this synchronization until your application explicitly performs it by

using code.

2. Modify the bindings for the foreName and lastName text boxes to set the

UpdateSourceTrigger property to “Explicit”:

<TextBox ... Name=”foreName” ... >
 <TextBox.Text>
 <Binding Source=”{StaticResource customerData}” Path=”ForeName”
 UpdateSourceTrigger=”Explicit” >
 ...
 </Binding>
 </TextBox.Text>
</TextBox>
...
<TextBox ... Name=”lastName” ... >
 <TextBox.Text>
 <Binding Source=”{StaticResource customerData}” Path=”LastName”
 UpdateSourceTrigger=”Explicit” >
 ...
 </Binding>
 </TextBox.Text>
</TextBox>

 The application is not going to check consistency between the title and gender of the

customer until the user saves the customer information. If the validation rule for the

Title property passes, there is no need to validate the Gender property. Similarly, if

the validation rule for the Title property fails, there is no need to examine the Gender
property. In other words, the validation rule for the Gender radio buttons on the form

is now redundant, so remove it. To do so, remove the Binding.ValidationRules and

ExceptionValidationRule elements from the bindings for the male and female radio

 buttons. Do not set the UpdateSourceTrigger property of the bindings to “Explicit”.

Validate data explicitly

 Chapter 24 Performing Validation 493

3. Return to the Code and Text Editor window displaying the CustomerForm.xaml.cs fi le.

In the rebuildBinding method, locate the statement that adds the validation rule to the

binding and comment it out as shown in bold type here:

private Binding rebuildBinding(string parameter)
{
 ...
 // binding.ValidationRules.Add(new ExceptionValidationRule());
 ...
}

4. In the saveCustomer_Click method, add the statements shown here in bold type to the

start of the method:

private void saveCustomer_Click(object sender, RoutedEventArgs e)
{
 BindingExpression titleBe =
 this.title.GetBindingExpression(ComboBox.TextProperty);
 BindingExpression foreNameBe =
 this.foreName.GetBindingExpression(TextBox.TextProperty);
 BindingExpression lastNameBe =
 this.lastName.GetBindingExpression(TextBox.TextProperty);
 ...
}

 These statements create BindingExpression objects for each of the three controls with

binding validation rules. In an earlier exercise in this chapter, you saw that you can use

a BindingExpression object to ensure that the data displayed on the form is synchro-

nized with the data in the Customer object by calling the UpdateTarget method. The

BindingExpression class also provides the UpdateSource method, which synchronizes

data the other way around, sending the values in the bound properties of controls on

the form back to the Customer object. When this occurs, the data will also be validated.

5. Add the following statements shown in bold type to the saveCustomer_Click method

after the code you added in the preceding step:

private void saveCustomer_Click(object sender, RoutedEventArgs e)
{
 ...
 titleBe.UpdateSource();
 foreNameBe.UpdateSource();
 lastNameBe.UpdateSource();
 ...
}

 These statements update the properties in the Customer object with the values entered

by the user on the form, and they validate the data as they do so. Notice that there

is no need to update the Gender property manually because you did not set the

UpdateSourceTrigger property to “Explicit” for the binding for the radio buttons; the

Gender property is still updated automatically.

494 Part IV Working with Windows Applications

 The BindingExpression class provides a property called HasError that indicates whether

the UpdateSource method was successful or whether it caused an exception.

6. Add the code shown here in bold type to the saveCustomer_Click method to test the

HasError property of each BindingExpression object and display a message if the valida-

tion fails. Move the original code that displays the customer details to the else part of

the if statement.

private void saveCustomer_Click(object sender, RoutedEventArgs e)
{
 ...
 if (titleBe.HasError || foreNameBe.HasError || lastNameBe.HasError)
 {
 MessageBox.Show(“Please correct errors”, “Not Saved”);
 }
 else
 {
 Binding customerBinding =
 BindingOperations.GetBinding(this.title, ComboBox.TextProperty);
 Customer customer = customerBinding.Source as Customer;
 MessageBox.Show(customer.ToString(), “Saved”);
 }
}

Test the application again

1. On the Debug menu, click Start Without Debugging to build and run the application.

2. When the Customer Details form appears, set the Title combo box to “Mrs”.

Notice that the combo box is not highlighted because it has not yet been validated.

3. On the File menu, click Save.

 A message box should appear with the message “Please correct errors,” and the Title

and Name fi elds on the form should be highlighted. This is because the value in the

Title combo box does not match the gender, and you have left the Name fi elds blank. If

you rest the mouse on the fi elds highlighted with the red border, the ScreenTips display

the reason for the error message.

4. Click OK to close the message box.

5. Click the Female radio button, and then enter a fi rst name and last name for the

customer.

 Notice that the highlighting of the controls with errors does not disappear.

6. On the File menu, click Save again.

 This time, the data is complete and consistent. A message box should appear, display-

ing the full details of the customer, and the highlighting on the form disappears.

7. Click OK, and exit the application.

Test the application again

 Chapter 24 Performing Validation 495
 This chapter has shown you how to perform basic validation by using the default exception

validation rule processing provided by using data binding. You can also defi ne your own cus-

tom validation rules if you want to perform more complex checks. For further information,

see the documentation provided with Visual Studio 2008.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 25.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Microsoft Visual C# 2008 Express Edition)

and save the project.

Chapter 24 Quick Reference
 To Do this

 Use data binding to bind a

 property of a control on a form

to a property of an object

In the XAML code for the property of the control, specify a binding

source identifying the object and the name of the property in the

object to bind to. For example:

<TextBox ...>

 <TextBox.Text>

 <Binding Source=”{StaticResource customerData}”
 Path=”ForeName” />

 </TextBox.Text>

</TextBox>

 Enable a data binding to validate

data entered by the user

Specify the Binding.ValidationRules element as part of the binding.

For example:

<Binding Source=”{StaticResource customerData}”
 Path=”ForeName” />
 <Binding.ValidationRules>
 <ExceptionValidationRule/>
 </Binding.ValidationRules>
</Binding>

496 Part IV Working with Windows Applications
 Display error information in a

 nonintrusive manner

Defi ne a style that detects a change to the Validation.HasError
property of the control, and then set the ToolTip property of the

control to the message returned by the exception. Apply this style

to all controls that require validation. For example:

<Style x:Key=”errorStyle” TargetType=”Control”>
 <Style.Triggers>
 <Trigger Property=”Validation.HasError”
 Value=”True”>
 <Setter Property=”ToolTip”
 Value=”{Binding RelativeSource=
 {x:Static RelativeSource.Self},
 Path=(Validation.Errors)[0].ErrorContent}” />
 </Trigger>
 </Style.Triggers>
</Style>

 Validate all the controls on a

form under programmatic control

rather than when the user moves

from control to control

In the XAML code for the binding, set the UpdateSourceTrigger
property of the binding to “Explicit” to defer validation until the

application requests it. To validate the data for all controls, create a

BindingExpression object for each bound property of each control,

and call the UpdateSource method. Examine the HasError prop-

erty of each BindingExpression object. If this property is true, the

 validation failed.

Microsoft Visual C# 2008 Step by Step

Part V

Managing Data
In this part:
Chapter 25. Querying Information in a Database . 499
Chapter 26. Displaying and Editing Data by Using Data Binding 529
 497

Chapter 25

Querying Information in a Database
 After completing this chapter, you will be able to:

 Fetch and display data from a Microsoft SQL Server database by using

Microsoft ADO.NET.

 Defi ne entity classes for holding data retrieved from a database.

 Use DLINQ to query a database and populate instances of entity classes.

 Create a custom DataContext class for accessing a database in a typesafe manner.

 In Part IV of this book, “Working with Windows Applications,” you learned how to use

Microsoft Visual C# to build user interfaces and present and validate information. In Part

V, you will learn about managing data by using the data access functionality available in

Microsoft Visual Studio 2008 and the Microsoft .NET Framework. The chapters in this part

of the book describe ADO.NET, a library of objects specifi cally designed to make it easy to

write applications that use databases. In this chapter, you will also learn how to query data by

using DLINQ—extensions to LINQ based on ADO.NET that are designed for retrieving data

from a database. In Chapter 26, “Displaying and Editing Data by Using Data Binding,” you will

learn more about using ADO.NET and DLINQ for updating data.

 Important To perform the exercises in this chapter, you must have installed Microsoft SQL

Server 2005 Express Edition, Service Pack 2. This software is available on the retail DVD with

Microsoft Visual Studio 2008 and Visual C# 2008 Express Edition and is installed by default.

Important It is recommended that you use an account that has Administrator privileges to

perform the exercises in this chapter and the remainder of this book.

Querying a Database by Using ADO.NET
 The ADO.NET class library contains a comprehensive framework for building applications

that need to retrieve and update data held in a relational database. The model defi ned by

ADO.NET is based on the notion of data providers. Each database management system (such

as SQL Server, Oracle, IBM DB2, and so on) has its own data provider that implements an

abstraction of the mechanisms for connecting to a database, issuing queries, and updating

data. By using these abstractions, you can write portable code that is independent of the
 499

500 Part V Managing Data
 underlying database management system. In this chapter, you will connect to a database

managed by SQL Server 2005 Express Edition, but the techniques that you will learn are

equally applicable when using a different database management system.

The Northwind Database
 Northwind Traders is a fi ctitious company that sells edible goods with exotic names.

The Northwind database contains several tables with information about the goods that

Northwind Traders sells, the customers they sell to, orders placed by customers, suppliers

from whom Northwind Traders obtains goods to resell, shippers that they use to send goods

to customers, and employees who work for Northwind Traders. Figure 25-1 shows all the

tables in the Northwind database and how they are related to one another. The tables that

you will be using in this chapter are Orders and Products.

Creating the Database
 Before proceeding further, you need to create the Northwind database.

 Chapter 25 Querying Information in a Database 501

Granting Permissions for Creating a SQL Server 2005 Database
 You must have administrative rights for SQL Server 2005 Express before you can cre-

ate a database. By default, if you are using the Windows Vista operating system, the

computer Administrator account and members of the Administrators group do not have

these rights. You can easily grant these permissions by using the SQL Server 2005 User

Provisioning Tool for Vista, as follows:

1. Log on to your computer as an account that has administrator access.

2. Run the sqlprov.exe program, located in the folder C:\Program Files\Microsoft

SQL Server\90\Shared.

3. In the User Account Control dialog box, click Continue. A console window briefl y

appears, and then the SQL Server User Provisioning on Vista window is displayed.

4. In the User to provision text box, type the name of the account you are using to

perform the exercises. (Replace YourComputer\YourAccount with the name of your

computer and your account.)

5. In the Available privileges box, click Member of SQL Server SysAdmin role on
SQLEXPRESS, and then click the >> button.

6. Click OK.

 The permission will be granted to the specifi ed user, and the SQL Server 2005

User Provisioning Tool for Vista will close automatically.

502 Part V Managing Data

Create the Northwind database

1. On the Windows Start menu, click All Programs, click Accessories, and then click

Command Prompt to open a command prompt window. If you are using Windows

Vista, in the command prompt window type the following command to go to the

\Microsoft Press\Visual CSharp Step by Step\Chapter 25 folder under your Documents

folder. Replace Name with your user name.

cd “\Users\Name\Documents\Microsoft Press\Visual CSharp Step by Step\Chapter 25”

If you are using Windows XP, type the following command to go to the \Microsoft

Press\Visual CSharp Step by Step\Chapter 25 folder under your My Documents folder,

replacing Name with your user name.

cd “\Documents and Settings\Name\My Documents\Microsoft Press\Visual CSharp Step by
Step\Chapter 25”

2. In the command prompt window, type the following command:

sqlcmd –S YourComputer\SQLExpress –E –iinstnwnd.sql

Replace YourComputer with the name of your computer.

This command uses the sqlcmd utility to connect to your local instance of SQL Server

2005 Express and run the instnwnd.sql script. This script contains the SQL commands

that create the Northwind Traders database and the tables in the database and fi lls

them with some sample data.

Tip Ensure that SQL Server 2005 Express is running before you attempt to create the

Northwind database. (It is set to start automatically by default. You will simply receive an

error message if it is not started when you execute the sqlcmd command.) You can check

the status of SQL Server 2005 Express, and start it running if necessary, by using the SQL

Confi guration Manager available in the Confi guration Tools folder of the Microsoft SQL

Server 2005 program group.

3. When the script fi nishes running, close the command prompt window.

Note You can run the command you executed in step 2 at any time if you need to reset

the Northwind Traders database. The instnwnd.sql script automatically drops the database

if it exists and then rebuilds it. See Chapter 26 for additional information.

Create the Northwind database

 Chapter 25 Querying Information in a Database 503

Using ADO.NET to Query Order Information
In the next set of exercises, you will write code to access the Northwind database and display

information in a simple console application. The aim of the exercise is to help you learn more

about ADO.NET and understand the object model it implements. In later exercises, you will

use DLINQ to query the database. In Chapter 26, you will see how to use the wizards includ-

ed with Visual Studio 2008 to generate code that can retrieve and update data and display

data graphically in a Windows Presentation Foundation (WPF) application.

The application you are going to create fi rst will produce a simple report displaying informa-

tion about customers’ orders. The program will prompt the user for a customer ID and then

display the orders for that customer.

Connect to the database

1. Start Visual Studio 2008 if it is not already running.

2. Create a new project called ReportOrders by using the Console Application template.

Save it in the \Microsoft Press\Visual CSharp Step By Step\Chapter 25 folder under your

Documents folder, and then click OK.

Note Remember, if you are using Visual C# 2008 Express Edition, you can specify the

 location for saving your project by setting the Visual Studio projects location in the Projects
and Solutions section of the Options dialog box on the Tools menu.

3. In Solution Explorer, change the name of the fi le Program.cs to Report.cs. In the

Microsoft Visual Studio message, click Yes to change all references of the Program class

to Report.

4. In the Code and Text Editor window, add the following using statement to the list at the

top of the fi le:

using System.Data.SqlClient;

 The System.Data.SqlClient namespace contains the SQL Server data provider classes for

ADO.NET. These classes are specialized versions of the ADO.NET classes, optimized for

working with SQL Server.

5. In the Main method of the Report class, add the following statement shown in bold

type, which declares a SqlConnection object:

static void Main(string[] args)
{
 SqlConnection dataConnection = new SqlConnection();
}

Connect to the database

504 Part V Managing Data

 SqlConnection is a subclass of an ADO.NET class called Connection. It is designed to

handle connections to SQL Server databases.

6. After the variable declaration, add a try/catch block to the Main method. All the code

that you will write for gaining access to the database goes inside the try part of this

block. In the catch block, add a simple handler that catches SqlException exceptions.

The new code is shown in bold type here:

static void Main(string[] args)
{
 ...
 try
 {
 // You will add your code here in a moment
 }
 catch(SqlException e)
 {
 Console.WriteLine(“Error accessing the database: {0}”, e.Message);
 }
}

 A SqlException is thrown if an error occurs when accessing a SQL Server database.

7. Replace the comment in the try block with the code shown in bold type here:

try
{
 dataConnection.ConnectionString =
 “Integrated Security=true;Initial Catalog=Northwind;” +
 “Data Source=YourComputer\\SQLExpress”;
 dataConnection.Open();
}

 Important In the ConnectionString property, replace YourComputer with the name of

your computer. Make sure that you type the string on a single line.

 This code attempts to create a connection to the Northwind database. The contents of

the ConnectionString property of the SqlConnection object contain elements that spec-

ify that the connection will use Windows Authentication to connect to the Northwind

database on your local instance of SQL Server 2005 Express Edition. This is the pre-

ferred method of access because you do not have to prompt the user for any form of

user name or password, and you are not tempted to hard-code user names and pass-

words into your application. Notice that a semicolon separates all the elements in the

ConnectionString.

 You can also encode many other elements in the connection string. See the

 documentation supplied with Visual Studio 2008 for details.

 Chapter 25 Querying Information in a Database 505

Using SQL Server Authentication
Windows Authentication is useful for authenticating users who are all members of a

Windows domain. However, there might be occasions when the user accessing the

 database does not have a Windows account, for example, if you are building an appli-

cation designed to be accessed by remote users over the Internet. In these cases, you

can use the User ID and Password parameters instead, like this:

string userName = ...;
string password = ...;
// Prompt the user for their name and password, and fill these variables

string connString = String.Format(
 “User ID={0};Password={1};Initial Catalog=Northwind;” +
 “Data Source=YourComputer\\SQLExpress”, username, password);

myConnection.ConnectionString = connString;

At this point, I should offer a sentence of advice: never hard-code user names and pass-

words into your applications. Anyone who obtains a copy of the source code (or who

reverse-engineers the compiled code) can see this information, and this renders the

whole point of security meaningless.

 The next step is to prompt the user for a customer ID and then query the database to fi nd all

of the orders for that customer.

Query the Orders table

1. Add the statements shown here in bold type to the try block after the dataConnection.
Open(); statement:

try
{
 ...
 Console.Write(“Please enter a customer ID (5 characters): “);
 string customerId = Console.ReadLine();
}

 These statements prompt the user for a customer ID and read the user’s response in

the string variable customerId.

2. Type the following statements shown in bold type after the code you just entered:

try
{
 ...
 SqlCommand dataCommand = new SqlCommand();
 dataCommand.Connection = dataConnection;

Query the Orders table

506 Part V Managing Data

 dataCommand.CommandText =
 “SELECT OrderID, OrderDate, ShippedDate, ShipName, ShipAddress, “ +
 “ShipCity, ShipCountry “ +
 “FROM Orders WHERE CustomerID=’” + customerId + “’”;
 Console.WriteLine(“About to execute: {0}\n\n”, dataCommand.CommandText);
}

 The fi rst statement creates a SqlCommand object. Like SqlConnection, this is a

 specialized version of an ADO.NET class, Command, that has been designed for per-

forming queries against a SQL Server database. An ADO.NET Command object is used

to execute a command against a data source. In the case of a relational database, the

text of the command is a SQL statement.

 The second line of code sets the Connection property of the SqlCommand object to

the database connection you opened in the preceding exercise. The next two state-

ments populate the CommandText property with a SQL SELECT statement that retrieves

information from the Orders table for all orders that have a CustomerID that matches

the value in the customerId variable. The Console.WriteLine statement just repeats the

command about to be executed to the screen.

Important If you are an experienced database developer, you will probably be about to

e-mail me telling me that using string concatenation to build SQL queries is bad practice.

This approach renders your application vulnerable to SQL injection attacks. However, the

purpose of this code is to quickly show you how to execute queries against a SQL Server

database by using ADO.NET, so I have deliberately kept it simple. Do not write code such

as this in your production applications.

 For a description of what a SQL injection attack is, how dangerous it can be, and how you

should write code to avoid such attacks, see the SQL Injection topic in SQL Server Books

Online, available at http://msdn2.microsoft.com/en-us/library/ms161953.aspx.

3. Add the following statement shown in bold type after the code you just entered:

try
{
 ...
 SqlDataReader dataReader = dataCommand.ExecuteReader();
}

 The ExecuteReader method of a SqlCommand object constructs a SqlDataReader object

that you can use to fetch the rows identifi ed by the SQL statement. The SqlDataReader
class provides the fastest mechanism available (as fast as your network allows) for

 retrieving data from a SQL Server.

 The next task is to iterate through all the orders (if there are any) and display them.

 Chapter 25 Querying Information in a Database 507

Fetch data and display orders

1. Add the while loop shown here in bold type after the statement that creates the

SqlDataReader object:

try
{
 ...
 while (dataReader.Read())
 {
 // Code to display the current row
 }
}

The Read method of the SqlDataReader class fetches the next row from the database. It

returns true if another row was retrieved successfully; otherwise, it returns false, usually

because there are no more rows. The while loop you have just entered keeps reading

rows from the dataReader variable and fi nishes when there are no more rows.

2. Add the statements shown here in bold type to the body of the while loop you created

in the preceding step:

while (dataReader.Read())
{
 int orderId = dataReader.GetInt32(0);
 DateTime orderDate = dataReader.GetDateTime(1);
 DateTime shipDate = dataReader.GetDateTime(2);
 string shipName = dataReader.GetString(3);
 string shipAddress = dataReader.GetString(4);
 string shipCity = dataReader.GetString(5);
 string shipCountry = dataReader.GetString(6);
 Console.WriteLine(
 “Order: {0}\nPlaced: {1}\nShipped: {2}\n” +
 “To Address: {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
 shipDate, shipName, shipAddress, shipCity, shipCountry);
}

This block of code shows how you read the data from the database by using a

SqlDataReader object. A SqlDataReader object contains the most recent row retrieved

from the database. You can use the GetXXX methods to extract the information from

each column in the row—there is a GetXXX method for each common type of data. For

example, to read an int value, you use the GetInt32 method; to read a string, you use

the GetString method; and you can probably guess how to read a DateTime value. The

GetXXX methods take a parameter indicating which column to read: 0 is the fi rst col-

umn, 1 is the second column, and so on. The preceding code reads the various columns

from the current Orders row, stores the values in a set of variables, and then prints out

the values of these variables.

Fetch data and display orders

508 Part V Managing Data

Firehose Cursors
 One of the major drawbacks in a multiuser database application is locked data.

Unfortunately, it is common to see applications retrieve rows from a database and keep

those rows locked to prevent another user from changing the data while the applica-

tion is using them. In some extreme circumstances, an application can even prevent

other users from reading data that it has locked. If the application retrieves a large

number of rows, it locks a large proportion of the table. If there are many users run-

ning the same application at the same time, they can end up waiting for one another to

 release locks and it all leads to a slow-running and frustrating mess.

 The SqlDataReader class has been designed to remove this drawback. It fetches rows

one at a time and does not retain any locks on a row after it has been retrieved. It is

wonderful for improving concurrency in your applications. The SqlDataReader class is

sometimes referred to as a “fi rehose cursor.” (The term cursor is an acronym that stands

for “current set of rows.”)

 When you have fi nished using a database, it’s good practice to close your connection and

release any resources you have been using.

Disconnect from the database, and test the application

1. Add the statement shown here in bold type after the while loop in the try block:

try
{
 ...
 while(dataReader.Read())
 {
 ...
 }
 dataReader.Close();
}

This statement closes the SqlDataReader object. You should always close a SqlDataReader
object when you have fi nished with it because you will not able to use the current

SqlConnection object to run any more commands until you do. It is also considered good

practice to do it even if all you are going to do next is close the SqlConnection.

Note If you activate multiple active result sets (MARS) with SQL Server 2005, you can

open more than one SqlDataReader object against the same SqlConnection object and

process multiple sets of data. MARS is disabled by default. To learn more about MARS and

how you can activate and use it, consult SQL Server 2005 Books Online.

Disconnect from the database, and test the application

Chapter 25 Querying Information in a Database 509

2. After the catch block, add the following fi nally block:

catch(SqlException e)
{
 ...
}
finally
{
 dataConnection.Close();
}

 Database connections are scarce resources. You need to ensure that they are closed

when you have fi nished with them. Putting this statement in a fi nally block guarantees

that the SqlConnection will be closed, even if an exception occurs; remember that the

code in the fi nally block will be executed after the catch handler has fi nished.

 Tip An alternative approach to using a fi nally block is to wrap the code that creates the

SqlDataConnection object in a using statement, as shown in the following code. At the end

of the block defi ned by the using statement, the SqlConnection object is closed automati-

cally, even if an exception occurs:

using (SqlConnection dataConnection = new SqlConnection())
{
 try
 {
 dataConnection.ConnectionString = “...”;
 ...
 }
 catch (SqlException e)
 {
 Console.WriteLine(“Error accessing the database: {0}”, e.Message);
 }
}

3. On the Debug menu, click Start Without Debugging to build and run the application.

4. At the customer ID prompt, type the customer ID VINET, and press Enter.

 The SQL SELECT statement appears, followed by the orders for this customer, as shown

in the following image:

510 Part V Managing Data

 You can scroll back through the console window to view all the data. Press the Enter

key to close the console window when you have fi nished.

5. Run the application again, and then type BONAP when prompted for the customer ID.

 Some rows appear, but then an error occurs. If you are using Windows Vista, a mes-

sage box appears with the message “ReportOrders has stopped working.” Click Close
program (or Close the program if you are using Visual C# Express). If you are using

Windows XP, a message box appears with the message “ReportOrders has encountered

a problem and needs to close. We are sorry for the inconvenience.” Click Don’t Send.

 An error message containing the text “Data is Null. This method or property cannot be

called on Null values” appears in the console window.

 The problem is that relational databases allow some columns to contain null values.

A null value is a bit like a null variable in C#: It doesn’t have a value, but if you try to

read it, you get an error. In the Orders table, the ShippedDate column can contain a

null value if the order has not yet been shipped. You should also note that this is a

SqlNullValueException and consequently is not caught by the SqlException handler.

6. Press Enter to close the console window and return to Visual Studio 2008.

Closing Connections
 In many older applications, you might notice a tendency to open a connection when

the application starts and not close the connection until the application terminates. The

rationale behind this strategy was that opening and closing database connections were

expensive and time-consuming operations. This strategy had an impact on the scalabil-

ity of applications because each user running the application had a connection to the

database open while the application was running, even if the user went to lunch for a

few hours. Most databases limit the number of concurrent connections that they allow.

(Sometimes this is because of licensing, but usually it’s because each connection con-

sumes resources on the database server that are not infi nite.) Eventually, the database

would hit a limit on the number of users that could operate concurrently.

 Most .NET Framework data providers (including the SQL Server provider) implement

connection pooling. Database connections are created and held in a pool. When an

application requires a connection, the data access provider extracts the next available

connection from the pool. When the application closes the connection, it is returned

to the pool and made available for the next application that wants a connection. This

means that opening and closing database connections are no longer expensive op-

erations. Closing a connection does not disconnect from the database; it just returns

the connection to the pool. Opening a connection is simply a matter of obtaining

an already-open connection from the pool. Therefore, you should not hold on to

 connections longer than you need to—open a connection when you need it, and close

it as soon as you have fi nished with it.

 Chapter 25 Querying Information in a Database 511

You should note that the ExecuteReader method of the SqlCommand class,

which creates a SqlDataReader, is overloaded. You can specify a System.Data.
CommandBehavior parameter that automatically closes the connection used by the

SqlDataReader when the SqlDataReader is closed, like this:

SqlDataReader dataReader =
 dataCommand.ExecuteReader(System.Data.CommandBehavior.CloseConnection);

 When you read the data from the SqlDataReader object, you should check that the

data you are reading is not null. You’ll see how to do this next.

Handle null database values

1. In the Main method, change the code in the body of the while loop to contain an if …

else block, as shown here in bold type:

while (dataReader.Read())
{
 int orderId = dataReader.GetInt32(0);
 if (dataReader.IsDBNull(2))
 {
 Console.WriteLine(“Order {0} not yet shipped\n\n”, orderId);
 }
 else
 {
 DateTime orderDate = dataReader.GetDateTime(1);
 DateTime shipDate = dataReader.GetDateTime(2);
 string shipName = dataReader.GetString(3);
 string shipAddress = dataReader.GetString(4);
 string shipCity = dataReader.GetString(5);
 string shipCountry = dataReader.GetString(6);
 Console.WriteLine(
 “Order {0}\nPlaced {1}\nShipped{2}\n” +
 “To Address {3}\n{4}\n{5}\n{6}\n\n”, orderId, orderDate,
 shipDate, shipName, shipAddress, shipCity, shipCountry);
 }
}

The if statement uses the IsDBNull method to determine whether the ShippedDate

column (column 2 in the table) is null. If it is null, no attempt is made to fetch it (or

any of the other columns, which should also be null if there is no ShippedDate value);

 otherwise, the columns are read and printed as before.

2. Build and run the application again.

3. Type BONAP for the customer ID when prompted.

 This time you do not get any errors, but you receive a list of orders that have not yet

been shipped.

4. When the application fi nishes, press Enter and return to Visual Studio 2008.

Handle null database values

512 Part V Managing Data
Querying a Database by Using DLINQ
 In Chapter 20, “Querying In-Memory Data by Using Query Expressions,” you saw how to

use LINQ to examine the contents of enumerable collections held in memory. LINQ pro-

vides query expressions, which use SQL-like syntax for performing queries and generating

a result set that you can then step through. It should come as no surprise that you can use

an extended form of LINQ, called DLINQ, for querying and manipulating the contents of

a database. DLINQ is built on top of ADO.NET. DLINQ provides a high level of abstraction,

 removing the need for you to worry about the details of constructing an ADO.NET Command

object, iterating through a result set returned by a DataReader object, or fetching data

 column by column by using the various GetXXX methods.

Defi ning an Entity Class
 You saw in Chapter 20 that using LINQ requires the objects that you are querying be

 enumerable; they must be collections that implement the IEnumerable interface. DLINQ can

create its own enumerable collections of objects based on classes you defi ne and that map

directly to tables in a database. These classes are called entity classes. When you connect to

a database and perform a query, DLINQ can retrieve the data identifi ed by your query and

 create an instance of an entity class for each row fetched.

 The best way to explain DLINQ is to see an example. The Products table in the Northwind

database contains columns that contain information about the different aspects of the vari-

ous products that Northwind Traders sells. The part of the instnwnd.sql script that you ran in

the fi rst exercise in this chapter contains a CREATE TABLE statement that looks similar to this

(some of the columns, constraints, and other details have been omitted):

CREATE TABLE “Products” (
 “ProductID” “int” NOT NULL ,
 “ProductName” nvarchar (40) NOT NULL ,
 “SupplierID” “int” NULL ,
 “UnitPrice” “money” NULL,
 CONSTRAINT “PK_Products” PRIMARY KEY CLUSTERED (“ProductID”),
 CONSTRAINT “FK_Products_Suppliers” FOREIGN KEY (“SupplierID”)
 REFERENCES “dbo”.”Suppliers” (“SupplierID”)
)

 You can defi ne an entity class that corresponds to the Products table like this:

[Table(Name = “Products”)]
public class Product
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int ProductID { get; set; }

 [Column(CanBeNull = false)]
 public string ProductName { get; set; }

 Chapter 25 Querying Information in a Database 513
 [Column]
 public int? SupplierID { get; set; }

 [Column(DbType = “money”)]
 public decimal? UnitPrice { get; set; }
}

 The Product class contains a property for each of the columns in which you are interested in

the Products table. You don’t have to specify every column from the underlying table, but

any columns that you omit will not be retrieved when you execute a query based on this

 entity class. The important points to note are the Table and Column attributes.

 The Table attribute identifi es this class as an entity class. The Name parameter specifi es the

name of the corresponding table in the database. If you omit the Name parameter, DLINQ

assumes that the entity class name is the same as the name of the corresponding table in the

database.

 The Column attribute describes how a column in the Products table maps to a property in the

Product class. The Column attribute can take a number of parameters. The ones shown in this

example and described in the following list are the most common:

 The IsPrimaryKey parameter specifi es that the property makes up part of the primary

key. (If the table has a composite primary key spanning multiple columns, you should

specify the IsPrimaryKey parameter for each corresponding property in the entity class.)

 The DbType parameter specifi es the type of the underlying column in the database.

In many cases, DLINQ can detect and convert data in a column in the database to the

type of the corresponding property in the entity class, but in some situations you need

to specify the data type mapping yourself. For example, the UnitPrice column in the

Products table uses the SQL Server money type. The entity class specifi es the corre-

sponding property as a decimal value.

 Note The default mapping of money data in SQL Server is to the decimal type in an entity

class, so the DbType parameter shown here is actually redundant. However, I wanted to

show you the syntax.

 The CanBeNull parameter indicates whether the column in the database can contain a

null value. The default value for the CanBeNull parameter is true. Notice that the two

properties in the Product table that correspond to columns that permit null values in

the database (SupplierID and UnitPrice) are defi ned as nullable types in the entity class.

514 Part V Managing Data
 Note You can also use DLINQ to create new databases and tables based on the defi nitions of

your entity classes by using the CreateDatabase method of the DataContext object. In the cur-

rent version of DLINQ, the part of the library that creates tables uses the defi nition of the DbType

parameter to specify whether a column should allow null values. If you are using DLINQ to create

a new database, you should specify the nullability of each column in each table in the DbType

parameter, like this:

[Column(DbType = “NVarChar(40) NOT NULL”, CanBeNull = false)]
public string ProductName { get; set; }
...
[Column(DbType = “Int NULL”, CanBeNull = true)]
public int? SupplierID { get; set; }

 Like the Table attribute, the Column attribute provides a Name parameter that you can use

to specify the name of the underlying column in the database. If you omit this parameter,

DLINQ assumes that the name of the column is the same as the name of the property in the

entity class.

Creating and Running a DLINQ Query
 Having defi ned an entity class, you can use it to fetch and display data from the Products
table. The following code shows the basic steps for doing this:

DataContext db = new DataContext(“Integrated Security=true;” +
 “Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);

Table<Product> products = db.GetTable<Product>();
var productsQuery = from p in products
 select p;

foreach (var product in productsQuery)
{
 Console.WriteLine(“ID: {0}, Name: {1}, Supplier: {2}, Price: {3:C}”,
 product.ProductID, product.ProductName,
 product.SupplierID, product.UnitPrice);
}

 Note Remember that the keywords from, in, and select in this context are C# identifi ers. You

must type them in lowercase.

 The DataContext class is responsible for managing the relationship between your entity

 classes and the tables in the database. You use it to establish a connection to the database

and create collections of the entity classes. The DataContext constructor expects a connec-

tion string as a parameter, specifying the database that you want to use. This connection

string is exactly the same as the connection string that you would use when connecting

 Chapter 25 Querying Information in a Database 515
through an ADO.NET Connection object. (The DataContext class actually creates an ADO.NET

connection behind the scenes.)

 The generic GetTable<TEntity> method of the DataContext class expects an entity class as its

TEntity type parameter. This method constructs an enumerable collection based on this type

and returns the collection as a Table<TEntity> type. You can perform DLINQ queries over this

collection. The query shown in this example simply retrieves every object from the Products
table.

 Note If you need to recap your knowledge of LINQ query expressions, turn back to Chapter 20.

 The foreach statement iterates through the results of this query and displays the details of

each product. The following image shows the results of running this code. (The prices shown

are per case, not per individual item.)

 The DataContext object controls the database connection automatically; it opens the

 connection immediately prior to fetching the fi rst row of data in the foreach statement and

then closes the connection after the last row has been retrieved.

 The DLINQ query shown in the preceding example retrieves every column for every row

in the Products table. In this case, you can actually iterate through the products collection

 directly, like this:

Table<Product> products = db.GetTable<Product>();

foreach (Product product in products)
{
 ...
}

 When the foreach statement runs, the DataContext object constructs a SQL SELECT state-

ment that simply retrieves all the data from the Products table. If you want to retrieve a

single row in the Products table, you can call the Single method of the Products entity class.

516 Part V Managing Data
Single is an extension method that itself takes a method that identifi es the row you want

to fi nd and returns this row as an instance of the entity class (as opposed to a collection of

rows in a Table collection). You can specify the method parameter as a lambda expression.

If the lambda expression does not identify exactly one row, the Single method returns an

InvalidOperationException. The following code example queries the Northwind database for

the product with the ProductID value of 27. The value returned is an instance of the Product
class, and the Console.WriteLine statement prints the name of the product. As before, the

 database connection is opened and closed automatically by the DataContext object.

Product singleProduct = products.Single(p => p.ProductID == 27);
Console.WriteLine(“Name: {0}”, singleProduct.ProductName);

Deferred and Immediate Fetching
 An important point to emphasize is that by default, DLINQ retrieves the data from the

 database only when you request it and not when you defi ne a DLINQ query or create a Table

collection. This is known as deferred fetching. In the example shown earlier that displays

all of the products from the Products table, the productsQuery collection is populated only

when the foreach loop runs. This mode of operation matches that of LINQ when querying

in-memory objects; you will always see the most up-to-date version of the data, even if the

data changes after you have run the statement that creates the productsQuery enumerable

collection.

 When the foreach loop starts, DLINQ creates and runs a SQL SELECT statement derived from

the DLINQ query to create an ADO.NET DataReader object. Each iteration of the foreach loop

performs the necessary GetXXX methods to fetch the data for that row. After the fi nal row

has been fetched and processed by the foreach loop, DLINQ closes the database connection.

 Deferred fetching ensures that only the data an application actually uses is retrieved from

the database. However, if you are accessing a database running on a remote instance of SQL

Server, fetching data row by row does not make the best use of network bandwidth. In this

scenario, you can fetch and cache all the data in a single network request by forcing immedi-

ate evaluation of the DLINQ query. You can do this by calling the ToList or ToArray extension

methods, which fetch the data into a list or array when you defi ne the DLINQ query, like this:

var productsQuery = from p in products.ToList()
 select p;

 In this code example, productsQuery is now an enumerable list, populated with information

from the Products table. When you iterate over the data, DLINQ retrieves it from this list

rather than sending fetch requests to the database.

 Chapter 25 Querying Information in a Database 517
Joining Tables and Creating Relationships
 DLINQ supports the join query operator for combining and retrieving related data held in

multiple tables. For example, the Products table in the Northwind database holds the ID of

the supplier for each product. If you want to know the name of each supplier, you have to

query the Suppliers table. The Suppliers table contains the CompanyName column, which

specifi es the name of the supplier company, and the ContactName column, which con-

tains the name of the person in the supplier company that handles orders from Northwind

Traders. You can defi ne an entity class containing the relevant supplier information like this

(the SupplierName column in the database is mandatory, but the ContactName allows null

values):

[Table(Name = “Suppliers”)]
public class Supplier
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int SupplierID { get; set; }

 [Column(CanBeNull = false)]
 public string CompanyName { get; set; }

 [Column]
 public string ContactName { get; set; }
}

 You can then instantiate Table<Product> and Table<Supplier> collections and defi ne a DLINQ

query to join these tables together, like this:

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();
Table<Supplier> suppliers = db.GetTable<Supplier>();
var productsAndSuppliers = from p in products
 join s in suppliers
 on p.SupplierID equals s.SupplierID
 select new { p.ProductName, s.CompanyName, s.ContactName };

 When you iterate through the productsAndSuppliers collection, DLINQ will execute a SQL

SELECT statement that joins the Products and Suppliers tables in the database over the

SupplierID column in both tables and fetches the data.

 However, with DLINQ you can specify the relationships between tables as part of the

 defi nition of the entity classes. DLINQ can then fetch the supplier information for each

 product automatically without requiring that you code a potentially complex and error-prone

join statement. Returning to the products and suppliers example, these tables have a many-

to-one relationship in the Northwind database; each product is supplied by a single supplier,

but a single supplier can supply several products. Phrasing this relationship slightly differ-

ently, a row in the Product table can reference a single row in the Suppliers table through the

SupplierID columns in both tables, but a row in the Suppliers table can reference a whole set

518 Part V Managing Data
of rows in the Products table. DLINQ provides the EntityRef<TEntity> and EntitySet<TEntity>

generic types to model this type of relationship. Taking the Product entity class fi rst, you

can defi ne the “one” side of the relationship with the Supplier entity class by using the

EntityRef<Supplier> type, as shown here in bold type:

[Table(Name = “Products”)]
public class Product
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int ProductID { get; set; }
 ...
 [Column]
 public int? SupplierID { get; set; }
 ...
 private EntityRef<Supplier> supplier;
 [Association(Storage = “supplier”, ThisKey = “SupplierID”, OtherKey = “SupplierID”)]
 public Supplier Supplier
 {
 get { return this.supplier.Entity; }
 set { this.supplier.Entity = value; }
 }
}

 The private supplier fi eld is a reference to an instance of the Supplier entity class. The public

Supplier property provides access to this reference. The Association attribute specifi es how

DLINQ locates and populates the data for this property. The Storage parameter identifi es

the private fi eld used to store the reference to the Supplier object. The ThisKey parameter

indicates which property in the Product entity class DLINQ should use to locate the Supplier
to reference for this product, and the OtherKey parameter specifi es which property in the

Supplier table DLINQ should match against the value for the ThisKey parameter. In this exam-

ple, The Product and Supplier tables are joined across the SupplierID property in both entities.

 Note The Storage parameter is actually optional. If you specify it, DLINQ accesses the

corresponding data member directly when populating it rather than going through the set
accessor. The set accessor is required for applications that manually fi ll or change the entity

object referenced by the EntityRef<TEntity> property. Although the Storage parameter is actually

redundant in this example, it is recommended practice to include it.

 The get accessor in the Supplier property returns a reference to the Supplier entity by using

the Entity property of the EntityRef<Supplier> type. The set accessor populates this property

with a reference to a Supplier entity.

 Chapter 25 Querying Information in a Database 519
 You can defi ne the “many” side of the relationship in the Supplier class with the

EntitySet<Product> type, like this:

[Table(Name = “Suppliers”)]
public class Supplier
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int SupplierID { get; set; }
 ...
 private EntitySet<Product> products = null;
 [Association(Storage = “products”, OtherKey = “SupplierID”, ThisKey = “SupplierID”)]
 public EntitySet<Product> Products
 {
 get { return this.products; }
 set { this.products.Assign(value); }
 }
}

 Tip It is conventional to use a singular noun for the name of an entity class and its properties.

The exception to this rule is that EntitySet<TEntity> properties typically take the plural form

 because they represent a collection rather than a single entity.

 This time, notice that the Storage parameter of the Association attribute specifi es the private

EntitySet<Product> fi eld. An EntitySet<TEntity> object holds a collection of references to en-

tities. The get accessor of the public Products property returns this collection. The set acces-

sor uses the Assign method of the EntitySet<Product> class to populate this collection.

 So, by using the EntityRef<TEntity> and EntitySet<TEntity> types you can defi ne properties

that can model a one-to-many relationship, but how do you actually fi ll these properties

with data? The answer is that DLINQ fi lls them for you when it fetches the data. The follow-

ing code creates an instance of the Table<Product> class and issues a DLINQ query to fetch

the details of all products. This code is similar to the fi rst DLINQ example you saw earlier. The

 difference is in the foreach loop that displays the data.

DataContext db = new DataContext(...);
Table<Product> products = db.GetTable<Product>();

var productsAndSuppliers = from p in products
 select p;

foreach (var product in productsAndSuppliers)
{
 Console.WriteLine(“Product {0} supplied by {1}”,
 product.ProductName, product.Supplier.CompanyName);
}

520 Part V Managing Data
 The Console.WriteLine statement reads the value in the ProductName property of the product

entity as before, but it also accesses the Supplier entity and displays the CompanyName

property from this entity. If you run this code, the output looks like this:

 As the code fetches each Product entity, DLINQ executes a second, deferred, query to

 retrieve the details of the supplier for that product so that it can populate the Supplier
 property, based on the relationship specifi ed by the Association attribute of this property in

the Product entity class.

 When you have defi ned the Product and Supplier entities as having a one-to-many

 relationship, similar logic applies if you execute a DLINQ query over the Table<Supplier>

 collection, like this:

DataContext db = new DataContext(...);
Table<Supplier> suppliers = db.GetTable<Supplier>();
var suppliersAndProducts = from s in suppliers
 select s;

foreach (var supplier in suppliersAndProducts)
{
 Console.WriteLine(“Supplier name: {0}”, supplier.CompanyName);
 Console.WriteLine(“Products supplied”);
 foreach (var product in supplier.Products)
 {
 Console.WriteLine(“\t{0}”, product.ProductName);
 }
 Console.WriteLine();
}

 In this case, when the foreach loop fetches a supplier, it runs a second query (again deferred)

to retrieve all the products for that supplier and populate the Products property. This time,

however, the property is a collection (an EntitySet<Product>), so you can code a nested

 Chapter 25 Querying Information in a Database 521
 foreach statement to iterate through the set, displaying the name of each product. The

 output of this code looks like this:

Deferred and Immediate Fetching Revisited
 Earlier in this chapter, I mentioned that DLINQ defers fetching data until the data is actually

requested but that you could apply the ToList or ToArray extension method to retrieve data

immediately. This technique does not apply to data referenced as EntitySet<TEntity> or

EntityRef<TEntity> properties; even if you use ToList or ToArray, the data will still be fetched

only when accessed. If you want to force DLINQ to query and fetch referenced data immedi-

ately, you can set the LoadOptions property of the DataContext object as follows:

DataContext db = new DataContext(...);
Table<Supplier> suppliers = db.GetTable<Supplier>();
DataLoadOptions loadOptions = new DataLoadOptions();
loadOptions.LoadWith<Supplier>(s => s.Products);
db.LoadOptions = loadOptions;
var suppliersAndProducts = from s in suppliers
 select s;

 The DataLoadOptions class provides the generic LoadWith method. By using this method,

you can specify whether an EntitySet<TEntity> property in an instance should be loaded

when the instance is populated. The parameter to the LoadWith method is another method,

which you can supply as a lambda expression. The example shown here causes the Products
property of each Supplier entity to be populated as soon as the data for each Product en-

tity is fetched rather than being deferred. If you specify the LoadOptions property of the

DataContext object together with the ToList or ToArray extension method of a Table collec-

tion, DLINQ will load the entire collection as well as the data for the referenced properties for

the entities in that collection into memory as soon as the DLINQ query is evaluated.

522 Part V Managing Data
 Tip If you have several EntitySet<TEntity> properties, you can call the LoadWith method of the

same LoadOptions object several times, each time specifying the EntitySet<TEntity> to load.

Defi ning a Custom DataContext Class
 The DataContext class provides functionality for managing databases and database connec-

tions, creating entity classes, and executing commands to retrieve and update data in a da-

tabase. Although you can use the raw DataContext class provided with the .NET Framework,

it is better practice to use inheritance and defi ne your own specialized version that declares

the various Table<TEntity> collections as public members. For example, here is a special-

ized DataContext class that exposes the Products and Suppliers Table collections as public

members:

public class Northwind : DataContext
{
 public Table<Product> Products;
 public Table<Supplier> Suppliers;

 public Northwind(string connectionInfo) : base(connectionInfo)
 {
 }
}

 Notice that the Northwind class also provides a constructor that takes a connection string as

a parameter. You can create a new instance of the Northwind class and then defi ne and run

DLINQ queries over the Table collection classes it exposes like this:

Northwind nwindDB = new Northwind(...);

var suppliersQuery = from s in nwindDB.Suppliers
 select s;

foreach (var supplier in suppliersQuery)
{
 ...
}

 This practice makes your code easier to maintain, especially if you are retrieving data from

multiple databases. Using an ordinary DataContext object, you can instantiate any entity class

by using the GetTable method, regardless of the database to which the DataContext object

connects. You fi nd out that you have used the wrong DataContext object and have con-

nected to the wrong database only at run time, when you try to retrieve data. With a custom

DataContext class, you reference the Table collections through the DataContext object. (The

base DataContext constructor uses a mechanism called refl ection to examine its members,

and it automatically instantiates any members that are Table collections—the details of how

 Chapter 25 Querying Information in a Database 523

refl ection works are outside the scope of this book.) It is obvious to which database you need

to connect to retrieve data for a specifi c table; if IntelliSense does not display your table

when you defi ne the DLINQ query, you have picked the wrong DataContext class, and your

code will not compile.

Using DLINQ to Query Order Information
In the following exercise, you will write a version of the console application that you

 developed in the preceding exercise that prompts the user for a customer ID and displays the

details of any orders placed by that customer. You will use DLINQ to retrieve the data. You

will then be able to compare DLINQ with the equivalent code written by using ADO.NET.

Defi ne the Order entity class

1. Using Visual Studio 2008, create a new project called DLINQOrders by using the

Console Application template. Save it in the \Microsoft Press\Visual CSharp Step By

Step\Chapter 25 folder under your Documents folder, and then click OK.

2. In Solution Explorer, change the name of the fi le Program.cs to DLINQReport.cs. In the

Microsoft Visual Studio message, click Yes to change all references of the Program class

to DLINQReport.

3. On the Project menu, click Add Reference. In the Add Reference dialog box, click the

.NET tab, select the System.Data.Linq assembly, and then click OK.

This assembly holds the DLINQ types and attributes.

4. In the Code and Text Editor window, add the following using statements to the list at

the top of the fi le:

using System.Data.Linq;
using System.Data.Linq.Mapping;
using System.Data.SqlClient;

5. Add the Order entity class to the DLINQReport.cs fi le after the DLINQReport class, as

follows:

[Table(Name = “Orders”)]
public class Order
{
}

The table is called Orders in the Northwind database. Remember that it is common

practice to use the singular noun for the name of an entity class because an entity ob-

ject represents one row from the database.

Defi ne the Order entity classr

524 Part V Managing Data

6. Add the property shown here in bold type to the Order class:

[Table(Name = “Orders”)]
public class Order
{
 [Column(IsPrimaryKey = true, CanBeNull = false)]
 public int OrderID { get; set; }
}

 The OrderID column is the primary key for this table in the Northwind database.

7. Add the following properties shown in bold type to the Order class:

[Table(Name = “Orders”)]
public class Order
{
 ...
 [Column]
 public string CustomerID { get; set; }

 [Column]
 public DateTime? OrderDate { get; set; }

 [Column]
 public DateTime? ShippedDate { get; set; }

 [Column]
 public string ShipName { get; set; }

 [Column]
 public string ShipAddress { get; set; }

 [Column]
 public string ShipCity { get; set; }

 [Column]
 public string ShipCountry { get; set; }
}

 These properties hold the customer ID, order date, and shipping information for an or-

der. In the database, all of these columns allow null values, so it is important to use the

nullable version of the DateTime type for the OrderDate and ShippedDate properties

(string is a reference type that automatically allows null values). Notice that DLINQ au-

tomatically maps the SQL Server NVarChar type to the .NET Framework string type and

the SQL Server DateTime type to the .NET Framework DateTime type.

8. Add the following Northwind class to the DLINQReport.cs fi le after the Order entity

class:

public class Northwind : DataContext
{
 public Table<Order> Orders;

 Chapter 25 Querying Information in a Database 525

 public Northwind(string connectionInfo) : base (connectionInfo)
 {
 }
}

The Northwind class is a DataContext class that exposes a Table property based on

the Order entity class. In the next exercise, you will use this specialized version of the

DataContext class to access the Orders table in the database.

Retrieve order information by using a DLINQ query

1. In the Main method of the DLINQReport class, add the statement shown here in bold

type, which creates a Northwind object. Be sure to replace YourComputer with the

name of your computer:

static void Main(string[] args)
{
 Northwind northwindDB = new Northwind(“Integrated Security=true;” +
 “Initial Catalog=Northwind;Data Source=YourComputer\\SQLExpress”);
}

 The connection string specifi ed here is exactly the same as in the earlier exercise. The

northwindDB object uses this string to connect to the Northwind database.

2. After the variable declaration, add a try/catch block to the Main method:

static void Main(string[] args)
{
 ...
 try
 {
 // You will add your code here in a moment
 }
 catch(SqlException e)
 {
 Console.WriteLine(“Error accessing the database: {0}”, e.Message);
 }
}

 As when using ordinary ADO.NET code, DLINQ raises a SqlException if an error occurs

when accessing a SQL Server database.

3. Replace the comment in the try block with the following code shown in bold type:

try
{
 Console.Write(“Please enter a customer ID (5 characters): “);
 string customerId = Console.ReadLine();
}

 These statements prompt the user for a customer ID and save the user’s response in the

string variable customerId.

Retrieve order information by using a DLINQ query

526 Part V Managing Data

4. Type the statement shown here in bold type after the code you just entered:

try
{
 ...
 var ordersQuery = from o in northwindDB.Orders
 where String.Equals(o.CustomerID, customerId)
 select o;
}

 This statement defi nes the DLINQ query that will retrieve the orders for the specifi ed

customer.

5. Add the foreach statement and if…else block shown here in bold type after the code

you added in the preceding step:

try
{
 ...
 foreach (var order in ordersQuery)
 {
 if (order.ShippedDate == null)
 {
 Console.WriteLine(“Order {0} not yet shipped\n\n”, order.OrderID);
 }
 else
 {
 // Display the order details
 }
 }
}

 The foreach statement iterates through the orders for the customer. If the value in the

ShippedDate column in the database is null, the corresponding property in the Order
entity object is also null, and then the if statement outputs a suitable message.

6. Replace the comment in the else part of the if statement you added in the preceding

step with the code shown here in bold type:

if (order.ShippedDate == null)
{
 ...
}
else
{
 Console.WriteLine(“Order: {0}\nPlaced: {1}\nShipped: {2}\n” +
 “To Address: {3}\n{4}\n{5}\n{6}\n\n”, order.OrderID,
 order.OrderDate, order.ShippedDate, order.ShipName,
 order.ShipAddress, order.ShipCity,
 order.ShipCountry);
}

 Chapter 25 Querying Information in a Database 527

 7. On the Debug menu, click Start Without Debugging to build and run the application.

 8. In the console window displaying the message “Please enter a customer ID (5 charac-

ters):”, type VINET.

 The application should display a list of orders for this customer. When the application

has fi nished, press Enter to return to Visual Studio 2008.

 9. Run the application again. This time type BONAP when prompted for a customer ID.

 The fi nal order for this customer has not yet shipped and contains a null value for the

ShippedDate column. Verify that the application detects and handles this null value.

When the application has fi nished, press Enter to return to Visual Studio 2008.

 You have now seen the basic elements that DLINQ provides for querying information from a

database. DLINQ has many more features that you can employ in your applications, includ-

ing the ability to modify data and update a database. You will look briefl y at some of these

aspects of DLINQ in the next chapter.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 26.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 25 Quick Reference
 To Do this

 Connect to a SQL Server data-

base by using ADO.NET

Create a SqlConnection object, set its ConnectionString property

with details specifying the database to use, and call the Open

method.

 Create and execute a database

query by using ADO.NET

Create a SqlCommand object. Set its Connection property to a

valid SqlConnection object. Set its CommandText property to a

valid SQL SELECT statement. Call the ExecuteReader method to

run the query and create a SqlDataReader object.

 Fetch data by using an ADO.NET

SqlDataReader object

Ensure that the data is not null by using the IsDBNull method. If

the data is not null, use the appropriate GetXXX method (such

as GetString or GetInt32) to retrieve the data.

528 Part V Managing Data
 Defi ne an entity class Defi ne a class with public properties for each column. Prefi x the

class defi nition with the Table attribute, specifying the name of

the table in the underlying database. Prefi x each property with

the Column attribute, and specify parameters indicating the

name, type, and nullability of the corresponding column in the

database.

 Create and execute a query by

using DLINQ

Create a DataContext variable, and specify a connection string

for the database. Create a Table collection variable based on

the entity class corresponding to the table you want to query.

Defi ne a DLINQ query that identifi es the data to be retrieved

from the database and returns an enumerable collection of en-

tities. Iterate through the enumerable collection to retrieve the

data for each row and process the results.

Chapter 26

Displaying and Editing Data by
Using Data Binding

 After completing this chapter, you will be able to:

 Use the Object Relational Designer to generate entity classes.

 Use data binding in a Microsoft Windows Presentation Foundation (WPF) application

to display and maintain data retrieved from a database.

 Update a database by using DLINQ.

 Detect and resolve confl icting updates made by multiple users.

 In Chapter 25, “Querying Information in a Database,” you learned the essentials of using

Microsoft ADO.NET and DLINQ for executing queries against a database. In this chapter, you

will learn how to write applications that use DLINQ to modify data. You will see how to use

data binding in a WPF application to present to a user data retrieved from a database and

to enable the user to update that data. You will then learn how to propagate these updates

back to the database.

Using Data Binding with DLINQ
 You fi rst encountered the idea of data binding in a WPF application in Chapter 24,

“Performing Validation,” when you used this technique to associate the properties of controls

on a WPF form with properties in an instance of a class. You can adopt a similar strategy and

bind properties of controls to entity objects so that you can display and maintain data held

in a database by using a graphical user interface. First, however, you need to defi ne the entity

classes required by DLINQ. You saw how to do this manually in Chapter 25, and by now you

should understand how entity classes work. You will be pleased to know that Microsoft Visual

Studio 2008 provides the Object Relational Designer, which can connect to a database and

generate entity classes for you. The Object Relational Designer can even generate the appro-

priate EntityRef<TEntity> and EntitySet<TEntity> relationship properties. You will use this tool

in the following exercises.
 529

530 Part V Managing Data

Granting Access to a SQL Server 2005 Database File—Visual C#
2008 Express Edition
 If you are using Microsoft Visual C# 2008 Express Edition, when you defi ne a Microsoft

SQL Server database connection for the entity wizard, you connect directly to the

SQL Server database fi le. Visual C# 2008 Express Edition starts its own instance of SQL

Server Express, called a user instance for accessing the database. The user instance runs

using the credentials of the user executing the application. If you are using Visual C#

2008 Express Edition, you must detach the database from the SQL Server Express de-

fault instance because it will not allow a user instance to connect to a database that it is

currently using. The following procedure describes how to perform this task.

Detach the Northwind database

1. On the Windows Start menu, click All Programs, click Accessories, and then

click Command Prompt to open a command prompt window. If you are using

Windows Vista, in the command prompt window, type the following command to

move to the \Microsoft Press\Visual CSharp Step by Step\Chapter 26 folder under

your Documents folder. Replace Name with your user name.

cd “\Users\Name\Documents\Microsoft Press\Visual CSharp Step by Step\Chapter 26”

 If you are using Windows XP, type the following command to go to the \Microsoft

Press\Visual CSharp Step by Step\Chapter 26 folder under your My Documents

folder, replacing Name with your user name.

cd “\Documents and Settings\Name\My Documents\Microsoft Press\Visual CSharp Step
by Step\Chapter 26”

2. In the command prompt window, type the following command:

sqlcmd –S YourComputer\SQLExpress –E –idetach.sql

 Replace YourComputer with the name of your computer.

 The detach.sql script contains the following SQL Server command, which detach-

es the Northwind database from the SQL Server instance:

sp_detach_db ‘Northwind’

3. When the script fi nishes running, close the command prompt window.

 Note If you need to rebuild the Northwind database, you can run the instnwnd.sql script

as described in Chapter 25. However, if you have detached the Northwind database you

must fi rst delete the Northwind.mdf and Northwind_log.ldf fi les in the C:\Program Files\

Microsoft SQL Server\MSSQL.1\MSSQL\Data folder; otherwise, the script will fail.

Detach the Northwind database

 Chapter 26 Displaying and Editing Data by Using Data Binding 531

If you are running under the Windows Vista operating system, you must grant this user

 access to the folder holding the database and grant Full Control over the database fi les

themselves. The next procedure shows how to do this.

Grant access to the Northwind database fi le under Windows Vista

1. Log on to your computer using an account that has administrator access.

2. Using Windows Explorer, move to the folder C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL.

3. In the message box that appears, displaying the message “You don’t currently

have permission to access this folder,” click Continue. In the User Account Control
message that follows, click Continue again.

4. Move to the Data folder, right-click the Northwind fi le, and then click Properties.

5. In the Northwind Properties dialog box, click the Security tab.

6. If the Security page contains the message “Do you want to continue?” click

Continue. In the User Account Control message box, click Continue.

If the Security page contains the message “To change permissions, click Edit” click

Edit. If a User Account Control message box appears, click Continue.

7. If your user account is not listed in the Group or user names list box, in the

Permissions for Northwind dialog box, click Add. In the Select Users or Groups dia-

log box, enter the name of your user account, and then click OK.

8. In the Permissions for Northwind dialog box, in the Group or user names list box,

click your user account.

9. In the Permissions for Account list box (where Account is your user account name),

 select the Allow checkbox for the Full Control entry, and then click OK.

10. In the Northwind Properties dialog box, click OK.

11. Repeat steps 4 through 10 for the Northwind_log fi le in the Data folder.

Grant access to the Northwind database fi le under Windows Vista

532 Part V Managing Data

Generate entity classes for the Suppliers and Products tables

1. Start Visual Studio 2008 if it is not already running.

2. Create a new project by using the WPF Application template. Name the project

Suppliers, and save it in the \Microsoft Press\Visual CSharp Step by Step\Chapter 26

folder in your Documents folder.

Note If you are using Visual C# 2008 Express Edition, you can specify the location for

saving your project by setting the Visual Studio projects location in the Projects and
Solutions section of the Options dialog box on the Tools menu.

3. On the Project menu, click Add Class.

4. In the Add New Item – Suppliers dialog box, select the LINQ to SQL Classes template,

type Northwind.dbml in the Name box, and then click Add.

 The Object Relational Designer window appears. You can use this window to specify the

tables in the Northwind database for which you want to create entity classes, select the

columns that you want to include, and defi ne the relationships between them.

 The Object Relational Designer requires you to confi gure a connection to a database.

The steps for performing this task are slightly different depending on whether you are

using Visual Studio 2008 Professional Edition or Enterprise Edition, or Visual C# 2008

Express Edition.

5. If you are using Visual Studio 2008 Professional Edition or Enterprise Edition, perform

the following tasks:

5.1. On the View menu, click Server Explorer.

5.2. In the Server Explorer window, right-click Data Connections, and then click Add
Connection.

5.3. If the Choose Data Source dialog box appears, click Microsoft SQL Server, and then

click Continue.

5.4. In the Add Connection dialog box, click the Change button adjacent to the Data
source box.

5.5. In the Change Data Source dialog box, click the Microsoft SQL Server data source,

make sure the .NET Framework Data Provider for SQL Server is selected as the

data provider, and then click OK.

5.6. In the Add Connection dialog box, type YourServer\SQLExpress in the Server
name box, where YourServer is the name of your computer.

Generate entity classes for the Suppliers and Products tables

 Chapter 26 Displaying and Editing Data by Using Data Binding 533

5.7. Select the Use Windows Authentication radio button. This option uses your

Microsoft Windows account name to connect to the database and is the

 recommended way to log on to SQL Server.

5.8. In the Connect to a database section of the dialog box, click Select or enter a
 database name, select the Northwind database, and then click OK.

6. If you are using Visual C# 2008 Express Edition, perform the following tasks:

6.1. On the View menu, point to Other Windows, and then click Database Explorer.

6.2. In the Database Explorer window, right-click Data Connections, and then click Add
Connection.

6.3. If the Choose Data Source dialog box appears, click the Microsoft SQL Server
Database File data source, make sure the .NET Framework Data Provider for SQL
Server is selected as the data provider, and then click Continue.

6.4. In the Add Connection dialog box, verify that the Data source box displays

Microsoft SQL Server Database File (SqlClient). If it does not, click Change, and

in the Change Data Source dialog box, click the Microsoft SQL Server Database
File data source, make sure the .NET Framework Data Provider for SQL Server is
 selected as the data provider, and then click OK.

6.5. In the Add Connection dialog box, to the right of the Database fi le name text box,

click Browse.

6.6. In the Select SQL Server Database File dialog box, move to the folder C:\Program

Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data, click the Northwind database

fi le, and then click Open.

6.7. Select the Use Windows Authentication option to log on to the server, and then

click OK.

 Note Some data sources can be accessed by using more than one data provider. For

 example, if you are using Visual Studio 2008 Professional Edition or Enterprise Edition, you

can connect to SQL Server by using the Microsoft .NET Framework Data Provider for SQL

Server or the .NET Framework Data Provider for OLE DB. The .NET Data Provider for SQL

Server is optimized for connecting to SQL Server databases, whereas the .NET Framework

Data Provider for OLE DB is a more generic provider that can be used to connect to a vari-

ety of data sources, not just SQL Server.

7. In Server Explorer or Database Explorer, expand the new data connection

(YourComputer\sqlexpress.Northwind.dbo if you are running Visual Studio 2008 or

Northwind.mdf if you are running Visual C# 2008 Express Edition), and then expand

Tables.

534 Part V Managing Data

8. Click the Suppliers table, and drag it onto the Object Relational Designer window.

 The Object Relational Designer generates an entity class called Supplier based on the

Suppliers table, with properties for each column in the table.

 Note If you are using Visual C# 2008 Express Edition, a message box appears, asking you

whether you want to add the data fi le for the Northwind database to your project. Click No.

9. In the Supplier class, click the HomePage column, and then press Delete.

 The Object Relational Designer removes the HomePage property from the Supplier
class.

10. Using the same technique, remove all the remaining columns from the Supplier class

except for SupplierID , CompanyName, and ContactName.

11. In Server Explorer or Database Explorer, click the Products table and drag it onto the

Object Relational Designer window.

 The Object Relational Designer generates an entity class called Product, based on the

Products table. Notice that the Object Relational Designer detects the relationship

 between the Suppliers and Products tables.

12. Remove the Discontinued, ReorderLevel, UnitsOnOrder, UnitsInStock, and CategoryID

properties from the Product class. The complete classes should look like the following

image.

 Tip You can modify the attributes of an entity class and any of its properties by selecting

the class or property and changing the values in the Properties window.

13. In Solution Explorer, expand the Northwind.dbml folder, and then double-click

Northwind.designer.cs.

 The code generated by the Object Relational Designer appears in the Code and Text
Editor window. If you examine this code, you will see that it contains a DataContext
class called NorthwindDataContext and the two entity classes. These entity classes are

a little more complicated than are the classes that you created manually in Chapter 25,

 Chapter 26 Displaying and Editing Data by Using Data Binding 535
but the general principles are the same. The additional complexity is the result of the

entity classes implementing the INotifyPropertyChanging and INotifyPropertyChanged

interfaces. These interfaces defi ne events that the entity classes raise when their prop-

erty values change. The various user interface controls in the WPF library subscribe to

these events to detect any changes to data and ensure that the information displayed

on a WPF form is up-to-date.

 The information concerning the connection you specifi ed before creating the two

 entity classes is saved in an application confi guration fi le. Storing the connection string

in a confi guration fi le enables you to modify the connection string without rebuild-

ing the application; you simply edit the application confi guration fi le. It is useful if you

envisage ever needing to relocate or rename the database, or switch from using a local

development database to a production database that has the same set of tables.

Using an Application Confi guration File
 An application confi guration fi le provides a very useful mechanism enabling a user to

modify some of the resources used by an application without rebuilding the application

itself. The connection string used for connecting to a database is an example of just

such a resource.

 When you use the Object Relational Designer to generate entity classes, a new fi le is

added to your project called app.confi g. This is the source for the application confi gu-

ration fi le, and it appears in the Solution Explorer window. You can examine the con-

tents of the app.confi g fi le by double-clicking it. You will see that it is an XML fi le, as

shown here (the text has been reformatted to fi t on the printed page):

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
 <configSections>
 </configSections>
 <connectionStrings>
 <add name=”DisplayProducts.Properties.Settings.NorthwindConnectionString”
 connectionString=”Data Source=YourComputer\SQLExpress;
 Initial Catalog=Northwind;Integrated Security=True”
 providerName=”System.Data.SqlClient” />
 </connectionStrings>
</configuration>

 The connection string is held in the <connectionStrings> element of the fi le. When you

build the application, the C# compiler copies the app.confi g fi le to the folder holding

the compiled code and renames it as application.exe.confi g, where application is the

name of your application. When your application connects to the database, it should

read the connection string value from the confi guration fi le rather than using a connec-

tion string that is hard-coded in your C# code. You will see how to do this when using

generated entity classes later in this chapter.

536 Part V Managing Data

 You should deploy the application confi guration fi le (the application.exe.confi g fi le)

with the executable code for the application. If the user needs to connect to a differ-

ent database, she can edit the confi guration fi le by using a text editor to modify the

<connectionString> attribute of the <connectionStrings> element. When the application

runs, it will use the new value automatically.

 Be aware that you should take steps to protect the application confi guration fi le and

prevent a user from making inappropriate changes.

Create the user interface for the Suppliers application

1. In Solution Explorer, right-click the Window1.xaml fi le, click Rename, and rename the fi le

SupplierInfo.xaml.

2. Double-click the App.xaml fi le to display it in the Design View window. In the XAML

pane, change the StartupUri element to “SupplierInfo.xaml”, as shown here in bold type:

<Application x:Class=”Suppliers.App”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 StartupUri=”SupplierInfo.xaml”>
 ...
</Application>

3. In Solution Explorer, double-click the SupplierInfo.xaml fi le to display it in the Design
View window. In the XAML pane, as shown in bold type below, change the value of the

x:Class element to “Suppliers.SupplierInfo”, set the Title to “Supplier Information”, set

the Height to”362”, and set the Width to “614”:

<Window x:Class=”Suppliers.SupplierInfo”
 xmlns=”http://schemas.microsoft.com/winfx/2006/xaml/presentation”
 xmlns:x=”http://schemas.microsoft.com/winfx/2006/xaml”
 Title=”Supplier Information” Height=”362” Width=”614”>
 ...
</Window>

4. Display the SupplierInfo.xaml.cs fi le in the Code and Text Editor window. Change the

name of the Window1 class to SupplierInfo, and change the name of the constructor, as

shown here in bold type:

public partial class SupplierInfo : Window
{
 public SupplierInfo()
 {
 InitializeComponent();
 }
}

Create the user interface for the Suppliers application

 Chapter 26 Displaying and Editing Data by Using Data Binding 537

5. In Solution Explorer, double-click the SupplierInfo.xaml fi le to display it in the Design
View window. From the Toolbox, add a ComboBox control, a ListView control, and a

Button control to the Supplier Information form.

6. Using the Properties window, set the properties of these controls to the values specifi ed

in the following table.

 Control Property Value

 comboBox1 Name suppliersList

 Height 21

 Width Auto

 Margin 40,16,42,0

 VerticalAlignment Top

 HorizontalAlignment Stretch

 listView1 Name productsList

 Height Auto

 Width Auto

 Margin 40,44,40,60

 VerticalAlignment Stretch

 HorizontalAlignment Stretch

 button1 Name saveChanges

 Content Save Changes

 IsEnabled False (clear the check box)

 Height 23

 Width 90

 Margin 40,0,0,10

 VerticalAlignment Bottom

 HorizontalAlignment Left

538 Part V Managing Data

 The Supplier Information form should look like this in the Design View window:

7. In the XAML pane, add the following Window resource shown in bold type to the

Window element:

<Window x:Class=”WpfApplication1.Window1”
...>
 <Window.Resources>
 <DataTemplate x:Key=”SuppliersTemplate”>
 <StackPanel Orientation=”Horizontal”>
 <TextBlock Text=”{Binding Path=SupplierID}” />
 <TextBlock Text=” : “ />
 <TextBlock Text=”{Binding Path=CompanyName}” />
 <TextBlock Text=” : “ />
 <TextBlock Text=”{Binding Path=ContactName}” />
 </StackPanel>
 </DataTemplate>
 </Window.Resources>
 <Grid>
 ...
 </Grid>
</Window>

 You can use a DataTemplate to specify how to display data in a control. You will apply

this template to the suppliersList combo box in the next step. This template contains

three TextBlock controls organized horizontally by using a StackPanel. The fi rst, third,

and fi fth TextBlock controls will display the data in the SupplierID, CompanyName, and

ContactName properties of the Supplier entity object to which you will bind later. The

other TextBlock controls just display a “:” separator.

8. In the XAML pane, modify the defi nition of the suppliersList combo box and specify the

IsSynchronizedWithCurrentItem, ItemsSource, and ItemTemplate properties, as follows in

bold type:

<ComboBox ... Name=”suppliersList” IsSynchronizedWithCurrentItem=”True”
 ItemsSource=”{Binding}” ItemTemplate=”{StaticResource SuppliersTemplate}” />

 Chapter 26 Displaying and Editing Data by Using Data Binding 539

 You will display the data in a Table<Supplier> collection in the suppliersList control.

Setting the IsSynchronizedWithCurrentItem property ensures that the SelectedItem

property of the control is kept synchronized with the current item in the collection. If

you don’t set this property to True, when the application starts up and establishes the

binding with the collection, the combo box will not automatically display the fi rst item

in this collection.

 ItemsSource currently has an empty binding. In Chapter 24, you defi ned an instance

of a class as a static resource and specifi ed that resource as the binding source. If you

do not specify a binding source, WPF binds to an object specifi ed in the DataContext
property of the control. (Do not confuse the DataContext property of a control with a

DataContext object used to communicate with a database; it is unfortunate that they

happen to have the same name.) You will set the DataContext property of the control

to a Tables<Supplier> collection object in code.

 The ItemTemplate property specifi es the template to use to display data retrieved from

the binding source. In this case, the suppliersList control will display the SupplierID,
CompanyName, and ContactName fi elds from the binding source.

9. Modify the defi nition of the productsList list box, and specify the

IsSynchronizedWithCurrentItem and ItemsSource properties:

<ListView ... Name=”productsList” IsSynchronizedWithCurrentItem=”True”
 ItemsSource=”{Binding}” />

 The Supplier entity class contains an EntitySet<Product> property that references

the products the supplier can provide. You will set the DataContext property of the

 productsList control to the Products property of the currently selected Supplier object

in code. In a later exercise, you will also provide functionality enabling the user to add

and remove products. This code will modify the list of products acting as the binding

source. Setting the IsSynchronizedWithCurrentItem property to True ensures that the

newly created product is selected in the list when the user adds a new one or that an

existing item is selected if the user deletes one. (If you set this property to False, when

you delete a product, no item in the list will be selected afterward, which can cause

problems in your application if your code attempts to access the currently selected

item.)

10. Add the following ListView.View child element containing a GridView and column

 defi nitions to the productsList control. Be sure to replace the closing delimiter (/>) of

the ListView element with an ordinary delimiter (>) and add a terminating </ListView>

element.

<ListView ... Name=”productsList” ...>
 <ListView.View>
 <GridView>
 <GridView.Columns>
 <GridViewColumn Width=”75” Header=”Product ID”

540 Part V Managing Data

 DisplayMemberBinding=”{Binding Path=ProductID}” />
 <GridViewColumn Width=”225” Header=”Name”
 DisplayMemberBinding=”{Binding Path=ProductName}” />
 <GridViewColumn Width=”135” Header=”Quantity Per Unit”
 DisplayMemberBinding=”{Binding Path=QuantityPerUnit}” />
 <GridViewColumn Width=”75” Header =”Unit Price”
 DisplayMemberBinding=”{Binding Path=UnitPrice}” />
 </GridView.Columns>
 </GridView>
 </ListView.View>
</ListView>

 You can make a ListView control display data in various formats by setting the View

property. This Extensible Application Markup Language (XAML) code uses a GridView

component. A GridView displays data in a tabular format; each row in the table has a

fi xed set of columns defi ned by the GridViewColumn properties. Each column has its

own header that displays the name of the column. The DisplayMemberBinding prop-

erty of each column specifi es the data that the column should display from the binding

source.

 The data for the UnitPrice column is a decimal? property. WPF will convert this infor-

mation to a string and apply a default numeric format. Ideally, the data in this column

should be displayed as a currency value. You can reformat the data in a GridView col-

umn by creating a converter class. You fi rst encountered converter classes in Chapter

24 when converting a Boolean value represented by the state of a radio button into

an enumeration. This time, the converter class will convert a decimal? value to a string

containing a representation of a currency value.

11. Switch to the Code and Text Editor window displaying the SupplierInfo.xaml.cs fi le. Add

the following PriceConverter class to this fi le after the SupplierInfo class:

[ValueConversion(typeof(string), typeof(decimal?))]
class PriceConverter : IValueConverter
{
 public object Convert(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 if (value != null)
 return String.Format(“{0:C}”, value);
 else
 return “”;
 }

 public object ConvertBack(object value, Type targetType, object parameter,
 System.Globalization.CultureInfo culture)
 {
 throw new NotImplementedException();
 }
}

 Chapter 26 Displaying and Editing Data by Using Data Binding 541

The Convert method calls the String.Format method to create a string that uses the

 local currency format of your computer. The user will not actually modify the unit price

in the list view, so there is no need to implement the ConvertBack method to convert a

string back to a decimal? value.

12. Return to the Design View window displaying the SupplierInfo.xaml form. Add the fol-

lowing XML namespace declaration to the Window element, and defi ne an instance of

the PriceConverter class as a Window resource, as shown here in bold type:

<Window x:Class=”Suppliers.SupplierInfo”
...
xmlns:app=”clr-namespace:Suppliers”
...>
 <Window.Resources>
 <app:PriceConverter x:Key=”priceConverter” />
 ...
 </Window.Resources>
 ...
</Window>

13. Modify the defi nition of the Unit Price GridViewColumn, and apply the converter class

to the binding, like this:

<GridViewColumn ... Header =”Unit Price” DisplayMemberBinding=
 “{Binding Path=UnitPrice, Converter={StaticResource priceConverter}}” />

You have now laid out the form. Next, you need to write some code to retrieve the data

displayed by the form, and you must set the DataContext properties of the suppliersList and

productsList controls so that the bindings function correctly.

Write code to retrieve supplier information and establish the data bindings

1. Change the defi nition of the Window element, and specify a Loaded event method

called Window_Loaded. (This is the default name of this method, generated when you

click <New Event Handler>.) The XAML code for the Window element should look like

this:

<Window x:Class=”Suppliers.SupplierInfo”
 ...
 Title=”Supplier Information” ... Loaded=”Window_Loaded”>
 ...
</Window>

2. In the Code and Text Editor window displaying the SupplierInfo.xaml.cs fi le, add the

 following using statements to the list at the top of the fi le:

using System.ComponentModel;
using System.Collections;

Write code to retrieve supplier information and establish the data bindings

542 Part V Managing Data

3. Add the following three private fi elds shown here in bold type to the SupplierInfo class.

public partial class SupplierInfo : Window
{
 private NorthwindDataContext ndc = null;
 private Supplier supplier = null;
 private BindingList<Product> productsInfo = null;
 ...
}

 You will use the ndc variable to connect to the Northwind database and retrieve the

data from the Suppliers table. The supplier variable will hold the data for the cur-

rent supplier displayed in the suppliersList control. The productsInfo variable will hold

the products provided by the currently displayed supplier. It will be bound to the

 productsList control.

 You might be wondering about this defi nition of the productsInfo variable; after all, the

Supplier class has an EntitySet<Product> property that references the products supplied

by a supplier. You could actually bind this EntitySet<Product> property to the product-
sList control, but there is one important problem with this approach. I mentioned ear-

lier that the Supplier and Product entity classes implement the INotifyPropertyChanging

and INotifyPropertyChanged interfaces. When you bind a WPF control to a data source,

the control automatically subscribes to the events exposed by these interfaces to up-

date the display when the data changes. However, the EntitySet<Product> class does

not implement these interfaces, so the list view control will not be updated if any

products are added to, or removed from, the supplier. (It will be updated if an exist-

ing product changes, however, because each item in EntitySet<Product> is a Product
object, which does send the appropriate notifi cations to the WPF controls to which it is

bound.)

4. Add the following code to the Window_Loaded method:

private void Window_Loaded(object sender, RoutedEventArgs e)
{
 ndc = new NorthwindDataContext();
 this.suppliersList.DataContext = ndc.Suppliers;
}

 When the application starts and loads the window, this code creates a

NorthwindDataContext variable that connects to the Northwind database. Remember

that the Object Relational Designer created this class earlier. The default constructor

for this class reads the database connection string from the application confi guration

fi le. The method then sets the DataContext property of the suppliersList combo box

to the Suppliers Table collection property of the ndc variable. This action resolves the

binding for the combo box, and the data template used by this combo box displays the

values in the SupplierID, CompanyName, and ContactName for each Supplier object in

the collection.

 Chapter 26 Displaying and Editing Data by Using Data Binding 543

 Note If a control is a child of another control, for example, a GridViewColumn in a

ListView, you need to set the DataContext property only of the parent control. If the

DataContext property of a child control is not set, the WPF runtime will use the

DataContext of the parent control instead. This technique makes it possible for you to

share a data context between several child controls and a parent control.

 If the immediate parent control does not have a data context, the WPF runtime will

 examine the grandparent control, and so on, all the way up to the Window control defi ning

the form. If no data context is available, any data bindings for a control are ignored.

5. Return to the Design View window. Double-click the suppliersList combo box to create

the suppliersList_SelectionChanged event method. (If you are unable to click on the

 suppliersList combo box, try closing and reopening the SupplierInfo.xaml fi le in the

Design View window.) This method runs whenever the user selects a different item in

the combo box.

6. In the Code and Text Editor window, add the following statements shown in bold type

to the suppliersList_SelectionChanged method:

private void suppliersList_SelectionChanged(object sender,
SelectionChangedEventArgs e)
{
 supplier = this.suppliersList.SelectedItem as Supplier;
 IList list = ((IListSource)supplier.Products).GetList();
 productsInfo = list as BindingList<Product>;
 this.productsList.DataContext = productsInfo;
}

 This method obtains the currently selected supplier and copies the data in the

EntitySet<Product> property for this supplier to the productsInfo variable after convert-

ing it to a BindingList<Product> collection. Notice that the EntitySet<Product> class

implements the IListSource interface, which provides the GetList method for copying

the data in the entity set into an IList object. Finally, the method sets the DataContext
property of the productsList control to this list of products.

7. On the Debug menu, click Start Without Debugging to build and run the application.

 When the form runs, it should display the products for the fi rst supplier—Exotic

Liquids. The form should look like the following image.

 Note Under some circumstances, the application can fail with a timeout exception if SQL

Server does not respond within a reasonable time. (It can take SQL Server a few seconds to

open a connection to the database.) If this happens, simply run the application again.

544 Part V Managing Data

U

8. Select a different supplier from the combo box, and verify that the list view displays the

products for that supplier. When you have fi nished browsing the data, close the form

and return to Visual Studio 2008.

 The fi nal step is to provide functionality enabling the user to modify the details of products,

remove products, and create new products. Before you can do that, you need to learn how

to use DLINQ to update data.

sing DLINQ to Modify Data
 DLINQ provides a two-way communication channel with a database. You have seen how to

use DLINQ to fetch data, but you can also modify the information you have retrieved and

send these changes back to the database.

Updating Existing Data
 You can change the values in the Product objects in the Table<Product> collection in exactly

the same way that you change the values in any ordinary object—by setting its properties.

However, updating an object in memory does not update the database. To persist changes

to the database, you need to generate the appropriate SQL UPDATE commands and arrange

for them to be executed by the database server. You can do this quite easily with DLINQ. The

following code fragment fetches product number 14 and changes its name to “Bean Curd”

(product 14 was originally named “Tofu” in the Northwind database), and then sends the

change back to the database:

NorthwindDataContext ndc = new NorthwindDataContext();
Product product = ndc.Products.Single(p => p.ProductID == 14);
product.ProductName = “Bean Curd”;
ndc.SubmitChanges();

 Chapter 26 Displaying and Editing Data by Using Data Binding 545
 The key statement in this code example is the call to the SubmitChanges method of the

DataContext object. When you modify the information in a DLINQ entity object that was

populated by running a query, the DataContext object managing the connection that was

used to run the original query tracks the changes you make to the data. The SubmitChanges
method propagates these changes back to the database. Behind the scenes, the DataContext
object constructs and executes a SQL UPDATE statement.

 If you fetch and modify several products, you need to call SubmitChanges only once, after

the fi nal modifi cation. The SubmitChanges method batches all of the updates together. The

DataContext object creates a database transaction and performs all of the SQL UPDATE

statements within this transaction. If any of the updates fail, the transaction is aborted, all

the changes made by the SubmitChanges method are rolled back in the database, and the

SubmitChanges method throws an exception. If all the updates succeed, the transaction is

committed, and the changes become permanent in the database. You should note that if the

SubmitChanges method fails, only the database is rolled back; your changes are still present

in the entity objects in memory. The exception thrown when the SubmitChanges method

fails provides some information on the reason for the failure. You can attempt to rectify the

 problem and call SubmitChanges again.

 The DataContext class also provides the Refresh method. With this method, you can

 repopulate Table collections from the database and discard any changes you have made. You

use it like this:

ndc.Refresh(RefreshMode.OverwriteCurrentValues, ndc.Products);

 The fi rst parameter is a member of the System.Data.Linq.RefreshMode enumeration.

Specifying the value RefreshMode.OverwriteCurrentValues forces the data to be refreshed

from the database. (This enumeration contains other values, as you will see in the next sec-

tion.) The second parameter is the table to be refreshed. Actually, the Refresh method can

take a params array as its second parameter, so you can provide a whole list of tables if you

need to refresh more than one.

 Tip Change tracking is a potentially expensive operation for a DataContext object to perform. If

you know that you are not going to modify data (if for example your application generates a

read-only report), you can disable change tracking by setting the ObjectTrackingEnabled prop-

erty to false. You must set this property before fetching any data. Any attempt to call

SubmitChanges on a read-only DataContext object will raise an InvalidOperationException.

Handling Confl icting Updates
 There could be any number of reasons why an update operation fails, but one of the

most common causes is confl icts occurring when two users attempt to update the same

data simultaneously. If you think about what happens when you run an application that

546 Part V Managing Data
uses DLINQ, you can see that there is plenty of scope for confl ict. When you retrieve data

through a DataContext object, it is buffered in the memory of your application in a collec-

tion of entity objects. Another user could perform the same query and retrieve the same

data. If you both modify the data and then you both call the SubmitChanges method, one

of you will overwrite the changes made by the other in the database. This phenomenon

is known as a lost update. The SubmitChanges method detects this condition and raises a

ChangeConfl ictException, which you should be prepared to handle.

 When a ChangeConfl ictException arises, you can ascertain the reason for the confl ict by

 examining the ChangeConfl icts property of the DataContext object. This property is a collec-

tion containing ObjectChangeConfl ict objects, which contain information about the reason

for each confl ict. The important properties in the ObjectChangeConfl ict class are IsDeleted,

which is a Boolean value indicating whether the confl ict was caused by another user delet-

ing the row that you were attempting to update, and MemberConfl icts, which is a read-only

collection of MemberChangeConfl ict objects. The MemberChangeConfl ict class contains

a further set of properties, including the current value of the data in your application, the

current value of the data in the database, and the original value you retrieved from the da-

tabase. If you detect confl icts when performing the SubmitChanges method, your applica-

tion can examine the reason for each confl ict and determine how to handle it. Depending

on the nature of the application, you could even present information about the confl ict to

the user and let the user choose. To help you correct the problems caused by a confl ict,

the ObjectChangeConfl ict class contains a method called Resolve. For each confl ict in the

ChangeConfl icts collection property of the DataContext object, you can call the Resolve

method and pass in a parameter indicating your preferred resolution strategy. This parameter

should be a member of the RefreshMode enumeration. You can specify the following values:

 RefreshMode.KeepCurrentValues This value indicates that the data in memory

should overwrite the confl icting changes in the database—the current user is the

 winner of the confl ict.

 RefreshMode.OverwriteCurrentValue This value indicates that the data in the

 database should be used. The confl icting changes in memory will be overwritten with

the values from the database—the current user is the loser of the confl ict.

 RefreshMode.KeepChanges This value specifi es what happens if two users update

different columns in the same row. In this case, the changes made by the other user

to the other columns are merged with the changes the current user has made in

 memory—both users are winners of the confl ict.

 Chapter 26 Displaying and Editing Data by Using Data Binding 547
 The following code shows a ChangeConfl ictException handler that displays confl icting data

and resolves the confl ict by using the RefreshMode.OverwriteCurrentValues option.

try
{
 ndc.SubmitChanges();
}
catch (ChangeConflictException)
{
 foreach (ObjectChangeConflict conflict in ndc.ChangeConflicts)
 {
 foreach (MemberChangeConflict changeConflict in conflict.MemberConflicts)
 {
 Console.WriteLine(“Conflict Details”);
 Console.WriteLine(“Original value retrieved from database: {0}”,
 changeConflict.OriginalValue.ToString());
 Console.WriteLine(“Current value in database: {0}”,
 changeConflict.DatabaseValue.ToString());
 Console.WriteLine(“Current value in memory: {0}”,
 changeConflict.CurrentValue.ToString());
 }
 conflict.Resolve(RefreshMode.OverwriteCurrentValues);
 }
}

Note The ChangeConfl icts collection of the DataContext class provides the ResolveAll method

that lets you apply the same RefreshMode value to resolve all confl icts.

 When you have resolved the confl icts, you should call the SubmitChanges method again

to resubmit your changes. There is one potential issue with this technique as it currently

stands: if the user has updated several rows, there could be more than one confl ict. The

ChangeConfl ictException is thrown the fi rst time a confl ict is detected, and you can handle

it in the manner just described, but only one ObjectChangeConfl ict object will be set in the

ChangeConfl icts collection. When you call SubmitChanges again to send the resolved update

to the database, another ChangeConfl ictException for the next confl ict will arise, which you

have to detect and handle. To help you, the SubmitChanges method is overloaded, so you

can specify how to handle the ChangeConfl ictException. Calling SubmitChanges with a pa-

rameter value of Confl ictMode.ContinueOnConfl ict indicates that the SubmitChanges method

should try to perform all the updates and only throw the ChangeConfl ictException at the end

if one or more confl icts have occurred. Call the overloaded method like this:

ndc.SubmitChanges(ConflictMode.ContinueOnConflict);

548 Part V Managing Data
 The code in your ChangeConfl ictException handler can then iterate through all the items

in the ObjectChangeConfl ict property of the DataContext object and resolve them all (the

 example shown earlier already does this) before calling SubmitChanges again.

 When you call SubmitChanges, you can also specify the parameter value of Confl ictMode.
FailOnFirstConfl ict. This is the default behavior and raises a ChangeConfl ictException as soon

as the fi rst confl ict is detected.

Adding and Deleting Data
 As well as modifying existing data, with DLINQ you can add new items to a Table collection

and remove items from a Table collection. To add a new item, call the Add method and pro-

vide an entity object with the new information, like this:

NorthwindDataContext ndc = new NorthwindDataContext(...);
Table<Product> products = ndc.Products;
Product newProduct = new Product() {ProductName = “New Product”, ... };
products.Add(newProduct);

 When you call SubmitChanges, the DataContext object will generate a SQL INSERT statement

for each new item in the Table collection.

 Note When you add a new entity object to the Table collection, you must provide values for

every column that does not allow a null value in the database. The exception to this rule is for

primary key columns that are designated as IDENTITY columns in the database—SQL Server will

generate values for these columns and will raise an error if you try to specify a value of your own.

 Deleting an entity object from a Table collection is equally straightforward. You call the

Remove method and specify the entity to be deleted. The following code deletes product 14

from the products collection.

Product product = products.Single(p => p.ProductID == 14);
products.Remove(product);

When you call SubmitChanges, the DataContext object will generate a SQL DELETE statement

for each row that has been removed from the Table collection.

 Note Be careful when deleting rows in tables that have relationships to other tables because

such deletions can cause referential integrity errors when you update the database. For example,

in the Northwind database, if you attempt to delete a supplier that currently supplies products,

the update will fail. You must fi rst change the SupplierID column in the Products table for all

products available from that supplier to null or to a different supplier.

 You now have enough knowledge to complete the Suppliers application.

 Chapter 26 Displaying and Editing Data by Using Data Binding 549

Write code to modify, delete, and create products

1. Return to the Visual Studio 2008 window in which you were editing the Suppliers

application.

2. In the Design View window, in the XAML pane, modify the defi nition of the

 productsList control to trap the KeyDown event and invoke an event method called

productsList_KeyDown. (This is the default name of the event method.) If IntelliSense

does not recognize the KeyDown keyword, try closing and reopening the SupplierInfo.

xaml fi le.

3. In the Code and Text Editor window, add the following code shown in bold type to the

productsList_KeyDown method.

private void productsList_KeyDown(object sender, KeyEventArgs e)
{
 switch (e.Key)
 {
 case Key.Enter: editProduct(this.productsList.SelectedItem as Product);
 break;

 case Key.Insert: addNewProduct();
 break;

 case Key.Delete: deleteProduct(this.productsList.SelectedItem as Product);
 break;
 }
}

 This method examines the key pressed by the user. If the user presses the Enter key, the

code calls the editProduct method, passing in the details of the product as a parameter.

If the user presses the Insert key, the code calls the addNewProduct method to cre-

ate and add a new product to the list for the current supplier, and if the user presses

the Delete key, the code calls the deleteProduct method to delete the product. You

will write the editProduct, addNewProduct, and deleteProduct methods in the next few

steps.

4. Add the deleteProduct method to the SupplierInfo class, as follows:

private void deleteProduct(Product prod)
{
 MessageBoxResult response = MessageBox.Show(“Delete “ + prod.ProductName,
 “Confirm”, MessageBoxButton.YesNo, MessageBoxImage.Question,
 MessageBoxResult.No);
 if (response == MessageBoxResult.Yes)
 {
 supplier.Products.Remove(prod);
 productsInfo.Remove(prod);
 this.saveChanges.IsEnabled = true;
 }
}

Write code to modify, delete, and create products

550 Part V Managing Data

 This method prompts the user to confi rm that the user really does want to delete the

currently selected product. The if statement calls the Remove method of the Products
EntitySet<TEntity> property to delete the product from this collection and also removes

it from the productsInfo binding list. (This step is necessary to ensure that the display

is kept synchronized with the changes.) Finally, the method activates the saveChanges
button. You will add functionality to this button to send the changes made to the

Products EntitySet<TEntity> back to the database in a later step.

 There are several approaches you can use for adding and editing products; the col-

umns in the ListView control are read-only text items, but you can create a customized

list view that contains text boxes or other controls that enable user input. However,

the simplest strategy is to create another form that enables the user to edit or add the

 details of a product.

5. On the Project menu, click Add Class. In the Add New Items – Suppliers dialog box,

 select the Window (WPF) template, type ProductForm.xaml in the Name box, and

then click Add.

6. In the Design View window, click the ProductForm form, and in the Properties window,

set the ResizeMode property to NoResize, set the Height property to 225, and set the

Width property to 515.

7. Add three Label controls, three TextBox controls, and two Button controls to the form.

Using the Properties window, set the properties of these controls to the values shown in

the following table.

 Control Property Value

 label1 Content Product Name

 Height 23

 Width 120

 Margin 17,20,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 label2 Content Quantity Per Unit

 Height 23

 Width 120

 Margin 17,60,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 Chapter 26 Displaying and Editing Data by Using Data Binding 551
 Control Property Value

 label3 Content Unit Price

 Height 23

 Width 120

 Margin 17,100,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 textBox1 Name productName

 Height 21

 Width 340

 Margin 130,24,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 textBox2 Name quantityPerUnit

 Height 21

 Width 340

 Margin 130,64,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 textBox3 Name unitPrice

 Height 21

 Width 120

 Margin 130,104,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 button1 Name ok

 Content OK

 Height 23

 Width 75

 Margin 130,150,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

552 Part V Managing Data

 Control Property Value

 button2 Name cancel

 Content Cancel

 Height 23

 Width 75

 Margin 300,150,0,0

 VerticalAlignment Top

 HorizontalAlignment Left

 The Supplier Information form should look like this in the Design View window:

8. Double-click the OK button to create an event handler for the click event. In the Code
and Text Editor window displaying the ProductForm.xaml.cs fi le, add the following code

shown in bold type.

private void ok_Click(object sender, RoutedEventArgs e)
{
 if (String.IsNullOrEmpty(this.productName.Text))
 {
 MessageBox.Show(“The product must have a name”, “Error”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 return;
 }

 decimal result;
 if (!Decimal.TryParse(this.unitPrice.Text, out result))
 {
 MessageBox.Show(“The price must be a valid number”, “Error”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 return;
 }

 if (result < 0)
 {

 Chapter 26 Displaying and Editing Data by Using Data Binding 553

 MessageBox.Show(“The price must not be less than zero”, “Error”,
 MessageBoxButton.OK, MessageBoxImage.Error);
 return;
 }

 this.DialogResult = true;
}

 The application will display this form by calling the ShowDialog method. This method

displays the form as a modal dialog box. When the user clicks a button on the form, it

will close automatically if the code for the click event sets the DialogResult property.

If the user clicks OK, this method performs some simple validation of the information

 entered by the user. The Quantity Per Unit column in the database accepts null values,

so the user can leave this fi eld on the form empty. If the user enters a valid product

name and price, the method sets the DialogResult property of the form to true. This

value is passed back to the ShowDialog method call.

9. Return to the Design View window displaying the ProductForm.xaml fi le. Select the

Cancel button, and in the Properties window, set the IsCancel property to true (select

the check box).

 If the user clicks the Cancel button, it will automatically close the form and return a

DialogResult value of false to the ShowDialog method.

10. Switch to the Code and Text Editor window displaying the SupplierInfo.xaml.cs fi le. Add

the addNewProduct method shown here to the SupplierInfo class.

private void addNewProduct()
{
 ProductForm pf = new ProductForm();
 pf.Title = “New Product for “ + supplier.CompanyName;
 if (pf.ShowDialog().Value)
 {
 Product newProd = new Product();
 newProd.SupplierID = supplier.SupplierID;
 newProd.ProductName = pf.productName.Text;
 newProd.QuantityPerUnit = pf.quantityPerUnit.Text;
 newProd.UnitPrice = Decimal.Parse(pf.unitPrice.Text);
 supplier.Products.Add(newProd);
 productsInfo.Add(newProd);
 this.saveChanges.IsEnabled = true;
 }
}

 The addNewProduct method creates a new instance of the ProductForm form, sets

the Title property of this form to contain the name of the supplier, and then calls the

ShowDialog method to display the form as a modal dialog box. If the user enters some

valid data and clicks the OK button on the form, the code in the if block creates a new

Product object and populates it with the information from the ProductForm instance.

554 Part V Managing Data

The method then adds it to the Products EntitySet<TEntity> for the current supplier and

also adds it to the list displayed in the list view control on the form. Finally, the code

activates the Save Changes button. In a later step, you will add code to the click event

handler for this button so that the user can save changes back to the database.

11. Add the editProduct method shown here to the SupplierInfo class.

private void editProduct(Product prod)
{
 ProductForm pf = new ProductForm();
 pf.Title = “Edit Product Details”;
 pf.productName.Text = prod.ProductName;
 pf.quantityPerUnit.Text = prod.QuantityPerUnit;
 pf.unitPrice.Text = prod.UnitPrice.ToString();

 if (pf.ShowDialog().Value)
 {
 prod.ProductName = pf.productName.Text;
 prod.QuantityPerUnit = pf.quantityPerUnit.Text;
 prod.UnitPrice = Decimal.Parse(pf.unitPrice.Text);
 this.saveChanges.IsEnabled = true;
 }
}

 The editProduct method also creates an instance of the ProductForm form. This time, as

well as setting the Title property, the code also populates the fi elds on the form with

the information from the currently selected product. When the form is displayed, the

user can edit these values. If the user clicks the OK button to close the form, the code

in the if block copies the new values back to the currently selected product before ac-

tivating the Save Changes button. Notice that this time you do not need to update the

current item manually in the productsInfo list because the Product class notifi es the list

view control of changes to its data automatically.

12. Return to the Design View window displaying the SupplierInfo.xaml fi le. Double-click

the Save Changes button to create the click event handler method.

13. In the Code and Text Editor window, add the following code shown in bold to the

saveChanges_Click method:

private void saveChanges_Click(object sender, RoutedEventArgs e)
{
 try
 {
 ndc.SubmitChanges();
 saveChanges.IsEnabled = false;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, “Error saving changes”);
 }
}

 Chapter 26 Displaying and Editing Data by Using Data Binding 555

This method calls the SubmitChanges method of the DataContext object to send all the

changes back to the database. For simplicity, this method performs only very rudimen-

tary exception handling and does not attempt to resolve errors caused by confl icting

updates made by other users.

Test the Suppliers application

1. On the Debug menu, click Start Without Debugging to build and run the applica-

tion. When the form appears displaying the products supplied by Exotic Liquids, click

 product 3 (Aniseed Syrup), and then press Enter. The Edit Product Details form should

appear. Change the value in the Unit Price fi eld to 12.5, and then click OK. Verify that

the new price is copied back to the list view.

2. Press the Insert key. The New Product for Exotic Liquids form should appear. Enter a

product name, quantity per unit, and price, and then click OK. Verify that the new

product is added to the list view.

 The value in the Product ID column should be 0. This value is an identity column in the

database, so SQL Server will generate its own unique value for this column when you

save the changes.

3. Click Save Changes. After the data is saved, the ID for the new product is displayed in

the list view.

4. Click the new product, and then press the Delete key. In the Confi rm dialog box, click

Yes. Verify that the product disappears from the form. Click Save Changes again, and

verify that the operation completes without any errors.

Feel free to experiment by adding, removing, and editing products for other suppliers.

You can make several modifi cations before clicking Save Changes—the SubmitChanges
method saves all changes made since the data was retrieved or last saved.

Tip If you accidentally delete or overwrite the data for a product that you want to keep,

close the application without clicking Save Changes. Note that the application as written

does not warn the user if the user tries to exit without fi rst saving changes.

Alternatively, you can add a Discard Changes button to the application that calls the

Refresh method of the ndc DataContext object to repopulate its tables from the database.

You would also then need to rebuild the productsInfo binding list for the currently selected

product.

 However, if you are handling a relatively small number of rows, as is the case in the

Suppliers application, a simpler technique is to discard the current DataContext object and

create a new one, and then reapply the binding for the suppliersList combo box, like this:

 ndc = new NorthwindDataContext();
this.suppliersList.DataContext = ndc.Suppliers;

Test the Suppliers application

556 Part V Managing Data
 5. Close the form, and return to Visual Studio 2008.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 27.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes (if you are using

Visual Studio 2008) or Save (if you are using Visual C# 2008 Express Edition) and save

the project.

Chapter 26 Quick Reference
 To Do this

 Create entity classes by using

the Object Relational Designer

Add a new class to the project by using the LINQ to SQL Classes template.

Connect to the database by using Server Explorer (Visual Studio 2008

Professional Edition or Enterprise Edition) or Database Explorer (Visual

C# 2008 Express Edition). Drag tables from the database to the Object

Relational Designer.

 Display data from an entity

object or collection in a WPF

control

Defi ne a binding for the appropriate property of the control. If the control

displays a list of objects, set the DataContext property of the control to a

collection of entity objects. If the control displays the data for a single ob-

ject, set the DataContext property of the control to an entity object and

specify the property of the entity object to display in the Path attribute of

the binding.

 Modify information in a

database by using DLINQ

First do one of the following:

 To update a row in a table in the database, fetch the data for the row

into an entity object, and assign the new values to the appropriate

properties of the entity object.

 To insert a new row into a table in the database, create a new

 instance of the corresponding entity object, set its properties, and

then call the Add method of the appropriate Table collection, speci-

fying the new entity object as the parameter.

 To remove a row from a table in the database, call the Remove

 method of the appropriate Table collection, specifying the entity ob-

ject to be removed as the parameter.

Then, after making all your changes, call the SubmitChanges method of

the DataContext object to propagate the modifi cations to the database.

 Detect confl icts when updating

a database by using DLINQ

Provide a handler for the ChangeConfl ictException. In the exception

 handler, examine the ObjectChangeConfl ict objects in the ChangeConfl icts
property of the DataContext object. For each confl ict, determine the most

suitable resolution, and call the Resolve method with the appropriate

RefreshMode parameter.

Microsoft Visual C# 2008 Step by Step

Part VI

Building Web Applications
In this part:
Chapter 27. Introducing ASP.NET . 559
Chapter 28. Understanding Web Forms Validation Controls. 587
Chapter 29. Protecting a Web Site and Accessing Data with Web Forms 597
Chapter 30. Creating and Using a Web Service . 623
 557

Chapter 27

Introducing ASP.NET
 After completing this chapter, you will be able to:

 Create simple Microsoft ASP.NET pages.

 Build applications that run in a Web browser.

 Use ASP.NET Server controls effi ciently.

 Create and apply ASP.NET themes.

 In the previous sections of this book, you have seen how to build Microsoft Visual C#

 applications that run in the Microsoft Windows environment on the desktop. These

 applications typically allow a user to gain access to a database by using ADO.NET and

DLINQ. In this fi nal part of the book, you will consider the world of Web applications. These

are applications that are accessed over the Internet. Rather than using the desktop, Web

 applications rely on a Web browser to provide the user interface.

 In the fi rst three chapters of this part, you will examine the classes provided by the Microsoft

.NET Framework for building Web applications. You will learn about the architecture of ASP.

NET, Web forms, and Server controls. You will see that the structure of applications that ex-

ecute over the Web is different from those that run on the desktop, and you will be shown

some best practices for building effi cient, scalable, and easily maintainable Web sites.

 In the fi nal chapter in this part, you’ll learn about Web services. With Web services, you can

build distributed applications composed of components and services that can be spread

across the Internet (or an intranet). You will learn how to create a Web service and under-

stand how Web services are built on the Simple Object Access Protocol (SOAP). You will also

study the techniques that a desktop application can use to connect to a Web service.

 Important You cannot build Web applications or Web services with Microsoft Visual C# 2008

Express Edition. If you have been using Visual C# 2008 Express Edition, you can perform the exer-

cises in the remaining chapters of this book by using Microsoft Visual Web Developer 2008

Express Edition. You can download Visual Web Developer 2008 Express Edition free of charge

from the Microsoft Web site.
 559

560 Part VI Building Web Applications
Understanding the Internet as an Infrastructure
 The Internet is a big network (all right—a really big network), and, as a result, the information

and data that you can access over it can be quite remote. This should have an impact on the

way you design your applications. For example, you might get away with repeatedly query-

ing and fetching individual rows of data held in a database while a user browses it in a small,

 local desktop application, but this strategy will not be feasible for an application that runs

over the Internet. Resource use affects scalability much more for the Internet than it does for

local applications.

 Network bandwidth is a scarce resource that should be used sparingly. You might notice

 variations in the performance of your own local network according to the time of day

(networks always seem to slow down on a Friday afternoon just when you are trying to get

everything done before the weekend), the applications that users in your company are run-

ning, and many other factors. But no matter how variable the performance of your own

local network is, the Internet is far less predictable. You are dependent on any number of

servers routing your requests from your Web browser to the site you are trying to access,

and the replies can get passed back along an equally tortuous route. The network protocols

and data presentation mechanisms that underpin the Internet refl ect the fact that networks

can be (and at times most certainly will be) unreliable and that a Web application can be ac-

cessed concurrently from many different Web browsers running on many different operating

systems.

Understanding Web Server Requests and Responses
 A Web browser communicates with a Web application over the Internet by using the

Hypertext Transfer Protocol (HTTP). Web applications are usually hosted by some sort of Web

server that reads HTTP requests and determines which application should be used to respond

to the request. The term application in this sense is a very loose term—the Web server might

invoke an executable program to perform an action, or it might process the request itself by

using its own internal logic or other means. However the request is processed, the Web serv-

er will send a response to the client, again by using HTTP. The content of an HTTP response

is usually presented as a Hypertext Markup Language (HTML) page; this is the language that

most browsers understand and know how to render.

 Note Applications run by users that access Web applications over the Internet are often referred

to as clients or client applications.

 Chapter 27 Introducing ASP.NET 561
Managing State
 HTTP is a connectionless protocol. This means that a request (or a response) is a stand-alone

packet of data. A typical exchange between a client and a Web application might involve

 several requests. For example, the Web application might send the client application an

HTML page. The user might enter data onto this page, click some buttons, and expect the

display to change as a result so that the user can enter more data, and so on. Each request

sent by the client to the Web application is separate from any other requests sent both by

this client and by any other clients using the same Web application simultaneously.

 A client request often requires some sort of context or state. For example, consider the

 following common scenario. The user can browse goods for sale by using a Web application.

The user might want to buy several items and places each one in a virtual shopping cart. A

useful feature of such a Web application is the ability to display the current contents of the

shopping cart. Where should the contents of the shopping cart (the client’s state) be held?

If this information is held on the Web server, the Web server must be able to piece together

the different HTTP requests and determine which requests come from one client and which

come from others. This is feasible but might require additional processing to reconcile client

requests against state information, and, of course, it would require some sort of database to

persist that state information between client requests. A complication with this technique is

that the Web server has no guarantee, after the state information has been preserved, that

the client will submit another request that uses or removes the information. If the Web server

saved every bit of state information for every client that accessed it, it would need a very big

database indeed!

 An alternative strategy is to store state information on the client machine. The Cookie
Protocol was developed so that Web servers can cache information in cookies (small fi les) on

the client computer. The disadvantage of this approach is that the application has to arrange

for the data in the cookie to be transmitted over the Web as part of every HTTP request so

that the Web server can access it. The application also has to ensure that cookies are of a lim-

ited size. Perhaps the most signifi cant drawback of cookies is that users can disable them and

prevent the Web browser from storing them on user computers, causing the Web application

to lose all of its state information.

Understanding ASP.NET
 From the discussion in the preceding section, you can see that a framework for building

and running Web applications has a number of items that it should address. It must do the

following:

 Support HTTP

 Manage client state effi ciently

562 Part VI Building Web Applications
 Provide tools allowing for the easy development of Web applications

 Generate applications that can be accessed from any browser that supports HTML

 Be responsive and scalable

 Microsoft originally developed the Active Server Pages (ASP) model in response to many of

these issues. By using ASP, developers can embed application code in HTML pages. A Web

server such as Microsoft Internet Information Services (IIS) could execute the application

code and use it to generate an HTML response. However, ASP did have its problems: you had

to write a lot of application code to do relatively simple things, such as display a page of data

from a database; mixing application code and HTML caused readability and maintenance is-

sues; and performance was not always what it could be because ASP pages had to interpret

application code in an HTML request every time the request was submitted, even if it was the

same code each time.

 With the advent of the .NET Framework, Microsoft updated the ASP model and created

ASP.NET. The main features of the latest release of ASP.NET include the following:

 A rationalized program model using Web forms that contain presentation logic and

code fi les that separate out the business logic. You can write code in any of the lan-

guages supported by the .NET Framework, including C#. ASP.NET Web forms are

 compiled and cached on the Web server to improve performance.

 Server controls that support server-side events but that are rendered as HTML so that

they can operate correctly in any HTML-compliant browser. Microsoft has extended

many of the standard HTML controls as well so that you can manipulate them in your

code.

 Powerful controls for displaying, editing, and maintaining data from a database.

 Options for caching client state using cookies on the client’s computer, in a special

 service (the ASP.NET State service) on the Web server, or in a Microsoft SQL Server

 database. The cache is easily programmable by using code.

 Enhanced page design and layout by using Master Pages, themes, and Web Parts. You

can use Master Pages to quickly provide a common layout for all Web pages in an ap-

plication. Themes help you implement a consistent look and feel across the Web site,

ensuring that all controls appear in the same way if required. With Web Parts, you can

create modular Web pages that users can customize to their own requirements. You will

use themes later in this chapter. Using Master Pages and Web Parts is outside the scope

of this book.

 Data source controls for binding data to Web pages. By using these new controls, you

can build applications that can display and edit data quickly and easily. The data source

controls can operate with a variety of data sources, such as DLINQ entity objects,

SQL Server databases, Microsoft Access databases, XML fi les, Web services, and other

 Chapter 27 Introducing ASP.NET 563
 business objects. The data source controls provide you with a consistent mechanism for

working with data, independent from the source of that data. You will make use of data

source controls in Chapter 29, “Protecting a Web Site and Accessing Data with Web

Forms.”

 Powerful controls for displaying and editing data. Microsoft provides the FormView

control for displaying data and editing data one record at a time, and the GridView

control is provided for presenting information in a tabular format. You can use the

TreeView control to display hierarchical data, and you can use the SiteMapPath and

Menu controls to assist in user navigation through your Web application. You will use

the GridView control in Chapter 29.

 AJAX extensions so that you can build highly interactive and responsive Web applica-

tions that can minimize the network bandwidth required to transmit data between the

client application and the Web server. By using AJAX, you can defi ne parts of a Web

page as being updatable. When information displayed in an updatable region of a page

changes, only the information required for that part of the page is transmitted by the

Web server.

 Security features with built-in support for authenticating and authorizing users. You can

easily grant permissions to users to allow them to access your Web application, validate

users when they attempt to log in, and query user information so that you know who is

accessing your Web site. You can use the Login control to prompt the user for creden-

tials and validate the user and the PasswordRecovery control for helping users remem-

ber or reset their password. You will use these security controls in Chapter 29.

 Web site confi guration and management by using the ASP.NET Web Site Administration

Tool. This tool provides wizards for confi guring and securing ASP.NET Web applications.

You will use the ASP.NET Web Site Administration Tool in Chapter 29.

 In the remainder of this chapter, you will learn more about the structure of an ASP.NET

application.

Creating Web Applications with ASP.NET
 A Web application that uses ASP.NET typically consists of one or more ASP.NET pages or Web

forms, code fi les, and confi guration fi les.

 A Web form is held in an .aspx fi le, which is essentially an HTML fi le with some Microsoft

.NET–specifi c tags. An .aspx fi le defi nes the layout and appearance of a page. Often each

.aspx fi le has an associated code fi le containing the application logic for the components in

the .aspx fi le, such as event handlers and utility methods. A directive (a special tag) at the

start of each .aspx fi le specifi es the name and location of the corresponding code fi le. ASP.

NET also supports application-level events, which are defi ned in Global.asax fi les.

564 Part VI Building Web Applications

 Each Web application can also have a confi guration fi le called web.confi g. This fi le, which is in

XML format, contains information regarding security, cache management, page compilation,

and so on.

Building an ASP.NET Application
 In the following exercise, you will build a simple ASP.NET application that uses Server controls

to gather input from the user about the details of the employees of a fi ctitious software

company called Litware, Inc. The application will show you the structure of a simple Web

application.

 Note You do not need to have IIS running on your computer to develop Web applications.

Microsoft Visual Studio 2008 includes its own Development Server. When you build and run a

Web application, by default Visual Studio 2008 will run the application using this Web server.

However, you should still use IIS for hosting production Web applications after you have fi nished

developing and testing them.

Create the Web application

1. Start Visual Studio 2008 or Visual Web Developer 2008 Express Edition if it is not

 already running.

 Note In the remainder of the book, I simply state, “Start Visual Studio 2008” when you

need to open Visual Studio 2008 Standard Edition, Visual Studio 2008 Professional Edition,

or Visual Web Developer 2008 Express Edition. Additionally, unless explicitly stated, all fur-

ther references to Visual Studio 2008 also apply to Visual Web Developer 2008 Express

Edition.

2. If you are using Visual Studio 2008, on the File menu, point to New, and then click Web
Site.

3. If you are using Visual Web Developer 2008 Express Edition, on the File menu, click

New Web Site.

4. In the New Web Site dialog box, click the ASP.NET Web Site template. Select File System

in the Location drop-down list box, and specify the \Microsoft Press\Visual CSharp Step

By Step\Chapter 27\Litware folder under your Documents folder. Set the Language to

Visual C#, and then click OK.

Create the Web application

 Chapter 27 Introducing ASP.NET 565

 Note Setting the Location to File System creates the Web site by using the Development

Server. You can use IIS by setting the Location to HTTP and specifying the URL of the Web

site you want to create rather than a fi le name.

 Visual Studio 2008 creates an application consisting of a Web folder called App_Data

and a Web form called Default.aspx. The HTML code for the default page appears in

the Code and Text Editor window.

5. In Solution Explorer, select the Default.aspx fi le. In the Properties window, change the

File Name property of Default.aspx to EmployeeForm.aspx.

 Note The Properties window shares the same pane as the CSS Properties window, the

Manage Styles window, and the Apply Styles window, in the lower-right corner of Visual

Studio. The CSS Properties window is displayed by default. To view the Properties window,

click the Properties tab at the bottom of this pane.

6. Click the Design button at the bottom of the Code and Text Editor window to display

the Design View window for the form. The Design View window is currently nearly

 empty. (There is a blank <DIV> element at the top of the form.)

 In the Design View window, you can drag controls onto the Web form from the Toolbox,

and Visual Studio 2008 will generate the appropriate HTML for you. This is the HTML

that you see when you view the form in the Source View window. You can also edit the

HTML directly if you want.

 In the next exercise, you will defi ne a style to be used by the form and then add controls to

the form to make it functional. By defi ning a style, you can ensure that all controls on the

566 Part VI Building Web Applications

form share a common look and feel (such as color and font), as well as set items such as a

background image of the form.

Lay out the Web form

1. On the Website menu, click Add Existing Item. In the Add Existing Item dialog box,

move to the \Microsoft Press\Visual CSharp Step By Step\Chapter 27 folder under your

Documents folder, select the Computer.bmp fi le, and then click Add.

This fi le contains an image that you will display on the background of your Web form.

2. Click the form in the Design View window. In the Properties window, change the Title

property of the DOCUMENT object to Employee Information.

The value you specify for the Title property appears in the title bar of the Web browser

when you run the Web application.

Note If the Properties window displays the properties for the <DIV> element rather than

DOCUMENT, select DOCUMENT from the drop-down list at the top of the Properties
window.

3. Click the Manage Styles tab underneath the Properties window. In the Manage Styles
window, click the New Style link.

The New Style dialog box opens. You can use this dialog box to create a style for the

form.

Lay out the Web form

 Chapter 27 Introducing ASP.NET 567

4. In the font-family drop-down list box, click Arial.

5. In the color drop-down list, select the dark blue square on the second row.

 The value #0000FF should appear in the color box.

6. In the Category list box, click Background.

7. Click the Browse button adjacent to the background-image combo box. In the Picture

dialog box, click the computer.bmp fi le, and then click OK.

 The background-image combo box is populated with the value url(‘computer.bmp’).

8. In the Category list box, click Position.

9. In the height combo box, type 500.

10. At the top of the dialog box in the Selector combo box, type .employeeFormStyle (be

sure to include the leading period in this name), select the Apply new style to document
selection check box, and then click OK.

 In the Design View window, the Web form displays the image in the background.

11. Display the Toolbox, and ensure that the Standard category of controls is expanded.

 The Toolbox contains controls that you can drop onto ASP.NET forms. These controls

are similar, in many cases, to the controls you have been using to build Microsoft

Windows Presentation Foundation (WPF) applications. The difference is that these con-

trols have been specifi cally designed to operate in an HTML environment, and they are

rendered by using HTML at run time.

12. From the Toolbox, drag four Label controls and three TextBox controls onto the Web

form. Notice how the controls pick up the font and color specifi ed by the Web form’s

style.

 Note The controls will be automatically positioned using a left-to-right fl ow layout in the

Design View window. Do not worry about their location just yet because you will move

them after setting their properties.

 Note As well as using a Label control, you can type text directly onto a Web page.

However, you cannot format this text so easily, set properties, or apply themes to it. If you

are building a Web site that has to support different languages (such as French or German),

use Label controls because you can more easily localize the text they display by using

Resource fi les. For more information, see “Resources in ASP.NET Applications” in the

Microsoft Visual Studio 2008 documentation.

568 Part VI Building Web Applications

13. Using the Properties window, set the properties of these controls to the values shown in

the following table.

 Control Property Value

 Label1 Font Bold (expand the

Font property)

True

 Font Name Arial Black

 Font Size X-Large

 Text Litware, Inc. Software Developers

 Height 36px

 Width 630px

 Label2 Text First Name

 Label3 Text Last Name

 Label4 Text Employee Id

 TextBox1 (ID) fi rstName

 Height 24px

 Width 230px

 TextBox2 (ID) lastName

 Height 24px

 Width 230px

 TextBox3 (ID) employeeID

 Height 24px

 Width 230px

14. Click the Source button at the bottom of the Design View window. You should see the

HTML description of the form and the style in the Code and Text Editor window, like this

(some lines have been split and reformatted to fi t this code in a readable format on the

printed page):

<%@ Page Language=”C#” AutoEventWireup=”true”
 CodeFile=”EmployeeForm.aspx.cs” Inherits=”_Default” %>

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>

<html xmlns=”http://www.w3.org/1999/xhtml”>
<head runat=”server”>
 <title>Employee Information</title>
 <style type=”text/css”>
 .employeeFormStyle
 {
 font-family: Arial;
 color: #0000FF;

 Chapter 27 Introducing ASP.NET 569

 background-image: url(‘computer.bmp’);
 height: 500px;
 }
 </style>
</head>
<body>
 <form id=”form1” runat=”server”>
 <div class=”employeeFormStyle”>

 <asp:Label ID=”Label1” runat=”server” Font-Bold=”True”
 Font-Names=”Arial Black”
 Font-Size=”X-Large” Height=”36px”
 Text=”Litware, Inc. Software Developers”
 Width=”630px”></asp:Label>
 <asp:Label ID=”Label2” runat=”server” Text=”First Name”></asp:Label>
 <asp:Label ID=”Label3” runat=”server” Text=”Last Name”></asp:Label>
 <asp:Label ID=”Label4” runat=”server” Text=”Employee Id”></asp:Label>
 <asp:TextBox ID=”firstName” runat=”server” Height=”24px”
 Width=”230px”></asp:TextBox>
 <asp:TextBox ID=”lastName” runat=”server” Height=”24px”
 Width=”230px”></asp:TextBox>
 <asp:TextBox ID=”employeeID” runat=”server” Height=”24px”
 Width=”230px”></asp:TextBox>

 </div>
 </form>
</body>
</html>

15. Modify the HTML code for the Label1 control, and add a Style attribute to specify its

location on the form, as shown here in bold type:

<asp:Label ID=”Label1” ... Style=”position: absolute; left: 96px; top: 24px”></
asp:Label>

 By setting the position property of the Style attribute to absolute, you can specify

the position of controls yourself, rather than letting Visual Studio 2008 lay them out

automatically.

 Tip You can also specify the layout, alignment, and spacing of controls by using the

commands on the Format menu when using the Design View window.

16. Edit the HTML code for the remaining label and text box controls, and add Style attri-

butes to set their locations on the Web form, as shown here in bold type:

<asp:Label ID=”Label2” ... Style=”position: absolute; left: 62px; top: 104px”></
asp:Label>
<asp:Label ID=”Label3” ... Style=”position: absolute; left: 414px; top: 104px”></
asp:Label>
<asp:Label ID=”Label4” ... Style=”position: absolute; left: 62px; top: 168px”></
asp:Label>
<asp:TextBox ID=”firstName” ... Style=”position: absolute; left: 166px; top: 102px”></
asp:TextBox>

570 Part VI Building Web Applications

<asp:TextBox ID=”lastName” ... Style=”position: absolute; left: 508px; top: 102px”></
asp:TextBox>
<asp:TextBox ID=”employeeID” ... Style=”position: absolute; left: 166px; top:
166px”></asp:TextBox>

17. Click the Design button at the bottom of the window. The Web form should look like

this in the Design View window:

18. Add another Label control and four RadioButton controls to the Web form. Using the

Properties window, set the properties of these controls to the values listed in the fol-

lowing table. Note that the controls will appear in a line across the top of the form. You

will set their positions in the next step.

 Control Property Value

 Label5 Text Position

 RadioButton1 (ID) workerButton

 Text Worker

 TextAlign Left

 GroupName positionGroup

 Checked True

 RadioButton2 (ID) bossButton

 Text Boss

 TextAlign Left

 GroupName positionGroup

 Checked False

 RadioButton3 (ID) vpButton

 Text Vice President

 TextAlign Left

 Chapter 27 Introducing ASP.NET 571

 Control Property Value

 GroupName positionGroup

 Checked False

 RadioButton4 (ID) presidentButton

 Text President

 TextAlign Left

 GroupName positionGroup

 Checked False

 The GroupName property determines how a set of radio buttons is grouped. All

 buttons with the same value for GroupName are in the same group and are mutually

exclusive—only one can be selected at a time.

19. Click the Source button at the bottom of the Design View window, and set the positions

of these controls as shown in bold type here:

<asp:Label ID=”Label5” ... Style=”position: absolute; left: 86px; top: 224px”>
</asp:Label>
<asp:RadioButton ID=”workerButton” ... Style=”position: absolute; left: 192px; top:
224px”/>
<asp:RadioButton ID=”bossButton” ... Style=”position: absolute; left: 206px; top:
260px”/>
<asp:RadioButton ID=”presidentButton” ... Style=”position: absolute; left: 174px; top:
332px”/>
<asp:RadioButton ID=”vpButton” ... Style=”position: absolute; left: 138px; top:
296px”/>

20. Click the Design button, and then add another Label control and a DropDownList
 control to the Web form. Set their properties to the values shown in the following table.

 Control Property Value

 Label6 Text Role

 DropDownList1 (ID) positionRole

 Width 230px

 The positionRole drop-down list will display the different positions that an employee

can have within the company. This list will vary according to the position of the

 employee in the company. You will write code to populate this list dynamically.

21. Click the Source button, and add the HTML code shown here in bold type to set the

position of these controls:

<asp:Label ID=”Label6” ... Style=”position: absolute; left: 456px; top: 224px”>
</asp:Label>
<asp:DropDownList ID=”positionRole” ... Style=”position: absolute; left: 512px;
top: 224px”></asp:DropDownList>

572 Part VI Building Web Applications

22. Click the Design button, and add two Button controls and another Label control to the

form. Set their properties to the values shown in the following table.

 Control Property Value

 Button1 (ID) saveButton

 Text Save

 Width 75px

 Button2 (ID) clearButton

 Text Clear

 Width 75px

 Label7 (ID) infoLabel

 Text leave blank

 Height 48px

 Width 680px

 You will write event handlers for the buttons in a later exercise. The Save button will

collate the information entered by the user and display it in the InfoLabel control at the

bottom of the form. The Clear button will clear the text boxes and set other controls to

their default values.

23. Click the Source button, and add the HTML code shown here in bold type to each of

these controls:

<asp:Button ID=”saveButton” ... Style=”position: absolute; left: 328px; top: 408px”/>
<asp:Button ID=”clearButton” ... Style=”position: absolute; left: 424px; top: 408px”/>
<asp:Label ID=”infoLabel” ... Style=”position: absolute; left: 62px; top: 454px”>
</asp:Label>

24. Click the Design button. The completed form should look like the following image:

 Chapter 27 Introducing ASP.NET 573

Test the Web form

1. On the Debug menu, click Start Debugging. In the Debugging Not Enabled message

box, click Modify the Web.confi g fi le to enable debugging, and then click OK. If the Script
Debugging Disabled message box appears, click Yes.

Visual Studio 2008 builds the application, the ASP.NET Development Server starts, and

then Windows Internet Explorer starts and displays the form.

Tip If Internet Explorer displays a list of fi les rather than the Web form, close Internet

Explorer and return to Visual Studio 2008. In Solution Explorer, right-click EmployeeForm.

aspx, and then click Set As Start Page. Run the Web application again.

 Note The fi rst time you run a Web application by using the Start Debugging command,

you will be prompted with a message box stating that debugging is not enabled. You can

select either Run without debugging or Modify the Web.confi g fi le to enable debugging.

Running in debug mode is useful initially because you can set breakpoints and single-step

through the code using the debugger, as described in Chapter 3, “Writing Methods and

Applying Scope.” However, enabling debugging will slow the application, and debugging

should be disabled before the application is deployed to a production Web site. You can

do this by editing the web.confi g fi le and setting the debug attribute of the compilation

element to false, like this:

<compilation debug=”false”>
 <assemblies>
 ...
 </assemblies>
</compilation>

2. Enter some information for a fi ctitious employee. Test the radio buttons to verify that

they are all mutually exclusive. Click the drop-down arrow in the Role list box; the list

will be empty. Click Save and Clear, and verify that they currently do nothing other than

cause the form to be redisplayed.

3. Close Internet Explorer, and return to Visual Studio 2008.

Test the Web form

574 Part VI Building Web Applications
Deploying a Web Site to IIS
 A useful feature available in Visual Studio 2008 and Visual Web Developer 2008 Express

Edition is the Copy Web Site command on the Website menu that you can use for copy-

ing a Web site from one location to another. You can use this feature to quickly deploy

a Web site built and tested using the ASP.NET Development Server to a production

IIS site. (You should create a new Web site or an empty virtual directory by using the

Internet Information Services management console fi rst.) The following image shows

this feature in action.

 You can connect to the virtual directory on the production IIS site and then selectively

copy individual fi les to or from the production Web site, or synchronize fi les between

Web sites.

Note If you are using the Windows Vista operating system, you must run Visual Studio

2008 using the Administrator account to connect to IIS in the Copy Web Site window.

 For more information, see the topics “Walkthrough: Copying a Web Site Using the Copy

Web Site Tool” and “How to Copy Web Site Files with the Copy Web Site Tool” in the

Microsoft Visual Studio 2008 documentation.

 Chapter 27 Introducing ASP.NET 575

Understanding Server Controls
The Web forms controls you added to the form are collectively known as Server controls.

Server controls are similar to the standard HTML items that you can use on an ordinary Web

page except that they are more programmable. Most Server controls expose event handlers,

methods, and properties that code running on the server can execute and modify dynami-

cally at run time. In the following exercises, you will learn more about programming Server

controls.

Examine a Server control

1. In the Design View window displaying EmployeeForm.aspx, click the Source button.

2. Examine the HTML code for the form. Look at the defi nition of the fi rst Label control in

more detail (the following code has been laid out to make it easier to read):

<asp:Label ID=”Label1” runat=”server”
 Font-Bold=”True” Font-Names=”Arial Black”
 Font-Size=”X-Large” Height=”36px”
 Text=”Litware, Inc. Software Developers” Width=”630px”
 Style=”position: absolute; left: 96px; top: 24px”></asp:Label>

There are a couple of things to observe. First, look at the type the control is, asp:Label.
All Web forms controls live in the asp namespace because this is the way they are de-

fi ned by Microsoft. The second noteworthy item is the runat=”server” attribute. This

attribute indicates that the control can be accessed by code running on the Web server.

This code can query and change the values of any of the properties of this control (for

example, change its text).

HTML Controls
 ASP.NET also supports HTML controls. If you expand the HTML category in the Toolbox,

you are presented with a list of controls. These are the controls that Microsoft supplied

with the original ASP model. They are provided so that you can port existing ASP pages

into ASP.NET more easily. However, if you are building a Web application from scratch,

you should use the Standard Web Forms controls instead.

 HTML controls also have a runat attribute so that you can specify where event handling

code should be executed for these controls. Unlike Web forms controls, the default lo-

cation for HTML controls to execute code is in the browser rather than on the server—

assuming that the user’s browser supports this functionality.

Examine a Server control

576 Part VI Building Web Applications
 The EmployeeForm.aspx page requires you to add the following functionality:

 Populate the PositionRole drop-down list when the user selects a position (Worker,

Boss, Vice President, President).

 Save the information entered when the user clicks the Save button.

 Clear the form when the user clicks the Clear button.

You will implement this functionality by writing event handlers.

Note The methods you will add in the following exercise use hard-coded values for the various

roles and the jobs that they can perform. In a professional application, you should store this type

of information in a database and use a technology such as ADO.NET or DLINQ to retrieve the

various roles and their associated jobs from the database. You will see how to use DLINQ with an

ASP.NET Web application in Chapter 29.

Handle Server control events

 1. In Solution Explorer, expand the fi le EmployeeForm.aspx.

The fi le EmployeeForm.aspx.cs will appear. This is the fi le that will actually contain

the C# code for the event handlers that you write. This fi le is known as a code-behind
fi le. You can separate the C# code from the display logic for a Web application by us-

ing this feature of ASP.NET. (You can actually write C# code and event handlers in the

EmployeeForm.aspx fi le by using the Source View window, but this approach is not

recommended.)

 2. In the Code and Text Editor window displaying the source view for EmployeeForm.aspx,

examine the fi rst line of the fi le. It contains the following text:

<%@ Page Language=”C#” ... CodeFile=”EmployeeForm.aspx.cs ... %>

 The CodeFile directive specifi es the fi le containing the program code for the Web form

and the language in which it is written, in this case, C#. The other supported languages

include Microsoft Visual Basic and JScript.

 3. In Solution Explorer, double-click the EmployeeForm.aspx.cs fi le.

 The fi le appears in the Code and Text Editor window. At the top of the fi le, there is a set

of using statements. Note that this fi le makes heavy use of the System.Web namespace

and its subnamespaces—this is where the ASP.NET classes reside. Also, notice that the

code itself is in a class called _Default that descends from System.Web.UI.Page; this is

the class from which all Web forms descend. Currently, it contains a single empty meth-

od called Page_Load. This method runs when the page is displayed. You can write code

in this method to initialize any data required by the form.

Handle Server control events

Chapter 27 Introducing ASP.NET 577

4. Add a method called initPositionRole to the _Default class after the Page_Load method:

private void initPositionRole()
{
}

 You will invoke this method to initialize the positionRole drop-down list to its default set

of values.

5. Add the following statements shown in bold type to the initPositionRole method:

private void initPositionRole()
{
 positionRole.Items.Clear();
 positionRole.Enabled = true;
 positionRole.Items.Add(“Analyst”);
 positionRole.Items.Add(“Designer”);
 positionRole.Items.Add(“Developer”);
}

 The fi rst statement clears the items from the drop-down list box. The second statement

activates the list box. (You will write some code shortly that disables it under certain

circumstances.) The remaining statements add the three roles that are applicable to

workers.

6. Add the statements shown here in bold type to the Page_Load method:

protected void Page_Load(object sender, EventArgs e)
{
 if (!IsPostBack)
 {
 initPositionRole();
 }
}

 This block of code causes the positionRole drop-down list to be populated when the

form appears in the user’s browser. However, it is important to understand that the

Page_Load method runs every time the Web server sends the form to the user’s brows-

er. For example, when the user clicks a button the form can be sent back to the Web

server for processing; the Web server then responds by sending the form back to the

browser for displaying when the processing has completed. You don’t want the initial-

ization to be performed every time the page appears because it is a waste of process-

ing and can lead to performance problems if you are building a commercial Web site.

You can determine whether the Page_Load method is running because this is the fi rst

time the page is being displayed by querying the IsPostBack property of the Web page.

This property returns false the fi rst time the page is displayed and true if the page is

being redisplayed because the user has clicked a control. In the code you added, you

call the initPositionRole method only when the form is fi rst displayed.

578 Part VI Building Web Applications

7. Switch to the EmployeeForm.aspx fi le, and click the Design button. Select the Worker
radio button. In the Properties window toolbar, click the Events toolbar button. (This

button has a little lightning icon.) Double-click the CheckedChanged event. This event

occurs when the user clicks the radio button and its value changes. Visual Studio 2008

generates the method workerButton_CheckedChanged to handle this event.

 Note The Properties window of an ASP.NET Web application provides additional features

not currently available when you build a WPF application. These features include being

able to list the events available for a control and specify an event handler. When you create

a WPF application, this functionality is available only when you edit the Extensible

Application Markup Language (XAML) code for a control.

8. In the Code and Text Editor window, add the statement shown here in bold type to the

workerButton_CheckedChanged event method:

protected void workerButton_CheckedChanged(object sender, EventArgs e)
{
 initPositionRole();
}

 Remember that the default values for the positionRole drop-down list are those for a

worker, so the same method can be reused to initialize the list.

9. Switch to the Design View window displaying the EmployeeForm.aspx form. Select

the Boss radio button, and use the Properties window to create an event method

called bossButton_CheckedChanged for the CheckedChanged event. When the form

is displayed in the Code and Text Editor window, type the following statements in the

BossCheckedChanged method:

protected void bossButton_CheckedChanged(object sender, EventArgs e)
{
 positionRole.Items.Clear();
 positionRole.Enabled = true;
 positionRole.Items.Add(“General Manager”);
 positionRole.Items.Add(“Project Manager”);
}

 These are the roles that a manager can fulfi ll.

10. Return to the Design View window displaying the EmployeeForm.aspx form, and create

an event handler for the CheckedChanged event for the Vice President radio button. In

the Code and Text Editor window, add the following statements shown in bold type to

the vpButton_CheckedChanged event method:

protected void vpButton_CheckedChanged(object sender, EventArgs e)
{
 positionRole.Items.Clear();
 positionRole.Enabled = true;

 Chapter 27 Introducing ASP.NET 579

 positionRole.Items.Add(“VP Sales”);
 positionRole.Items.Add(“VP Marketing”);
 positionRole.Items.Add(“VP Production”);
 positionRole.Items.Add(“VP Human Resources”);
}

11. Switch to the Design View window displaying the EmployeeForm.aspx form, and create

an event handler for the CheckedChanged event for the President radio button. Add the

code shown here in bold type to the presidentButton_CheckedChanged event method:

protected void presidentButton_CheckedChanged(object sender, EventArgs e)
{
 positionRole.Items.Clear();
 positionRole.Enabled = false;
}

 Roles do not apply to the president of the company, so the drop-down list is cleared

and disabled.

12. Return to the Design View window displaying the EmployeeForm.aspx form, and create

an event handler for the Click event of the Save button. The method would usually save

the information to a database, but to keep this application simple, the method will just

echo some of the data in the InfoLabel control instead. Add the following statements

shown in bold type to the saveButton_Click method:

protected void saveButton_Click(object sender, EventArgs e)
{
 String position = “”;

 if (workerButton.Checked)
 position = “Worker”;
 if (bossButton.Checked)
 position = “Manager”;
 if (vpButton.Checked)
 position = “Vice President”;
 if (presidentButton.Checked)
 position = “President”;

 infoLabel.Text = “Employee: ” + firstName.Text + “ ” +
 lastName.Text + “ Id: ” +
 employeeID.Text + “ Position: ” +
 position;
}

 The character is a nonbreaking space in HTML; ordinary white-space characters

after the fi rst white-space character will usually be ignored by the browser.

13. Using the same technique, create an event method for the Click event of the Clear
 button. Add the following block of code shown in bold type to this method:

protected void clearButton_Click(object sender, EventArgs e)
{
 firstName.Text = “”;
 lastName.Text = “”;

580 Part VI Building Web Applications

 employeeID.Text = “”;
 workerButton.Checked = true;
 bossButton.Checked = false;
 vpButton.Checked = false;
 presidentButton.Checked = false;
 initPositionRole();
 infoLabel.Text = “”;
}

 This code clears the information entered by the user and then resets the role to Worker

(the default value).

 Note Although only one radio button in a group can have its Checked property set to

true, it is necessary to set the Checked property of the remaining radio buttons to false to

ensure that the correct button is displayed as being selected when ASP.NET refreshes the

form in the user’s Web browser.

Test the Web form again

1. On the Debug menu, click Start Debugging to run the Web form again.

2. When the Web form appears in Internet Explorer, type an employee’s name, enter an

ID number (make them up), and then click the Role drop-down list.

 The list of roles for a worker is displayed.

3. Change the position of your fi ctitious employee to Vice President, and then click the

Role drop-down list box.

 Notice that the list has not changed and still displays the roles for a worker. The list

hasn’t changed because the CheckedChanged event for the Vice President radio button

has not been raised.

4. Close Internet Explorer, and return to Visual Studio 2008.

5. Display the EmployeeForm.aspx Web form in the Design View window, and then select

the worker-Button radio button. In the Properties window, set the AutoPostBack prop-

erty to True.

 Tip If the Properties window is still displaying the list of events for the radio button, click

the Properties button next to the Events button on the Properties window toolbar.

Test the Web form again

 Chapter 27 Introducing ASP.NET 581

 When the user clicks this radio button, the form will be sent back to the server for

 processing, the CheckedChanged event will fi re, and the form can be updated to display

the roles for this radio button. By default, the AutoPostBack property is set to False to

avoid unnecessary network traffi c.

6. Set the AutoPostBack property to True for the other radio buttons: bossButton,

 vpButton, and presidentButton.

7. Run the Web form again.

 This time you will fi nd that when you click the radio buttons, there is a slight fl icker

while the form is submitted to the server, the event handler runs, the drop-down list is

populated, and the form is displayed again.

8. On the Internet Explorer toolbar, click the Page drop-down list, and then click View
Source to display the source of the HTML page being displayed in the browser.

 Note If the Internet Explorer Security message box appears, click Allow so that you can

view the source fi le for the page.

 Notepad starts and displays the HTML source for the page. Notice that there is no

mention of any “asp:” Server controls in this fi le and no C# code. Instead, the Server

controls and their contents have been converted to the equivalent HTML controls (and

some JavaScript). This is one of the basic features of the Server controls—you access

them programmatically like ordinary .NET Framework objects, with methods, proper-

ties, and events. When they are rendered by the Web server, they are converted to

HTML so that you can display the form in any HTML-compliant browser.

9. When you have fi nished examining the fi le, close Notepad.

10. On the Web form, click Save.

 The InfoLabel control displays the details of the new employee. If you examine the

source, you will see that the HTML for the InfoLabel control (rendered as an HTML span

with an ID of “InfoLabel”) contains this text.

11. Click Clear.

 The form resets to its default values.

12. Close Internet Explorer, and return to Visual Studio 2008.

582 Part VI Building Web Applications
Event Processing and Roundtrips
 Server controls are undoubtedly a powerful feature of ASP.NET, but they come with

a price. You should remember that although events are raised by the Web client, the

event code is executed on the Web server, and that each time an event is raised, an

HTTP request (or postback) is sent over the network to the Web server. The task of the

Web server is to process this request and send a reply containing an HTML page to be

displayed. In the case of many events, this page is the same as the one that issued the

original request. However, the Web server also needs to know what other data the user

has entered on the page so that when the server generates the HTML response, it can

preserve these values in the display. (If the Web server sent back only the HTML that

composed the original page, any data entered by the user would disappear.) If you look

at the HTML source of a page generated by a Web form, you will notice a hidden input

fi eld in the form. The example shown previously had this hidden fi eld:

<input type=”hidden” name=”__VIEWSTATE”
value=”/WEPdDwxNDk0MzA1NzE0O3Q8O2w8aTwxPjs+O2w8bDxpPDE3PjtpPDE5
PjtpP DIxPjtpPDI3PjtpPDMzPjs+O2w8dDxwPHA8bDxDaGVja2VkOz47bDxvPH
Q+Oz4+Oz 47Oz47dDxwPHA8bDxDaGVja2VkOz47bDxvPGY+Oz4+Oz47Oz47dDxw
PHA8bDxDaGVja2 VkOz47bDxvPGY+Oz4+Oz47Oz47dDx0PDt0PGk8Mz47QDxBbm
FseXN0O0Rlc2lnbmVyO0 RldmVsb3Blcjs+O0A8QW5hbHlzdDtEZXNpZ25lcjtE
ZXZlbG9wZXI7Pj47Pjs7Pj t0PHA8cDxsPFRleHQ7PjtsPFxlOz4+Oz47Oz47Pj
47Pj47bDxQZW9uQnV0dG9uO1BIQ kJ1dHRvbjtQSEJCdXR0b247VlBCdXR0b247
VlBCdXR0b247UHJlc2lkZW50QnV0dG9uO 1ByZXNpZGVudEJ1dHRvbjs+Pg==” />

 This information is the content of the controls, or view state, in an encoded form. It is

sent to the Web server whenever any event causes a postback. The Web server uses

this information to repopulate the fi elds on the page when the HTML response is

generated.

 All of this data has an impact on scalability. The more controls you have on a form, the

more state information has to be passed between the browser and Web server dur-

ing the postback processing, and the more events you use, the more frequently this

will happen. In general, to reduce network overhead, you should keep your Web forms

relatively simple, avoid excessive use of server events, and be selective with view state

to avoid sending unnecessary information across the network. You can disable the view

state for a control by setting the EnableViewState property of the control to False (the

default setting is True).

Creating and Using a Theme
 When you fi rst created the Web site, you defi ned a style for the form. This style determined

the default font and color for controls on the form and could also be used to specify default

 Chapter 27 Introducing ASP.NET 583
values for other attributes, such as the way in which lists are formatted and numbered. (You

can edit a style by right-clicking the style in the Manage Styles window and then by clicking

Modify Style.) However, a style defi ned in this way applies only to a single form. Commercial

Web sites typically contains tens, or maybe hundreds, of forms. Keeping all of these forms

consistently formatted can be a time-consuming task; if the company you work for decided

to change the font on all of its Web pages, imagine how many forms you would need to

update and rebuild! This is where themes can be very useful. A theme is a set of properties,

styles, and images that you can apply to the controls on a page or globally across all pages in

a Web site.

Note If you are familiar with cascading style sheets (.css fi les), the concept of themes might be

familiar to you. However, there are some differences between cascading style sheets and themes.

In particular, themes do not cascade in the same way as cascading style sheets, and properties

defi ned in a theme applied to a control always override any local property values defi ned for the

control.

Defi ning a Theme
 A theme is made up of a set of skin fi les located in a named subfolder in the App_Themes

folder for a Web site. A skin fi le is a text fi le that has the fi le name extension .skin. Each skin

fi le specifi es the default properties for a particular type of control using syntax very similar to

that which is displayed when you view a Web form in the Source View window. For example,

the following skin fi le specifi es the default properties for TextBox and Label controls:

<asp:TextBox BackColor=”Blue” ForeColor=”White” Runat=”Server” />
<asp:Label BackColor=”White” ForeColor=”Blue” Runat=”Server” Font-Bold=”True” />

 You can specify many properties of a control in a skin fi le, but not all of them. For example,

you cannot specify a value for the AutoPostBack property. Additionally, you cannot create

skin fi les for every type of control, but most commonly used controls can be confi gured in

this way.

Applying a Theme
 After you have created a set of skin fi les for a theme, you can apply the theme to a page

by modifying the @Page attribute that occurs at the start of the page in the Source View

 window. For example, if the skin fi les for a theme are located in the App_Themes\BlueTheme

folder under the Web site, you can apply the theme to a page like this:

<%@Page Theme=”BlueTheme” ...%>

584 Part VI Building Web Applications

 If you want to apply the theme to all pages in the Web site, you can modify the web.confi g

fi le and specify the theme in the pages element, like this:

<configuration>
 <system.web>
 <pages theme=”BlueTheme” />
 </system.web>
</configuration>

 If you modify the defi nition of a theme, all controls and pages that use the theme will pick up

the changes automatically when they are next displayed.

 In the fi nal set of exercises in this chapter, you will create a theme for the Litware Web site

and then apply this theme to all pages in the Web site.

Create a new theme

1. In Solution Explorer, right-click the C:\...\Litware project folder. Point to Add ASP.NET
Folder, and then click Theme.

 A new folder called App_Themes is added to the project, and a subfolder is created

called Theme1.

2. Change the name of the Theme1 folder to LitTheme.

3. In Solution Explorer, right-click the LitTheme folder, and then click Add New Item.

 The Add New Item dialog box appears, displaying the types of fi le that can be stored in

a themes folder.

4. Click the Skin File template, type Lit.skin in the Name text box, and then click Add.

 The skin fi le Lit.skin is added to the LitTheme folder, and the fi le is displayed in the

Code and Text Editor window.

5. Append the following lines to the end of the Lit.skin fi le in the Code and Text Editor
window (this fi le contains a comment with some very brief instructions):

<asp:TextBox BackColor=”Red” ForeColor=”White” Runat=”Server” />
<asp:Label BackColor=”White” ForeColor=”Red” Runat=”Server” Font-Bold=”True” />
<asp:RadioButton BackColor=”White” ForeColor=”Red” Runat=”Server”/>
<asp:Button BackColor=”Red” ForeColor=”White” Runat=”Server” Font-Bold=”True”/>
<asp:DropDownList BackColor=”Red” ForeColor=”White” Runat=”Server”/>

 This simple set of properties displays TextBox, Button, and DropDownListBox controls

as white text on a red background, and Label and RadioButton controls as red text on

a white background. The text on Label and Button controls is displayed using the bold

font version of the current font.

Create a new theme

 Chapter 27 Introducing ASP.NET 585
Important The skin fi le editor is very basic and does not provide any IntelliSense to help

you. If you make a mistake in this fi le, the application will run, but entries in this fi le might

be ignored. When you run the application later, if any of the controls do not appear as

expected, ensure that you have not mistyped anything in this fi le.

As mentioned previously, there are at least two ways you can apply a theme to a Web form:

you can set the @Page attribute for each page, or you can specify the theme globally across

all pages by using a Web confi guration fi le. You are going to use the latter approach in the

next exercise. This mechanism causes all pages for the Web site to apply the same theme

automatically.

Create a Web confi guration fi le, and apply the theme

 1. In Solution Explorer, double-click the web.confi g fi le to display it in the Code and Text
Editor window.

 2. Locate the <pages> line, and modify it as shown here in bold type:

<pages theme=”LitTheme”>

 3. On the Debug menu, click Start Without Debugging.

Internet Explorer appears and displays the Web form. Verify that the style of the con-

trols on the form have changed as expected, although any text in the text boxes might

be a little hard to read (you will fi x this shortly). Close Internet Explorer when you have

fi nished.

 4. In Solution Explorer, double-click the Lit.skin fi le to display it in the Code and Text Editor
window. Modify the element defi ning the appearance of TextBox and DropDownList
controls, as shown here in bold type:

<asp:TextBox BackColor=”White” ForeColor=”Red” Font-Bold=”True” Runat=”Server” />
...
<asp:DropDownList BackColor=”White” ForeColor=”Red” Runat=”Server” />

 5. Run the form again. Notice how the style of the First Name, Last Name, and Employee
Id TextBox controls, and the Role drop-down list have changed; hopefully, they are

easier to read.

 6. Close Internet Explorer when you have fi nished.

Create a Web confi guration fi le, and apply the theme

586 Part VI Building Web Applications
 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 28.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 27 Quick Reference
 To Do this

 Create a Web application Create a new Web site using the ASP.NET Web Site template. Specify

whether you want to use the Development Server (specify a fi le system

location and fi le name) or IIS (specify an HTTP location and URL).

 View and edit the HTML defi nition

of a Web form

Click the Source button in the Design View window.

 Create a style for a Web form In the Manage Styles window, click New Style. Use the New Style dialog

box to defi ne the style for the form.

 Add ASP.NET Server controls to a

Web form

Click the Design button in the Design View window. In the Toolbox,

expand the Standard category. Drag controls onto the Web form.

 Add HTML controls to a Web form

(with HTML controls, you can more

easily port existing ASP pages into

ASP.NET)

In the Toolbox, click the HTML category. Drag controls onto the Web

form.

 Create an event handler for an ASP.

NET Server control

In the Design View window, select the control on the Web form. In the

Properties window, click the Events button. Choose the event you want

to handle and type the name of an event handler method or double-

click the event name to select the default name. In the Code and Text
Editor window, write the code to handle the event.

 Create a theme Add an App_Themes folder to the Web site. Create a subfolder for

the theme. Create a skin fi le defi ning the properties of controls in this

folder.

 Apply a theme to a Web site Either specify the theme using the @Page attribute of each page, like

this:

<%@Page Theme=”BlueTheme” ...%>

or modify the web.confi g fi le and specify the theme in the pages
 element, like this:

<pages theme=”BlueTheme”>

Chapter 28

Understanding Web Forms
Validation Controls

 After completing this chapter, you will be able to:

 Validate user input in a Microsoft ASP.NET Web form by using the ASP.NET validation

controls.

 Determine whether to perform user input validation in the user's Web browser or at the

Web server.

 As with a Microsoft Windows Presentation Foundation (WPF) application, validating user

 input is an important part of any Web application. With WPF, you can check that the us-

er’s input makes sense by binding controls to properties of business objects and letting the

code in these business objects validate the data, or by writing code to validate the contents

of these fi elds in response to events that occur when the user moves from fi eld to fi eld on a

form. ASP.NET Web forms do not support binding to business objects for validation purpos-

es, so at fi rst glance it appears that your only option might be to use events. However, there

is one fundamental consideration that you should think about. Web applications are distrib-

uted in their nature: the presentation logic runs in the Web browser on the user's computer,

while the code for the application runs on the Web server. With this in mind, should you

 perform user input validation at the client (the Web browser) or at the Web server? In this

chapter, you will examine this question and discover the options that are available to you.

 Note As you read this chapter, you might be surprised to discover that it contains no C# code.

This is intentional. You could validate data by using C# methods, but sometimes it is equally

instructive to see situations where you do not actually need to write C# code to perform

potentially complex tasks.

Comparing Server and Client Validations
 Consider the EmployeeForm.aspx page of the Litware Web site again. The user is expected

to enter the details of an employee: name, employee ID, position, and role. All the text boxes

should be mandatory. Additionally, the employee ID should be a positive integer.
 587

588 Part VI Building Web Applications
Validating Data at the Web Server
 If you examine the TextBox class, you will notice that it provides the TextChanged event. After

the user changes the text in the text box, this event runs the next time the form is posted

back to the server. As with all Web Server control events, the TextChanged event handler

runs at the Web server. Validating data at the server involves transmitting data from the Web

browser to the server, processing the event at the server to validate the data, and then pack-

aging up any validation errors as part of the HTML response sent back to the client so that

the browser can display these errors. If the validation being performed is complex or requires

processing that can be performed only at the Web server (such as ensuring that an employee

ID the user enters exists in a database), this is an acceptable technique. But if you are simply

inspecting the data in a single text box in isolation (such as making sure that the user types a

positive integer into an Employee ID text box), performing this type of validation on the Web

server could impose unacceptable overhead; why not perform this check in the browser on

the client computer and save a network round-trip?

Validating Data in the Web Browser
 The ASP.NET Web Forms model facilitates performing client-side validation in a Web browser

through the use of validation controls. If the user is running a browser (such as Microsoft

Internet Explorer 4 or later) that supports dynamic HTML, the validation controls generate

JavaScript code that runs in the browser and avoids the need to perform a network round-

trip to the server. If the user is running an older browser, the validation controls generate

server-side code instead. The key point is that the developer creating the Web form does

not have to worry about checking for browser capabilities; all the browser detection and

code generation features are built into the ASP.NET validation controls. The developer simply

drops an ASP.NET validation control onto the Web form, sets its properties (either by using

the Properties window or by writing code), and specifi es the validation rules to be performed

and any error messages to be displayed.

 ASP.NET provides the following validation controls:

 RequiredFieldValidator Use this control to ensure that the user has entered data into

a control.

 CompareValidator Use this control to compare the data entered with a constant

value, the value of a property of another control, or a value retrieved from a database.

 RangeValidator Use this control to check the data entered by a user against a range

of values, checking that the data falls either inside or outside a given range.

 RegularExpressionValidator Use this control to check that the data input by the user

matches a specifi ed regular expression, pattern, or format (such as a telephone number,

for example).

 Chapter 28 Understanding Web Forms Validation Controls 589
 CustomValidator Use this control to defi ne your own custom validation logic and at-

tach it to a control to be validated.

 Note You should be aware that if a user can type unrestricted text into a text box and send it to

the Web server, the user could type text that looks like HTML tags (for example). Hackers

sometimes use this technique to inject HTML into a client request in an attempt to cause damage

to the Web server or to try to break in. (I am not going to go into the details here!) By default, if

you try this trick with an ASP.NET Web page, the request will be aborted and the user is shown

the message “A potentially dangerous Request.Form value was detected from the client.” You can

disable this check, although that is not recommended. A better approach is to use a

RegularExpressionValidator control to verify that the user input in a text box does not constitute

an HTML tag (or anything that looks like it). For more information about regular expressions and

how to use them, see the topic “.NET Framework Regular Expressions” in the Microsoft Visual

Studio 2008 documentation.

 Although each control performs a single well-defi ned type of validation, you can use several

of them in combination. For example, if you want to ensure that the user enters a value in a

text box and that this value falls in a particular range, you can attach a RequiredFieldValidator
control and a RangeValidator control to the text box.

 These controls can work in conjunction with a ValidationSummary control to display error

messages. You will use some of these controls in the following exercises.

Implementing Client Validation
 Returning to the EmployeeForm.aspx Web form, you can probably see that

RequiredFieldValidator controls will be required for the First Name, Last Name, and Employee
Id text boxes. The employee ID must also be numeric and should be a positive integer. In this

application, you will specify that the employee ID must be between 1 and 5000. This is where

a RangeValidator control is useful.

Add RequiredFieldValidator controls

 1. Start Microsoft Visual Studio 2008 if it is not already running.

 2. If you are using Visual Studio 2008 Professional Edition or Enterprise Edition, on the File

menu, point to Open, and then click Web Site.

 3. If you are using Microsoft Visual Web Developer 2008 Express Edition, on the File

menu, click Open Web Site.

 4. In the Open Web Site dialog box, ensure that the File System option is selected,

browse to Microsoft Press\Visual CSharp Step by Step\Chapter 28\Litware under your

Documents folder, and then click Open.

Add RequiredFieldValidator controlsr

590 Part VI Building Web Applications

 Note When you create a new Web site, Visual Studio 2008 creates a solution fi le in a

 solution folder in the Visual Studio 2008 folder under your Documents folder. However,

you do not need to select a Microsoft Visual C# solution or project fi le to open a Web site

for editing; just move to the folder containing the Web site fi les and subfolders. If you do

want to open a Web site by using the solution fi le, on the File menu, point to Open, and

click Project/Solution (instead of Web Site), move to the solution folder, and then click the

solution fi le.

5. In Solution Explorer, right-click EmployeeForm.aspx, and then click Set As Start Page.

6. Right-click EmployeeForm.aspx again, and then click View Designer to display the Web

form in the Design View window.

7. In the Toolbox, expand the Validation category.

8. Add a RequiredFieldValidator control to the form.

 The control appears in the upper-left part of the form, displaying the text

“RequiredFieldValidator”.

9. Click the Source button to display the HTML source code for the form. Locate the code

for the RequiredFieldValidator control toward the bottom of the fi le, and set the Style

property to position it underneath the fi rstName text box, as shown here in bold type.

(The position of a validation control determines where the error message is displayed.)

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1”...
 Style=”position: absolute; left: 166px; top: 128px”></asp:RequiredFieldValidator>

10. Click the Design button, and then select the RequiredFieldValidator control. In the

Properties window, use the drop-down list to set the ControlToValidate property to

fi rstName. Setting the ControlToValidate property links the validation control to the

item it will validate. Enter You must specify a fi rst name for the employee in the

ErrorMessage property. This is the message that will be displayed if the control to be

validated (the First Name text box) is left blank. Notice that this message replaces the

default red text error message (“RequiredFieldValidator”) on the form.

11. Add two more RequiredFieldValidator controls to the form.

12. Click the Source button, and add the Style properties shown here in bold type to

 position these controls under the lastName and employeeID text boxes.

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2”...
 Style=”position: absolute; left: 508px; top: 128px”></asp:RequiredFieldValidator>
<asp:RequiredFieldValidator ID=”RequiredFieldValidator3”...
 Style=”position: absolute; left: 166px; top: 194px”></asp:RequiredFieldValidator>

13. Click the Design button, and then select the RequiredFieldValidator control under

the Last Name text box. Using the Properties window, set its ControlToValidate prop-

erty to lastName, and enter You must specify a last name for the employee in its

ErrorMessage property. Notice that the RequiredFieldValidator control automatically

resizes itself to display the complete error message.

 Chapter 28 Understanding Web Forms Validation Controls 591

14. Select the RequiredFieldValidator control under the Employee Id text box; set its

ControlToValidate property to employeeID, and enter You must specify an employee
ID in its ErrorMessage property.

15. On the Debug menu, click Start Without Debugging to run the form in Windows

Internet Explorer.

16. When the form fi rst appears, all the required text boxes will be empty. Click Save. The

error messages belonging to all three RequiredFieldValidator controls are displayed.

 Notice that the Click event for the Save button did not run, and the label at the bottom

of the form did not display the data summary (and the screen did not even fl icker). This

behavior is because the validation controls prevented the postback to the server; they

generate code that can be executed by the browser, and they will continue to block

posts back to the server until all the errors have been corrected.

 Note If you click the Clear button while an error message is displayed, it will not clear

the form because the error blocks the postback to the Web server. ASP.NET provides sup-

port for client-side scripting so that you can add JavaScript code to clear the Web form.

This code is not blocked by postbacks because it runs in the user’s Web browser (assuming

the browser supports JavaScript). The validation controls actually generate JavaScript code

that runs in the user’s browser rather than being posted back to the Web server. The de-

tails of writing your own client-side JavaScript code in an ASP.NET Web form are outside

the scope of this book, but for more information, search for the article “How to Add Client

Script Events to ASP.NET Web Server Controls” in the documentation provided with Visual

Studio 2008.

17. Type a name in the First Name text box.

592 Part VI Building Web Applications

 As soon as you move away from the text box, the corresponding error message

 disappears. If you return to the First Name text box, erase the contents, and then move

to the next text box, the error message is displayed again. All this functionality is being

performed in the browser with no data being sent to the server over the network.

18. Enter values in the First Name, Last Name, and Employee Id text boxes, and then click

Save.

 This time the Click event runs and the summary is displayed in the InfoLabel control at

the bottom of the form.

19. Close the form, and return to Visual Studio 2008.

 Currently, you can type anything into the Employee Id text box. In the following exercise, you

will use a RangeValidator control to restrict the acceptable values to integers in the range of 1

through 5000.

Add a RangeValidator control

1. In the Design View window, from the Toolbox, add a RangeValidator control to the form.

2. Click the Source button, and add the Style properties shown here in bold type to

 position the RangeValidator control under the employeeID text box.

<asp:RangeValidator ID=”RangeValidator1”...
 Style=”position: absolute; left: 166px; top: 194px”></asp:RangeValidator>

 This is exactly the same position as the RequiredFieldValidator control for the

 employeeID text box. Specifying the same location for these two error messages is not

a problem because the validations performed by these controls are mutually exclusive

(if the employee ID is blank, the RangeValidator control cannot test the value entered

by the user), so only one of the error messages can be displayed.

3. Click anywhere in the HTML code for the RangeValidator1 control. In the Properties
window, set the ControlToValidate property to employeeID. Enter The employee ID
must be between 1 and 5000 in the ErrorMessage property. Set the MaximumValue

property to 5000, the MinimumValue property to 1, and the Type property to Integer.

 Note You can use the RangeValidator control to restrict the range of non-numeric data

by setting the Type property. The types you can specify are String, Integer, Double, Date,

and Currency. You should specify values of the appropriate type for the MaximumValue

and MinimumValue properties. The RangeValidator control uses the collation sequence of

the character set used by the current locale when performing range checking for strings,

and when checking Date ranges, an earlier date is considered to be lower than a later date.

4. Run the form again. Enter a fi rst name and a last name, but leave the employee ID

blank. Click Save.

 An error message telling you that you must supply an employee ID appears.

Add a RangeValidator controlr

 Chapter 28 Understanding Web Forms Validation Controls 593

5. Type –1 in the Employee Id text box, and then click Save.

 An error message telling you that the employee ID must be between 1 and 5000

appears.

6. Type 101 in the Employee Id text box, and then click Save.

 This time the data is valid. The form is posted back to the server, the Click event of the

Save button runs, and a summary of the information entered in the InfoLabel label

 appears at the bottom of the form.

7. Experiment with other values that are out of range or of the wrong type. Try 5001 and

the text “AAA” to check that the RangeValidator control works as expected.

8. On the Internet Explorer toolbar, click the Page drop-down list, and then click View
Source to display the source of the HTML page being displayed in the browser.

 Note If the Internet Explorer Security message box appears, click Allow so that you can

view the source fi le for the page.

 Notepad starts and displays the HTML source for the page. Scroll through the fi le and

examine its contents. Near the end, you will fi nd some JavaScript code that performs

the validations. This code was generated by using the properties of the validation con-

trols. Close Notepad when you have fi nished browsing the HTML source code.

9. Close Internet Explorer, and return to Visual Studio 2008.

Disabling Client-Side Validation
 In the preceding exercise, you saw that the validations were performed by using

JavaScript code running in the browser. The ASP.NET runtime generates this code

automatically, depending on the capabilities of the Web browser being used to view

the page. If the browser does not support JavaScript, all validation checks will be per-

formed by using code running on the Web server instead. The validation will

be performed only when the form is posted back to the server.

 If you want, you can suppress client-side validation and force all checks to be per-

formed at the server. To do this, set the EnableClientScript property of the validation

control to False. You might fi nd it useful to do this under certain circumstances, such as

those involving custom validations (by using the CustomValidator control) that are com-

plex or require access to data that is available only on the server. The CustomValidator
control also has a ServerValidate event that can be used to perform additional valida-

tion explicitly on the server, even if EnableClientScript is set to True.

594 Part VI Building Web Applications

 You have seen how validation controls can validate the data that the user enters, but

the error message display is not very pretty. In the following exercise, you will use a

ValidationSummary control to change the way that the error information is presented to

the user.

Add a ValidationSummary control

1. In the Code and Text Editor window, click anywhere in the HTML code for the

RequiredFieldValidator1 control. In the Properties window, set the Text property to *.

If you set the Text property of a validation control, the corresponding text value is

 displayed on the form rather than the error message. (If no value is specifi ed for the

Text property, the value of the ErrorMessage property is displayed.)

2. Modify the Style property of the RequiredFieldValidator1 control to position it to the

right of the First Name text box, as shown in bold type here:

<asp:RequiredFieldValidator ID=”RequiredFieldValidator1” ...
 Style=”position: absolute; left: 400px; top: 106px”></asp:RequiredFieldValidator>

Now, if a validation error occurs, the user will see a red asterisk appear next to the text

box with the error.

3. Click anywhere in the HTML code for the RequiredFieldValidator2 control, set its Text
property to *, and then change the Style to move it to the right of the Last Name text

box.

<asp:RequiredFieldValidator ID=”RequiredFieldValidator2” ...
 Style=”position: absolute; left: 744px; top: 106px”></asp:RequiredFieldValidator>

4. Click anywhere in the HTML code for the RequiredFieldValidator3 control, set its

Text property to *, and then change the Style property to move it to the right of the

Employee Id text box.

<asp:RequiredFieldValidator ID=”RequiredFieldValidator3” ...
 Style=”position: absolute; left: 400px; top: 172px”></asp:RequiredFieldValidator>

5. Click anywhere in the HTML code for the RangeValidator1 control, set its Text property

to *, and then change the Style property to move it to the right of the Employee Id text

box.

<asp:RangeValidator ID=”RangeValidator1” ...
 Style=”position: absolute; left: 400px; top: 172px”></asp:RangeValidator>

6. Click the Design button. From the Toolbox, add a ValidationSummary control to the

form.

7. Click the Source button, locate the ValidationSummary control toward the end of the

fi le, and add the following Style property to place it in the space above the button

 controls and to the right of the radio buttons.

Add a ValidationSummary controly

 Chapter 28 Understanding Web Forms Validation Controls 595

<asp:ValidationSummary ID=”ValidationSummary1” ...
 Style=”position: absolute; left: 300px; top: 260px” />

 A ValidationSummary control displays the ErrorMessage values for all of the validation

controls on the Web form.

8. In the Properties window, verify that the ShowSummary property for the

ValidationSummary1 control is set to True.

9. Run the Web form. When the form appears in Internet Explorer, leave the First Name,

Last Name, and Employee Id text boxes blank, and then click Save.

 Red asterisks appear next to each of the text boxes, and the corresponding error

 messages are displayed in the ValidationSummary control at the bottom of the form.

10. Enter a fi rst name and a last name, and then type AAA in the Employee Id text box.

 As you move from text box to text box, the asterisks disappear from the First Name and

Last Name text boxes, but an asterisk remains next to the Employee Id text box.

11. Click Save.

 The error message displayed by the ValidationSummary control changes.

12. Type 101 in the Employee Id text box, and then click Save.

 All error messages and asterisks disappear, and a summary of the data you entered

 appears in the InfoLabel control as before.

13. Close the form, and return to Visual Studio 2008.

596 Part VI Building Web Applications
Dynamic HTML and Error Messages
 If you are viewing the page with a browser that supports dynamic HTML, you can dis-

play the validation summary data in a message box in addition to or rather than on the

Web form. To do this, set the ShowMessageBox property of the ValidationSummary

control to True. At run time, if any validation errors occur, the error messages will be

displayed in a message box. If the Web browser does not support dynamic HTML, the

value of the ShowMessageBox property is ignored (it defaults to False).

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 29.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 28 Quick Reference
 To Do this

 Perform server-side validation of

user input

Use events belonging to server controls, for example, the

TextChanged event of the TextBox control.

 Perform client-side validation of

user input

Use a validation control. Set the ControlToValidate property to the

control to be validated, and set the ErrorMessage property to an

error message to be displayed. Verify that the EnableClientScript
property is set to True.

 Force the user to enter a value in a

text box

Use a RequiredFieldValidator control.

 Check the type and range of data

values entered into a text box

Use a RangeValidator control. Set the Type, MaximumValue, and

MinimumValue properties as required.

 Display a summary of validation error

messages

Use a ValidationSummary control. Verify that the ShowSummary

property is set to True. Set the ShowMessageBox property to True

if you want browsers that support dynamic HTML to display the

error messages in a message box.

Chapter 29

Protecting a Web Site and Accessing
Data with Web Forms

 After completing this chapter, you will be able to:

 Restrict access to a Web site by using Microsoft ASP.NET Login controls and

Forms-based authentication.

 Create Web forms that present data from a database using a GridView control.

 Build Web applications that need to display potentially large volumes of data while

minimizing resource use.

 Update a database from a Web form.

 Build applications that can pass data between Web forms.

 In the previous two chapters, you have seen how to build a Web site that enables the user to

enter information and validate the data that was entered. You’ve also seen in earlier chapters

how to build a non-Web-based application that displays and updates data from a database.

In this chapter, you’ll learn about creating Web applications that display data from a database

and that can update the database with any changes made by the user. You will see how to do

this in an effi cient manner that minimizes use of shared resources, such as the network and

the database.

 Security is always an important issue, especially when building applications that can be

 accessed over the Internet, when a Web application accesses sensitive resources such as

your company’s databases. Therefore, you will start by learning how to confi gure a Web

forms application to use Forms-based security to verify the identity of the user.

Managing Security
 Applications built by using the Microsoft .NET Framework have a range of mechanisms

 available for ensuring that the users who run those applications have the appropriate user

rights. Some of the techniques rely on authenticating users based on some form of identifi er

and password, whereas others are based on the integrated security features of the Microsoft

Windows operating system. If you are creating a Web application that will be accessed over

the Internet, using Windows security is probably not an option—users are unlikely to be

members of any Windows domain recognized by the Web application and might be running
 597

598 Part VI Building Web Applications

an operating system other than Windows, such as UNIX. Therefore, the best option to use in

this environment is Forms-based security.

Understanding Forms-Based Security
 With Forms-based security, you can verify the identity of a user by displaying a login form

that prompts the user for an ID and a password. After the user has been authenticated, the

various Web forms that make up the application can be accessed, and the user’s security

credentials can be examined by the code running in any page if additional authorization is

needed. (A user might be able to log in to the system but might not have access to every

part of the application.)

 To use ASP.NET Forms-based security, you must confi gure the Web application by making

some changes to the web.confi g fi le, and you must also supply a login form to validate the

user. This login form will be displayed whenever the user tries to gain access to any page in

the application if the user has not already been validated. The user will be able to proceed to

the requested page only if the logic in the login form successfully verifi es the user’s identity.

Important To the uninitiated, it might seem that ASP.NET Forms-based security is excessive. It’s

not. Don’t be tempted to simply create a login form that acts as an entry point to your

application and assume that users will always access your application through it. Browsers can

cache forms and URLs locally on users’ computers. Another user might be able to gain access to

the browser cache depending on how the computer itself is confi gured, fi nd the URLs of the

sensitive parts of your application, and navigate directly to them, bypassing your login form. You

have control over your Web server (hopefully), but you have almost no control over the user’s

computer. The ASP.NET Forms-based mechanism is robust, and assuming that your Web server is

well protected, it should be adequate for most of your applications.

Implementing Forms-Based Security
In the fi rst set of exercises in this chapter, you will create and confi gure a Web application

that implements Forms-based security. The application will ultimately enable a user to view

and modify customer information in the Northwind database.

Create the Northwind Web site

1. Start Microsoft Visual Studio 2008 if it is not already running.

2. If you are using Visual Studio 2008 Professional Edition or Enterprise Edition, on the File

menu, point to New, and then click Web Site.

3. If you are using Microsoft Visual Web Developer 2008 Express Edition, on the File

menu, click New Web Site.

Create the Northwind Web site

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 599

4. In the New Web Site dialog box, click the ASP.NET Web Site template. Select File System

in the Location drop-down list box, and specify the \Microsoft Press\Visual CSharp Step

By Step\Chapter 29\Northwind folder under your Documents folder. Set the Language

to Visual C#, and then click OK.

5. In Solution Explorer, right-click Default.aspx, click Rename, and rename the form to

CustomerData.aspx.

6. Right-click CustomerData.aspx, and click Set As Start Page.

7. In the Code and Text Editor window displaying the HTML source code for the Web form,

click the Design button.

8. Using the Toolbox, add a Label control from the Standard category to the Web form.

Set the Text property of the label to This form will be implemented later.

 In the next exercises, you will build a login form to authenticate the user and confi gure

Forms-based security for the Web application. When confi gured to use Forms-based security,

the ASP.NET runtime will redirect to the login form attempts made by an unauthenticated

user to access the application.

 Implementing a login form for Forms-based security is such a common task that Microsoft

has implemented a set of Login controls to simplify matters. You will use one of these

 controls now.

Build the login form

1. On the Website menu, click Add New Item.

2. In the Add New Item dialog box, ensure that the Web Form template is selected, and

type LoginForm.aspx for the name. Verify that the Language drop-down list box is set

to Visual C#, the Place code in separate fi le check box is selected, and the Select master
page check box is cleared, and then click Add to create the form.

 The new Web form is created, and the HTML code for the form is displayed in the Code
and Text Editor window.

3. Click the Design button to display LoginForm.aspx in the Design View window.

4. In the Properties window, set the Title property of the DOCUMENT object to Northwind
Traders – Log In.

5. In the Toolbox, expand the Login category. Add a Login control to the Web form.

 The Login control is a composite control that is composed of several labels, two text

boxes for the user to type a name and a password, the Remember me next time check

box, and a button to click to log in. You can confi gure most of these items by using the

Properties window for this control, and you can also modify the style of the control.

Build the login form

600 Part VI Building Web Applications

6. In the Common Login Tasks menu displayed by the Login control, click Auto Format on

the Login Tasks menu that appears.

 Tip If the Common Login Tasks menu is not displayed, click the Login control, and then

click the smart tag icon on the top edge of the control, near the right-hand corner.

 The Auto Format dialog box appears. You can use this dialog box to change the look

and feel of the Login control by selecting a predefi ned scheme. You can also defi ne

your own layout by creating a template using the Convert to Template command on the

Common Login Tasks menu for the Login control.

7. In the Auto Format dialog box, click the Classic scheme, and then click OK. Click the

smart tag icon on the Login control to hide the Login Tasks menu.

8. In the Properties window, change the properties of the Login control by using the

 values in the following table.

 Property Value

 DisplayRememberMe False

 FailureText Invalid User Name or Password. Please enter a valid User

Name and Password.

 TitleText Northwind Traders – Log In

 DestinationPageUrl ~/CustomerData.aspx

 The Login control should look like this:

 When the user clicks the Log In button, the user must be authenticated. If the user name

and password are valid, the user should be allowed to proceed to the form specifi ed by the

DestinationPageUrl property; otherwise, the error message stored in the FailureText property

of the Login control should be displayed and the user prompted to log in again. How do you

perform these tasks? You have at least two options:

 Write code that handles the Authenticate event for the Login control. This event is

raised whenever the user clicks the Log In button. You can examine the values in the

UserName and Password properties, and if they are valid, allow the user to proceed to

the page identifi ed by the DestinationPageUrl property. This strategy is highly customi-

zable but requires that you maintain your own secure list of user names and passwords

to authenticate against.

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 601

 Use the built-in features of Visual Studio 2008 with the ASP.NET Web Site

Administration Tool to manage user names and passwords, and let the Login control

perform its default processing to validate users when the user clicks the Log In button.

The ASP.NET Web Site Administration Tool maintains its own database of user names

and passwords, and it provides a wizard to help you add users to your Web site.

You will use the second option in the following exercise. (You can investigate the fi rst option

on your own time.)

Confi gure Web site security, and activate Forms-based security

1. On the Website menu, click ASP.NET Confi guration.

 The ASP.NET Confi guration command opens Windows Internet Explorer and starts a

Web application called the ASP.NET Web Site Administration Tool, which uses its own

instance of the ASP.NET Development Server, independent from your Web application.

 By using this tool, you can add and manage users for your Web site, specify application

settings that you want to be stored in the application confi guration fi le, and specify

how security information such as user names and passwords are stored. By default, the

ASP.NET Web Site Administration Tool stores security information in a local Microsoft

SQL Server database called ASPNETDB.MDF that it creates in the App_Data folder of

your Web site. You can confi gure the ASP.NET Web Site Administration Tool to store

security information elsewhere, but that is beyond the scope of this book.

2. In the ASP.NET Web Site Administration Tool, click the Security tab.

Confi gure Web site security, and activate Forms-based security

602 Part VI Building Web Applications

 The Security page appears. You can use this page to manage users, specify the

 authentication mechanism that the Web site uses, defi ne roles for users (roles are a

convenient mechanism for assigning rights to groups of users), and specify access rules

for controlling access to the Web site.

 Note The fi rst time you click the Security tab, the ASP.NET Web Site Administrator Tool

creates the ASPNETDB.MDF database, so it might take a little time for Internet Explorer to

display the next page.

3. In the Users section, click the Select authentication type link.

 A new page appears, asking how users will access your Web site. You have two options

available: From the internet and From a local network. The From a local network option

is selected by default. This option confi gures the Web site to use Windows authentica-

tion; all users must be members of a Windows domain that your Web site can access.

The Northwind Web site will be available over the Internet, so this option is probably

not very useful.

4. Click From the internet, and then click Done.

 This option confi gures the application to use Forms-based security. You will make use

of the login form you created in the preceding exercise to prompt the user for a name

and password.

 You return to the Security page.

5. In the Users section, notice that the number of existing users that can access your Web

site is currently zero. Click the Create User link.

6. In the Create User page, add a new user with the values shown in the following table.

 Prompt Response

 User Name John

 Password Pa$$w9rd

 Confi rm Password Pa$$w9rd

 E-mail john@northwindtraders.com

 Security Question What was the name of your fi rst pet

 Security Answer Thomas

Note You must supply values for all fi elds in this screen. The E-mail, Security Question,

and Security Answer fi elds are used by the PasswordRecovery control to recover or reset a

user’s password. The PasswordRecovery control is available in the Login category of the

Toolbar, and you can add it to a login page to provide assistance to a user who has

forgotten his or her password.

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 603

7. Ensure that the Active User box is selected, and then click Create User.

 The message “Complete. Your account has been successfully created” appears on a

new page.

8. Click Continue.

 The Create User page reappears so that you can add more users.

9. Click Back to return to the Security page. Verify that the number of existing users is

now set to 1.

 Note You can use the Manage users link on this page to change the e-mail addresses of

users and add descriptions, and remove existing users. You can let users change their pass-

words and recover their passwords if they forget them by adding the ChangePassword and

PasswordRecovery controls to the login page of the Web site. For more information, see

the topic “Walkthough: Creating a Web Site with Membership and User Login” in the

Microsoft Visual Studio 2008 documentation.

10. In the Access Rules section, click Create access rules.

 The Add New Access Rule page appears. You use this page to specify which users can

access which folders in the Web site.

11. Under Select a directory for this rule, ensure that the Northwind folder is selected by

clicking it.

12. Under Rule applies to, ensure that user is selected, and type John.

13. Under Permission, click Allow, and then click OK.

 This rule grants John access to the Web site. The Security screen reappears.

14. In the Access Rules section, click Create access rules again.

15. On the Add New Access Rule page, under Select a directory for this rule, ensure that

the Northwind folder is selected. Under Rule applies to, click Anonymous users. Under

Permission, ensure that Deny is selected, and then click OK.

 This rule ensures that users who have not logged in will not be able to access the Web

site. The Security screen reappears.

16. Close the Internet Explorer window displaying the ASP.NET Web Site Administration

Tool, and return to Visual Studio 2008.

17. Click the Refresh button on the Solution Explorer toolbar.

 The database fi le ASPNETDB.MDF appears in the App_Data folder.

18. Double-click the web.confi g fi le in the project folder to display it in the Code and Text
Editor window.

604 Part VI Building Web Applications

 This fi le was updated by the ASP.NET Web Site Administration Tool and should contain

an <authorization> and an <authentication> element in the <web.confi g> section that

look like this:

<system.web>
 ...
 <authorization>
 <allow users=”John” />
 <deny users=”?” />
 </authorization>
 ...
 <authentication mode=”Forms” />
 ...
</system.web>

 The <authorization> element specifi es the users who are granted and denied

access to the Web site (“?” indicates anonymous users). The mode attribute of the

 <authentication> element indicates that the Web site uses Forms-based authentication.

19. Modify the <authentication> element, replace the terminating delimiter (/>) with an

ordinary closing delimiter (>), and add a <forms> child element, as shown here in bold

type. Make sure you add a closing </authentication> element:

<authentication mode=”Forms”>
 <forms loginUrl=”LoginForm.aspx” timeout=”5”
 cookieless=”AutoDetect” protection=”All” />
</authentication>

 The <forms> element confi gures the parameters for Forms-based authentication. The

attributes shown here specify that if an unauthenticated user attempts to gain access to

any page in the Web site, the user will be redirected to the login page, LoginForm.aspx.

If the user is inactive for 5 minutes, she will have to log in again when next accessing a

page in the Web site.

 In many Web sites that use Forms-based authentication, information about the user

is stored in a cookie on the user’s computer. However, most browsers allow users to

specify that they don’t want to use cookies. (Cookies can be abused by malicious Web

sites and are frequently considered a security risk.) By inserting cookieless=”AutoDetect”,
you can specify that the Web site can use cookies if the user’s browser has not disabled

them; otherwise, the user information is passed back and forth between the Web site

and the user’s computer as part of each request. The user information includes the user

name and the password. Obviously, you don’t want this to be clearly visible to every-

one. You can use the protection attribute to encrypt this information, which is what this

example does.

20. On the Debug menu, click Start Without Debugging.

 Internet Explorer opens. The start page for the application is CustomerData.aspx, but

because you have not yet logged in you are directed to LoginForm.aspx instead.

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 605
 21. Type a random user name and password, and then click Log In.

 The Login page reappears, displaying the error message “Invalid User Name or

Password. Please enter a valid User Name and Password.”

 22. In the User Name box, type John; in the Password box, type Pa$$w9rd; and then click

Log In.

 The CustomerData page appears, displaying the message “This form will be

 implemented later.”

 23. Close Internet Explorer, and return to Visual Studio 2008.

Querying and Displaying Data
 Now that you can control access to your application, you can turn your attention to querying

and maintaining data. You will use Web Server data controls to connect to the database,

query data, and update data.

Understanding the Web Forms GridView Control
 When you looked at presenting data from a database in a WPF application in Chapter 26,

“Displaying and Editing Data by Using Data Binding,” you learned how to display data in a

tabular manner by using a ListView control. ASP.NET provides a different set of controls from

those available with WPF, and one control that is very useful for displaying and managing

data in a Web form is the GridView control. This control is specifi cally designed to operate

in a network bandwidth–constrained environment. In a Web forms application, it is very

likely that the client application (or the browser) will be remote from the server holding the

database. It is imperative that you use network bandwidth wisely (this has been stated sev-

eral times already, but it is very important and worth repeating), and you should not waste

resources retrieving vast amounts of data that the user does not actually want to see. The

GridView control supports paging, which you can employ to fetch data on demand as the

user scrolls up and down through the data.

 Note Do not confuse the ASP.NET Web Forms GridView control used for displaying data

retrieved from a database with the WPF GridView control that you use for defi ning the layout of

controls in a WPF window. They are different controls that just happen to have the same name.

 The information in a Web forms GridView control is presented in a grid of read-only labels,

rendered as an HTML table in the browser. The properties of the GridView control enable the

user to enter edit mode, which changes a selected row into a set of text boxes that the user

can use to modify the data that is presented.

606 Part VI Building Web Applications

 To save database connection resources, the GridView control is designed to operate while it

is disconnected from the database. You can create a data source to connect to a database,

fetch data and display it in a GridView control, and then disconnect from the database. When

the user wants to save any changes, the application can reconnect to the database and

 submit the changes. You will use this technique in the exercises in this chapter.

Displaying Customer and Order History Information
 In the following exercises, you will build a Web application that displays in a GridView control

on a Web form the details of the customers recorded in the Northwind database. You will

provide functionality enabling the user to select a customer and display the order history for

that customer. To do this, you will make use of data binding by using a LINQ data source.

 Note This exercise assumes that you have completed the exercises in Chapter 25, “Querying

Information in a Database,” and Chapter 26, “Displaying and Editing Data by Using Data Binding,”

on your computer.

Create a data source for retrieving customer information

1. On the Website menu, click Add New Item.

2. In the Add New Item dialog box, click the LINQ to SQL Classes template, type Customer.
dbml in the Name text box, select Visual C# in the Language drop-down list, and then

click Add.

3. In the Microsoft Visual Studio message box, click Yes to place the Linq to SQL fi le in the

App_Code folder.

4. If you are using Visual Studio 2008 Professional Edition or Enterprise Edition, on the

View menu, click Server Explorer.

5. If you are using Visual Web Developer 2008 Express Edition, perform the following

tasks:

5.1. On the View menu, click Database Explorer.

5.2. In the Database Explorer window, right-click Data Connections, and then click Add
Connection.

5.3. In the Add Connection dialog box, click Change.

5.4. In the Choose Data Source dialog box, click the Microsoft SQL Server Database
File data source, make sure the .NET Framework Data Provider for SQL Server is
selected as the data provider, and then click OK.

Create a data source for retrieving customer information

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 607

Note In contrast with Visual C# 2008 Express Edition, you do not have to connect directly

to a database fi le when creating a data source with Visual Web Developer 2008 Express

Edition. If you prefer, you can reattach the Northwind database to SQL Server and then

connect by using the Microsoft SQL Server data source. For more information about

attaching a database, see the sp_attach_db command in the MSDN Library for Visual

Studio 2008.

5.5. In the Add Connection dialog box, in the Database fi le name box, click Browse.

5.6. In the Select SQL Server Database File dialog box, move to the folder C:\Program

Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data, click the Northwind database

fi le, and then click Open.

5.7. Select the Use Windows Authentication option to log on to the server, and then

click OK.

6. In Server Explorer or Database Explorer, expand the new data connection

(YourComputer\sqlexpress.Northwind.dbo or Northwind.mdf), and then expand Tables.

7. Click the Customers table, and drag it onto the Object Relational Designer window.

 Note If you are using Visual Web Developer 2008 Express Edition, a message box

appears, asking you whether you want to add the data fi le for the Northwind database to

your project. Click No.

8. On the File menu, click Save All.

Lay out the CustomerData Web form

1. Display the CustomerData.aspx Web form in the Design View window. Delete the label

displaying the text “This form will be implemented later.”

2. In the Properties window, set the Title property of the DOCUMENT object to Northwind
Traders – Customers.

3. In the Toolbox, expand the Data category. Add a LinqDataSource control to the Web

form.

 A control called LinqDataSource1 is added to the Web form.

 Note Although the LinqDataSource control appears on the Web form at design time, it

will not be visible when the Web form runs.

Lay out the CustomerData Web form

608 Part VI Building Web Applications

4. Using the Properties window, change the (ID) property of LinqDataSource1 to

CustomerInfoSource.

5. Select the CustomerInfoSource control on the Web form. Click the smart tag icon to

display the Common LinqDataSource Tasks menu, and then click the Confi gure Data
Source link.

 The Confi gure Data Source Wizard appears.

6. On the Choose a Context Object page, ensure that CustomerDataContext is selected in

the Choose your context object drop-down list box, and then click Next.

7. On the Confi gure Data Selection page, in the Table drop-down list box, select the

Customers table. In the Select list box, select the * box, and then click Finish.

8. On the Common LinqDataSource Tasks menu, select the Enable Update box, but leave

the Enable Insert and Enable Delete boxes clear.

 The Enable Update check box enables the data source to generate the appropriate

SQL UPDATE statements for modifying the data in the Customers table. For reasons of

referential integrity, the Web form in this application will not allow the user to create or

delete customers.

 Note If you don’t select any of these options, the data retrieved through the data source

is effectively read-only.

9. In the Toolbox, click the GridView control and drag it onto the form.

 A GridView is added to the form and displays placeholder data.

10. Using the Properties window, change the (ID) property of the GridView control to

CustomerGrid, and set the Caption property to Northwind Traders Customers.

11. Click the smart tag icon on the top edge of the GridView control, near the right-hand

corner. On the Common GridView Tasks menu, click the Auto Format link.

12. In the AutoFormat dialog box, select the Classic scheme, and then click OK.

 Tip If you don’t like any of the predefi ned formats available in the AutoFormat dialog box,

you can change the styles of the elements of a GridView control manually by using the

properties in the Styles section in the Properties window.

13. In the Properties window, set the DataSourceID property of the GridView control to

CustomerInfoSource.

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 609

The column headings for the Customers table appear in the GridView control on the

screen.

14. Click the Source button at the bottom of the Design View window to display the HTML

source code for the CustomerData.aspx page.

 Notice that the HTML code for the GridView control sets the DataSourceID property of

the control to CustomerInfoSource. The control also contains a <columns> element with

boundfi eld controls defi ning the properties of each column displayed. The DataField

property of each boundfi eld object specifi es the name of the property the object is

bound to in the data source. The HeaderText property is the string displayed in the

column header for the column. Currently, the HeaderText and DataField values for each

column are the same.

15. Change the values of the HeaderText property for the boundfi eld objects using the

 information in the following table.

 DataField Value HeaderText Value

 CustomerID Customer ID

 CompanyName Company

 ContactName Contact

 ContactTitle Title

 Address Address

 City City

 Region Region

 PostalCode Postal Code

 Country Country

 Phone Phone

 Fax Fax

Test the CustomerData form

1. On the Debug menu, click Start Without Debugging.

 Internet Explorer starts and displays the Northwind Traders - Login page.

2. Log in as John using the password Pa$$w9rd.

Test the CustomerData form

610 Part VI Building Web Applications

 The CustomerData Web form appears, displaying the details of every customer in the

database:

 Notice that the page is currently read-only; you cannot modify any of the details

 displayed. You will enhance the Web form later in this chapter to enable the user to

make changes.

3. Close Internet Explorer when you have fi nished browsing the data, and return to Visual

Studio 2008.

Web Site Security and SQL Server
 When you use the ASP.NET Development Server to run an application that uses Forms-

based security, it executes in the context of the account you are using to run Visual

Studio 2008. Assuming you used the same account to create the Northwind database,

the Web application should have no problems accessing the database.

 However, if you deploy the Web site to a Microsoft Internet Information Services (IIS)

server, the situation changes. IIS runs applications that use Forms-based security by us-

ing the NETWORK SERVICE account under the Windows Vista operating system or the

ASPNET account under Windows XP. This account has very few user rights by default,

for security purposes. In particular, it will not be able to connect to SQL Server Express

and query the Northwind database. Therefore, you will need to grant the NETWORK

SERVICE account (or the ASPNET account) login access to SQL Server Express and add

it as a user to the Northwind database. For more details, see the sp_grantlogin and

sp_grantdbaccess commands in the MSDN Library for Visual Studio 2008.

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 611

Paging Data
Fetching the details of every customer is very useful, but suppose there are a large number

of rows in the Customers table. It is highly unlikely that a user would actively want to browse

thousands of rows, so generating a long page displaying them all would be a waste of time

and network bandwidth. Instead, it would be far better to display data in chunks and enable

the user to page through that data. This is what you will do in the following set of exercises.

Modify the GridView control to use paging

1. Click the Design button to display the CustomerData.aspx Web form in the Design View

window, and then click the CustomerGrid control.

2. In the Properties window, set the AllowPaging property to True.

A footer is added to the CustomerGrid control containing a pair of page numbers. This

footer is referred to as the pager. The style shown for the footer is the default format,

composed of page numbers that the user can click.

3. Expand the PagerSettings composite property. You can use the values in this property

to customize the format of the page navigation links. You can specify page naviga-

tion links in two ways: as page numbers or as next/previous page arrows. Set the Mode

property to NumericFirstLast to display page numbers with the fi rst and last page

arrows displayed to enable the user to move quickly to the start or end of the data.

Set the PageButtonCount subproperty to 5; this will cause page links to be displayed

in groups of fi ve. (You will see what this does when you run the Web application in a

moment.)

 If you want to use next/previous page arrows, you can change the default text dis-

played (“>” and “<”) by modifying the values of the NextPageText and PreviousPageText
properties. Similarly, you can change the text displayed for the fi rst and last page links

by editing the FirstPageText and LastPageText properties. Notice that the values in these

properties require encoding as HTML characters; otherwise, they will not be displayed

properly (for example, the “>” symbol must be specifi ed as “>”). If you prefer, you

can also specify the name of an image fi le in the FirstPageImageUrl, LastPageImageUrl,
PreviousPageImageUrl, and NextPageImageUrl properties. The page navigation links

will appear as buttons containing these images if supported by the browser.

4. In the Properties window, set the PageSize property to 8.

This setting causes the CustomerGrid to fetch and display data in eight-row chunks.

5. Expand the PagerStyle composite property. You can use this property to specify how

the pager should be formatted. Set the HorizontalAlign subproperty to Left.

 The numbers in the pager move to the left margin in the CustomerGrid control.

Modify the GridView control to use pagingw

612 Part VI Building Web Applications

E

6. Run the Web application, and log in as John using the password Pa$$w9rd.

After you log in, the fi rst eight rows of data and a set of page links are displayed on the

CustomerData Web form. Page numbers 1, 2, 3, 4, and 5 are displayed, together with

“>>” to move directly to the last page. Clicking the ellipsis (…) link displays the next fi ve

page numbers together with a “<<” link for moving directly back to the fi rst page. An

additional ellipsis (…) link provides access to the previous fi ve pages.

7. Click the links at the bottom of the grid to move from page to page.

8. Close Internet Explorer, and return to Visual Studio 2008 when you have fi nished

browsing the data.

Note The GridView control provides the AllowSorting property. This property is set to

False by default. If you set this property to True, the user can sort the data by the values in

any column by clicking the column header. Whenever the user clicks a column header, the

LinqDataSource control submits a SQL SELECT statement that fetches the fi rst block of

rows in ascending order. If the user clicks the same column header again, the data for the

fi nal block is retrieved and displayed in descending order. If the user repeatedly clicks

column headers, the Web form will send a SQL SELECT statement to the database for

each click.

diting Data
 You have seen how to use a GridView control to fetch and browse data. The following set of

exercises shows you how to modify data and create new rows.

Updating Rows Through a GridView Control
By using the GridView control, you can add hyperlinks to the grid to indicate that a command

should be performed. You can add your own custom hyperlinks and commands, but Visual

Studio 2008 supplies some predefi ned hyperlinks for inserting, updating, and deleting data.

In the following exercise, you will add update functionality to the GridView control by adding

an Edit hyperlink to the grid. When the user clicks the Edit hyperlink, the row changes into a

set of TextBox controls. The user can save the changes or discard them. This is achieved by

using two additional automatically created hyperlinks labeled Update and Cancel.

Create the Edit, Update, and Cancel buttons

1. Display the CustomerData.aspx form in the Design View window. Click the smart tag for

the CustomerGrid control to display the Common GridView Tasks menu, and then select

Enable Editing.

 An Edit hyperlink is added to each row in the GridView control.

Create the Edit, t Update, and Cancel buttonsl

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 613

2. Click the Source button to display the HTML source code for the Web form. Locate the

<Columns> collection for the CustomerGrid control, and notice that Visual Studio has

added a commandfi eld object. The ShowEditButton property is set to True, like this:

<asp:GridView ID=”CustomerGrid” runat=”server” ...>
 ...
 <Columns>
 <asp:commandfield ShowEditButton=”True” ></asp:commandfield>
 ...
 </Columns>
 ...
</asp:GridView>

 The ShowEditButton property determines whether the commandfi eld object displays

the Edit hyperlink. You can also activate delete and insert functionality by setting

the ShowDeleteButton and ShowInsertButton properties to True, which cause further

 hyperlinks to be displayed.

3. Set the EditText property and the ButtonType property for the commandfi eld object as

shown here in bold type:

<asp:commandfield ShowEditButton=”True” EditText=”Modify” ButtonType=”Button”>
</asp:commandfield>

 These properties change the appearance of the Edit hyperlink. The EditText property

specifi es the text displayed by the hyperlink, and the ButtonType property changes the

hyperlink to be displayed as a button instead of as a hyperlink. If you activate the in-

sert and delete hyperlinks for the commandfi eld object, you can change the InsertText
and DeleteText properties to customize the text displayed by these links. However, all

links share the same ButtonType value—either they all appear as hyperlinks or they all

 appear as buttons.

4. Run the application. Log in, and then click the Modify button on the fi rst row displayed

on the CustomerData form.

 The fi rst row changes into a collection of TextBox controls, and the Modify button is

replaced with an Update button and a Cancel button.

 Note The CustomerID column remains as a label. This is because this column is the

primary key in the Customers table. You should not be able to modify primary key values

in a database; otherwise, you risk breaking the referential integrity between tables.

5. Change the data in the Contact and Title columns, and then click Update.

 The database is updated, the row reverts to a set of labels, the Modify button reap-

pears, and the new data is displayed in the row. Behind the scenes, the GridView control

changes the data in the LINQ data source and then calls the SubmitChanges method of

the CustomerDataContext object to send the changes to the database.

6. Close Internet Explorer, and return to Visual Studio 2008.

614 Part VI Building Web Applications
 The form currently performs no validation. If you blank out the data in the Company column

for a customer and then click Update, the LINQ data source generates a SQL exception be-

cause this column does not allow null values in the database. The message that is displayed is

not very user-friendly (although a developer will fi nd it very useful). If a Web form generates

an exception, you can arrange for a more friendly message to be displayed by redirecting the

user to another page. Set the ErrorPage attribute to the @Page directive in the form’s source

defi nition to redirect the user when errors occur:

<%@ Page ... ErrorPage=”ErrorPage.aspx” %>

 You can display a more comforting message to the user on this page. Additionally,

you can validate the data before sending it to the database by handling the Updating

event in the LINQ data source object. The event handler for this method takes a

LinqDataSourceUpdateEventArgs parameter that contains the original values and the new

values for the row. Your code can scrutinize the new values, and if they are invalid, your code

can set the Cancel property of the LinqDataSourceUpdateEventArgs parameter to false to

 indicate that the data source should not attempt to update the database.

 Also, notice that the database is updated as soon as the user clicks the Update button. This

is the default functionality implemented by a GridView control that is bound to a LINQ data

source and is probably the most suitable mechanism for building interactive Web forms. If

you want to modify the update behavior (for example, so that the GridView control will store

multiple updates locally and then submit them as a single batch), you can implement your

own custom mechanism. However, the details for doing this are outside the scope of this

book.

Navigating Between Forms
 A key aspect of many Web Forms applications is the ability to navigate from one form to

another by clicking a hyperlink or button. In addition, you often need to pass information

between forms. In the CustomerData Web form, it would be useful to be able to click a cus-

tomer and display another form showing the order history for that customer. This is what you

will do in the exercises in this section.

 In this section, you will create a new Web form for displaying order history information. You

will use a GridView control to display the data, but you will populate the data by executing a

SQL Server stored procedure rather than querying a table. The Northwind database contains

a stored procedure called CustOrderHist. This stored procedure takes a customer ID as a pa-

rameter and returns a result set containing the name and quantity of each product the cus-

tomer has ordered. When the user selects a customer in the CustomerData Web form, you

must pass the value in the CustomerID column to this new form.

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 615

The fi rst step, therefore, is to modify the CustomerData Web form to enable the user to

 select a customer.

Modify the CustomerData Web form

1. Return to the Code and Text Editor window displaying the HTML source code for the

CustomerData Web form.

2. Change the defi nition of the boundfi eld element displaying the customer ID to a

HyperLinkField, as shown here in bold type:

<asp:HyperLinkField DataField=”CustomerID” ...></asp:HyperLinkField>

 The data in this column in the GridView control will be displayed as a hyperlink rather

than as a label. The user can click this hyperlink. The following steps set properties that

specify the actions that occur when this happens.

3. Change the DataField property of the control to a DataTextField property, as shown in

bold type here:

<asp:HyperLinkField DataTextField=”CustomerID” ...></asp:HyperLinkField>

The HyperLinkField control does not have a DataField property. The DataTextField

 specifi es the property from the data source to which the hyperlink binds.

4. Remove the ReadOnly property of the control, and add the Target,
DataNavigateUrlFields, and DataNavigateUrlFormatString properties shown in bold

type here:

<asp:HyperLinkField DataTextField=”CustomerID” HeaderText=”Customer ID”
 Target=”_self” DataNavigateUrlFields=”CustomerID”
 DataNavigateUrlFormatString=”~\OrderHistory.aspx?CustomerID={0}”
 SortExpression=”CustomerID”>
</asp:HyperLinkField>

The DataNavigateUrlFormatString property specifi es the address to which the Web ap-

plication should move when the user clicks the hyperlink. In this example, the applica-

tion navigates to the OrderHistory.aspx form (which you will create in the next exercise)

and includes a query string parameter containing a customer ID. This query string cur-

rently contains a placeholder. The DataNavigateUrlFields property determines the value

that should be used for this placeholder—the data in the CustomerID fi eld for the cur-

rent row in the GridView control. The Target property specifi es where the OrderHistory.

aspx Web form should be displayed. The value _self causes ASP.NET to reuse the same

Internet Explorer window that is currently displaying the CustomerData form.

Note ASP.NET also provides the HyperLink control in the Standard category in the

Toolbox. When using this control, you can specify a URL to move to in its NavigateUrl
property. In addition, you can execute the Transfer method of the Server property of a

Web form if you want to transfer control from one Web form to another programmatically.

Modify the CustomerData Web form

616 Part VI Building Web Applications

 The next task is to create a data source that executes the CustOrderHist stored procedure in

the database. In the fi nal exercise in this chapter, you will see how to invoke the stored pro-

cedure by using the data source and pass the CustomerID parameter required by this stored

procedure.

Create a data source for retrieving customer order history information

1. On the Website menu, click Add New Item.

2. In the Add New Item dialog box, click the LINQ to SQL Classes template, type

OrderHistory.dbml in the Name text box, select Visual C# in the Language drop-down

list, and then click Add.

3. In the Microsoft Visual Studio message box, click Yes to place the Linq to SQL fi le in the

App_Code folder.

4. In Server Explorer (Visual Studio 2008) or Database Explorer (Visual Web Developer

2008 Express Edition), expand the data connection for the Northwind database

(YourComputer\sqlexpress.Northwind.dbo or Northwind.mdf), and then expand Stored
Procedures.

5. Click the CustOrderHist stored procedure, and drag it onto the Object Relational
Designer window.

 The stored procedure is added at the top of the right-hand pane of the Object
Relational Designer window.

6. On the File menu, click Save All.

 You can now construct the OrderHistory Web form that displays the order history for a

 customer using this data source.

Create the OrderHistory Web form

1. Display the CustomerData.aspx form in the Design View window. On the Website menu,

click Add New Item.

2. In the Add New Item dialog box , ensure that the Web Form template is selected, and

type OrderHistory.aspx for the name. Verify that the Language drop-down list box

is set to Visual C#, the Place code in separate fi le box is selected, and the Select master
page box is cleared, and then click Add to create the form.

 Note If the Add New Item dialog box does not display the Web Form template, make sure

that you have displayed the CustomerData.aspx form rather than the Object Relational
Designer in the Design View window.

3. Click the Design button to display OrderHistory.aspx in the Design View window.

Create a data source for retrieving customer order history information

Create the OrderHistory Web form

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 617

4. In the Properties window, set the Title property of the DOCUMENT object to Northwind
Traders – Orders for:.

5. From the Standard category in the Toolbox, add a Label control and a HyperLink control

to the Web form.

6. Using the Properties window, set the properties for the Label and HyperLink controls to

the values shown in the following table.

 Control Property Value

 Label1 ID OrderLabel

 Font-Name (expand the Font
property and select Name)

Arial Black

 Font-Size (in the Font property,

select Size)

X-Large

 Text Order History for:

 HyperLink1 Text Return to Customers

 NavigateUrl ~/CustomerData.aspx

7. In the Data category of the Toolbox, click the GridView control and drag it onto the

form. A GridView is added to the form and displays placeholder data.

8. Using the Properties window, set the (ID) property for the GridView control to

OrderGrid.

9. In the Design View window, click the OrderGrid control, and then click the smart tag to

display the Common GridView Tasks menu.

10. On the Common GridView Tasks menu, click the Auto Format link.

11. In the AutoFormat dialog box, select the Classic scheme, and then click OK.

 In this form, you are going to write code to bind the GridView control to the data

source. You will defi ne the columns in the GridView control manually.

12. On the Common GridView Tasks menu, click the Edit Columns link.

13. In the Fields dialog box, in the Available Fields list box, click BoundField, and then click

Add.

14. In the BoundField properties list box, set the HeaderText property to Product Name.

15. In the Available Fields list box, click BoundField, and then click Add again.

16. In the BoundField properties list box, set the HeaderText property of the new column

to Total, and set the DataFormatString property to {0:N0}. (Both the 0 characters are

zeros—this format displays the data as a number with no decimal places.) Expand the

618 Part VI Building Web Applications

ItemStyle property, and then set the HorizontalAlign property to Right (by convention,

numeric data is displayed right-justifi ed).

17. Clear the Auto-generate fi elds check box, and then click OK.

18. Click the Source button, and modify the body element to lay out the controls on the

form underneath one another, with some blank lines between them, as shown in bold

type here:

<body>
 <form id=”form1” runat=”server”>
 <div>
 <asp:Label ID=”OrderLabel” ...></asp:Label>

 <asp:HyperLink ID=”HyperLink1” ...></asp:HyperLink>

 <asp:GridView ID=”OrderGrid” ... >
 ...
 </asp:GridView>
 </div>
 </form>
</body>

 The fi nal task is to write some code that displays the customer ID on the form, bind the

GridView control and its columns to the OrderHistory data source, and then display the data.

Write code to bind the GridView control to the data source

1. In Solution Explorer, expand OrderHistory.aspx, and then double-click OrderHistory.

aspx.cs to display the C# code for the OrderHistory form in the Code and Text Editor
window.

2. In the Page_Load method, add the statement shown here in bold type:

protected void Page_Load(object sender, EventArgs e)
{
 string customerId = Request.QueryString[“CustomerID”];
}

 Remember that the OrderHistory form is invoked from the CustomerData form when

the user clicks the hyperlink control for one of the customers displayed in the GridView

control on that form. The hyperlink control specifi es a URL with a query string that

contains the selected customer ID. For example, if the user clicks the customer with the

ID “ALFKI,” the hyperlink opens the OrderHistory form with the query string value pair

“CustomerID=ALFKI”. The Request object of a Web form is a collection of the query

string value pairs passed in to the form. You can access the values either by number or

by name. The code you have just written retrieves the value of the pair with the name

CustomerID from the Request object and stores it in a local string variable.

Write code to bind the GridView control to the data sourcew

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 619

3. Add the code shown here in bold type to the Page_Load method:

protected void Page_Load(object sender, EventArgs e)
{
 string customerId = Request.QueryString[“CustomerID”];
 this.OrderLabel.Text += “ “ + customerId;
 this.Title += “ “ + customerId;
}

 These statements append the customer ID to the text displayed on the form and in the

title of the form.

4. Add the following statements to the Page_Load method:

protected void Page_Load(object sender, EventArgs e)
{
 ...
 OrderHistoryDataContext context = new OrderHistoryDataContext();
 var orderDetails = context.CustOrderHist(customerId);
 this.OrderGrid.DataSource = orderDetails;
}

 This code creates a new DataContext object using the OrderHistoryDataContext class.

The OrderHistoryDataContext class was generated by the Object Relational Designer
when you created a new data source based on the CustOrderHist stored procedure.

When you add a stored procedure to a DataContext type, the code generated by

the Object Relational Designer exposes the stored procedure by providing a method

with the same name. The second statement in the preceding code example calls the

CustOrderHist method, which in turn invokes the CustOrderHist stored procedure in the

Northwind database. The customerId variable is passed in as the parameter. The result

set generated by this stored procedure is used as the data source for the OrderGrid

control.

5. Append the code shown here to the end of the Page_Load method:

protected void Page_Load(object sender, EventArgs e)
{
 ...
 BoundField productName = this.OrderGrid.Columns[0] as BoundField;
 productName.DataField = “ProductName”;
 BoundField total = this.OrderGrid.Columns[1] as BoundField;
 total.DataField = “Total”;
 this.OrderGrid.DataBind();
}

 This block of code binds the two columns in the OrderGrid control to the correspond-

ing properties in the data source. Notice that you specify the properties by name, as a

string. The DataBind method of the OrderGrid control causes the data source to run the

stored procedure and generate the result set, displaying the results in the columns in

the grid.

620 Part VI Building Web Applications

Test the completed application

1. Run the application, and log in as John.

2. On the CustomersData Web form, notice that the values in the Customer ID column are

now displayed as hyperlinks:

3. Click the hyperlink for the fi rst customer, ALFKI. The OrderHistory form should appear,

displaying the order history for ALFKI.

Test the completed application

 Chapter 29 Protecting a Web Site and Accessing Data with Web Forms 621
 4. Click the Return to Customers hyperlink.

 5. On the CustomersData Web form, click the hyperlink in the Customer ID column for

another customer. The OrderHistory Web form should display the order history for the

appropriate customer.

 6. When you have fi nished browsing the data, close Internet Explorer and return to Visual

Studio 2008.

 This chapter has shown you the fundamentals of building and protecting a Web application

that maintains data in a database. If you are interested in creating highly interactive Web

applications that incorporate multimedia capabilities, you should take a look at Microsoft

Silverlight. You can fi nd more information about Silverlight at http://silverlight.net.

 If you want to continue to the next chapter

 Keep Visual Studio 2008 running, and turn to Chapter 30.

 If you want to exit Visual Studio 2008 now

 On the File menu, click Exit. If you see a Save dialog box, click Yes and save the project.

Chapter 29 Quick Reference
 To Do this

 Create a login Web form Create a new Web form. Add a Login control for authenticating users.

 Confi gure security for an ASP.

NET Web site

Use the ASP.NET Web Site Administration Tool to add and maintain users,

defi ne roles, and create access rules. (On the Website menu, click ASP.NET
Confi guration to start this tool.)

 Implement Forms-based

security

Edit the web.confi g fi le. Set the <authentication mode> attribute to

Forms, provide the URL of the login form, and specify any authentication

 parameters required. For example:

<authentication mode=”Forms”>
 <forms loginUrl=”LoginForm.aspx”
 timeout=”5”
 cookieless=”AutoDetect”
 protection=”All” />
</authentication>

 Create a Web form for

displaying data from a

database

Add a data source control to the Web form, and confi gure it to connect to

the appropriate database.

Add a GridView control to the Web form, and set its DataSourceID property

to the data source control.

622 Part VI Building Web Applications
 Fetch and display data in

 manageable chunks in a

Web form

Set the AllowPaging property of the GridView control to True. Set the

PagerSize property to the number of rows to be displayed on each page.

Modify the PagerSettings and PagerStyle properties to match the style of

the Web form.

 Modify rows in a database

using a GridView control

Ensure that the data source enables updating data.

Using the Common GridView Tasks smart tag menu, select Enable Updating.

 Navigate from one Web form

to another by selecting a row in

a GridView control

Defi ne a column as a HyperLinkField control. Specify the URL and optional

query string for the destination form in the DataNavigateUrlFormatString

property, and specify any data to pass to the form as query string param-

eters in the DataNavigateUrlFields property.

In the destination form, retrieve any query string parameters by accessing

the QueryString collection of the Request property of the Web form.

 Bind a GridView control to a

data source at run time

Set the DataSource property of the GridView control to the data source. Set

the DataField property of any boundfi eld columns in the GridView to the

name of the property holding the data to be displayed in the data source.

Chapter 30

Creating and Using a Web Service
 After completing this chapter, you will be able to:

 Create a Web service that exposes simple Web methods.

 Display the description of a Web service by using Windows Internet Explorer.

 Design classes that can be passed as parameters to a Web method and returned from a

Web method.

 Create a reference to a Web service in a client application.

 Invoke a Web method.

 The previous chapters showed you how to create Web forms and build Web applications

by using Microsoft ASP.NET. Although this approach is appropriate for applications where

the client is a Web browser, you will increasingly encounter situations where the client is

some other type of application. As mentioned in previous chapters, the Internet is just a big

network. By using Web services, it is possible to build distributed systems from elements

that are spread across the Internet—databases, business services, and so on. The aim of this

chapter is to show you how to design, build, and test Web services that can be accessed over

the Internet and integrated into distributed applications. You’ll also learn how to construct a

 client application that uses the methods exposed by a Web service.

 Note The purpose of this chapter is to provide a very basic introduction to Web services

and Microsoft Windows Communication Foundation (WCF). If you want detailed information

about how WCF works and how to build secure services by using WCF, you should consult a

book such as Microsoft Windows Communication Foundation Step by Step, published by

Microsoft Press, 2007.

What Is a Web Service?
 A Web service is a business component that provides some useful function to clients, or

 consumers. A Web service can be thought of as a component with truly global accessibility—

if you have the appropriate access rights, you can make use of a Web service from anywhere

in the world as long as your computer is connected to the Internet. Web services use a

standard, accepted, and well-understood protocol, Hypertext Transfer Protocol (HTTP), to

transmit data and a portable data format that is based on XML. HTTP and XML are both

standardized technologies that can be used by other programming environments outside
 623

624 Part VI Building Web Applications
the Microsoft .NET Framework. You can build Web services by using Microsoft Visual Studio

2008. Client applications running in a totally different environment, such as Java, can use

them. The reverse is also true: you can build Web services by using Java and write client

 applications in C#.

 With Visual Studio 2008, you can build Web services by using Microsoft Visual C++, Microsoft

Visual C#, or Microsoft Visual Basic. However, as far as a client application is concerned, the

language used to create the Web service, and even how the Web service performs its tasks, is

not important. The client application’s view of a Web service is of an interface that exposes a

number of well-defi ned methods, known as Web methods. All the client application needs to

do is call these Web methods by using the standard Internet protocols, passing parameters in

an XML format and receiving responses also in an XML format.

 One of the driving forces behind the recent releases of the Windows operating system, the

.NET Framework, and its associated development tools is the concept of the “programmable

Web.” The idea is that you can construct systems by using the data and services supplied

by multiple Web services. Web services provide the basic elements for systems, the Web

provides the means to access them, and developers glue them together in meaningful ways

to add functionality to their applications. Web services are a key integration technology for

combining disparate systems, and they are the basis for many business-to-business (B2B) and

business-to-consumer (B2C) applications.

The Role of SOAP
 Simple Object Access Protocol (SOAP) is the protocol used by client applications for send-

ing requests to and receiving responses from Web services. SOAP is a lightweight protocol

built on top of HTTP—the protocol used by the Web to send and receive HTML pages. SOAP

defi nes an XML grammar for specifying the names of Web methods that a consumer can in-

voke on a Web service, for defi ning the parameters and return values, and for describing the

types of parameters and return values. When a client calls a Web service, it must specify the

method and parameters by using this XML grammar.

 SOAP is an industry standard. Its function is to improve cross-platform interoperability. The

strength of SOAP is its simplicity and also the fact that it is based on other industry-standard

technologies, such as HTTP and XML. The SOAP specifi cation defi nes a number of things. The

most important are the following:

 The format of a SOAP message

 How data should be encoded

 How to send messages (method calls)

 How to process replies

 Chapter 30 Creating and Using a Web Service 625
 Descriptions of the exact details of how SOAP works and the internal format of a SOAP

 message are beyond the scope of this book. It is highly unlikely that you will ever need

to create and format SOAP messages manually because many development tools, includ-

ing Visual Studio 2008, automate this process, presenting a programmer-friendly API to

 developers building Web services and client applications.

What Is the Web Services Description Language?
 The body of a SOAP message is an XML document. When a client application invokes a

Web method, the Web server expects the client to use a particular set of tags for encod-

ing the parameters for the method. How does a client know which tags, or XML schema, to

use? The answer is that, when asked, a Web service is expected to supply a description of

itself. The Web service response is another XML document that describes the Web service.

Unsurprisingly, this document is known as the Web Service Description. The XML schema

used for this document has been standardized and is called Web Services Description

Language (WSDL). This description provides enough information so that a client application

can construct a SOAP request in a format that the Web server should understand. Again, the

details of WSDL are beyond the scope of this book, but Visual Studio 2008 contains tools

that parse the WSDL for a Web service in a mechanical manner. Visual Studio 2008 then uses

the information to defi ne a proxy class that a client application can use to convert ordinary

method calls on this proxy class to SOAP requests that the proxy sends over the Web. This is

the approach you will use in the exercises in this chapter.

Nonfunctional Requirements of Web Services
 The initial efforts to defi ne Web services and their associated standards concentrated on the

functional aspects for sending and receiving SOAP messages. Not long after Web services

became a mainstream technology for integrating distributed services, it became apparent

that there were issues that SOAP and HTTP alone could not address. These issues concern

many nonfunctional requirements that are important in any distributed environment, but

much more so when using the Internet as the basis for a distributed solution. They include

the following items:

 Security How do you ensure that SOAP messages that fl ow between a Web ser-

vice and a consumer have not been intercepted and changed on their way across the

Internet? How can you be sure that a SOAP message has actually been sent by the

consumer or Web service that claims to have sent it, and not some “spoof” site that is

trying to obtain information fraudulently? How can you restrict access to a Web service

to specifi c users? These are matters of message integrity, confi dentiality, and authen-

tication and are fundamental concerns if you are building distributed applications that

make use of the Internet.

626 Part VI Building Web Applications
 In the early 1990s, a number of vendors supplying tools for building distributed sys-

tems formed an organization that later became known as the Organization for the

Advancement of Structured Information Standards, or OASIS. As the shortcomings of

the early Web services infrastructure became apparent, members of OASIS pondered

these problems (and other Web services issues) and produced what became known as

the WS-Security specifi cation. The WS-Security specifi cation describes how to protect

the messages sent by Web services. Vendors that subscribe to WS-Security provide

their own implementations that meet this specifi cation, typically by using technologies

such as encryption and certifi cates.

 Policy Although the WS-Security specifi cation defi nes how to provide enhanced

security, developers still need to write code to implement it. Web services created by

different developers can often vary in how stringent the security mechanism they have

elected to implement is. For example, a Web service might use only a relatively weak

form of encryption that can easily be broken. A consumer sending highly confi dential

information to this Web service would probably insist on a higher level of security. This

is one example of policy. Other examples include the quality of service and reliability

of the Web service. A Web service could implement varying degrees of security, quality

of service, and reliability and charge the client application accordingly. The client ap-

plication and the Web service can negotiate which level of service to use based on the

requirements and cost. However, this negotiation requires that the client and the Web

service have a common understanding of the policies available. The WS-Policy speci-

fi cation provides a general-purpose model and corresponding syntax to describe and

communicate the policies that a Web service implements.

 Routing and addressing It is useful for a Web server to be able to reroute a Web

service request to one of a number of computers hosting instances of the service. For

example, many scalable systems make use of load balancing, in which requests sent to a

Web server are actually redirected by that server to other computers to spread the load

across those computers. The server can use any number of algorithms to try to balance

the load. The important point is that this redirection is transparent to the client making

the Web service request, and the server that ultimately handles the request must know

where to send any responses that it generates. Redirecting Web service requests is also

useful if an administrator needs to shut down a computer to perform maintenance.

Requests that would otherwise have been sent to this computer can be rerouted to one

of its peers. The WS-Addressing specifi cation describes a framework for routing Web

service requests.

 Note Developers refer to the WS-Security, WS-Policy, WS-Addressing, and other

WS-specifi cations collectively as the WS-* specifi cations.

 Chapter 30 Creating and Using a Web Service 627

B

The Role of Windows Communication Foundation
 As standardization of Web services security, policy, and addressing became more important,

Microsoft provided its own implementation of the WS-Security, WS-Policy, and WS-

Addressing specifi cations in its Web Services Enhancements (WSE) package, available as a

free download from the Microsoft Web site. What does all this mean if you are developing

Web services using Visual Studio 2008? Well, with Visual Studio 2008, you can build Web

 services by using two technologies—ASP.NET and WCF. Ordinary ASP.NET Web services do

not directly support the various WS-* specifi cations. Instead, you can use Microsoft’s WSE

package to provide features such as security.

 So, by using Visual Studio, the .NET Framework, and WSE, you can quickly build Web services

and client applications that can communicate and interoperate with Web services and client

applications running on any operating system. Why then do you need WCF? Well, fi rst, WCF

is a more recent technology that emerged as part of version 3.0 of the .NET Framework. It

provides its own fully integrated implementation of the common WS-* specifi cations without

requiring you to download, install, and confi gure additional packages. Second, Web services

are just one technology that you can use to create distributed applications for the Windows

operating systems. Others include Enterprise Services, .NET Framework Remoting, and

Microsoft Message Queue (MSMQ). If you are building a distributed application for Windows,

which technology should you use, and how diffi cult will it be to switch later if you need to?

The purpose of WCF is to provide a unifi ed programming model for many of these technolo-

gies so that you can build applications that are as independent as possible from the underly-

ing mechanism being used to connect services and applications. (Note that WCF applies as

much to services operating in non-Web environments as it does to the World Wide Web.) It

is actually very diffi cult, if not impossible, to completely divorce the programmatic structure

of an application or service from its communications infrastructure, but WCF lets you come

very close to achieving this aim much of the time. Additionally, by using WCF, you can main-

tain backward compatibility with many of the earlier technologies. For example, a WCF client

application can easily communicate with a Web service that you created by using WSE.

 To summarize, if you are considering building distributed applications and services for

Windows, you should use WCF. The exercises in this chapter will show you how.

uilding a Web Service
 In this section, you will create the ProductsService Web service. This Web service exposes two

Web methods. The fi rst method enables the user to calculate the cost of buying a specifi ed

quantity of a particular product in the Northwind database, and the second method takes

the name of a product and returns all the details for that product.

628 Part VI Building Web Applications

Creating the ProductsService Web Service
 In the fi rst exercise, you will create the ProductsService Web service and examine the

 example code generated by Visual Studio 2008 whenever you create a new WCF service

project. In subsequent exercises, you will defi ne and implement the HowMuchWillItCost Web

method and then test the Web method to ensure that it works as expected.

Create the Web service, and examine the example code

1. Start Visual Studio 2008 if it is not already running.

2. If you are using Visual Studio 2008 Professional Edition or Enterprise Edition, on the File

menu, point to New, and then click Web Site.

3. If you are using Microsoft Visual Web Developer 2008 Express Edition, on the File

menu, click New Web Site.

4. In the New Web Site dialog box, click the WCF Service template. Select File System in

the Location drop-down list box, and specify the \Microsoft Press\Visual CSharp Step

By Step\Chapter 30\NorthwindServices folder under your Documents folder. Set the

Language to Visual C#, and then click OK.

 Visual Studio 2008 generates a Web site containing folders called App_Code and

App_Data, a fi le called Service.svc, and a confi guration fi le called Web.confi g. The code

for an example Web service is defi ned in the Service class, stored in the fi le Service.cs

in the App_Code folder, and displayed in the Code and Text Editor window. The Service

class implements an example interface called IService, stored in the fi le IService.cs in the

App_Code folder.

5. Click the C:\...\NorthwindServices\ project. In the Properties window, set the Use
 dynamic ports property to False, and set the Port number property to 4500.

 By default, the Development Web server provided with Visual Studio 2008 picks a port

at random to reduce the chances of clashing with any other ports used by other net-

work services running on your computer. This feature is useful if you are building and

testing ASP.NET Web sites in a development environment prior to copying them to a

production server such as Microsoft Internet Information Services (IIS). However, when

building a Web service, it is more useful to use a fi xed port number because client

 applications need to be able to connect to it.

6. Expand the App_Code folder, right-click the Service.cs fi le, and then click Rename.

Change the name of the fi le to ProductsService.cs.

7. Using the same technique, change the name of the IService.cs fi le to

IProductsService.cs.

8. Double-click the IProductsService.cs fi le to display it in the Code and Text
Editor window.

Create the Web service, and examine the example code

 Chapter 30 Creating and Using a Web Service 629
 This fi le contains the defi nition of an interface called IService. At the top of the

IProductsService.cs fi le, you will fi nd using statements referencing the System, System.
Collections.Generic, and System.Text namespaces (which you have met before), followed

by two additional statements referencing the System.ServiceModel and System.Runtime.
Serialization namespaces.

 The System.ServiceModel namespace contains the classes used by WCF for defi ning

services and their operations. WCF uses the classes in the System.Runtime.Serialization

namespace to convert objects to a stream of data for transmission over the network

(a process known as serialization) and to convert a stream of data received from the

network back to objects (deserialization). You will learn a little about how WCF serializes

and deserializes objects later in this chapter.

 The primary contents of the IProductsService fi le are an interface called IService and a

class called CompositeType. The IService interface is prefi xed with the ServiceContract
attribute, and the CompositeType class is tagged with the DataContract attribute.

Because of the structure of a WCF service, you can adopt a “contract-fi rst” approach to

development. When performing contract-fi rst development, you defi ne the interfaces,

or contracts, that the service will implement, and then you build a service that conforms

to these contracts. This is not a new technique, and you have seen examples of this

strategy throughout this book. The point behind using contract-fi rst development is

that you can concentrate on the design of your service. If necessary, it can quickly be

reviewed to ensure that your design does not introduce any dependencies on specifi c

hardware or software before you perform too much development; remember that in

many cases client applications might not be built using WCF and might not even be

running on Windows.

 The ServiceContract attribute marks an interface as defi ning methods that the class

implementing the Web service will expose as Web methods. The methods themselves

are tagged with the OperationContract attribute. The tools provided with Visual Studio

2008 use these attributes to help generate the appropriate WSDL document for the

service. Any methods in the interface not marked with the OperationContract attribute

will not be included in the WSDL document and therefore will not be accessible to

 client applications using the Web service.

 If a Web method takes parameters or returns a value, the data for these parameters

and value must be converted to a format that can be transmitted over the network and

then converted back again to objects—this is the process known as serialization and

deserialization mentioned earlier. The various Web services standards defi ne mecha-

nisms for specifying the serialized format of simple data types, such as numbers and

strings, as part of the WSDL description for a Web service. However, you can also defi ne

your own complex data types based on classes and structures. If you make use of these

types in a Web service, you must provide information on how to serialize and deserial-

ize them. If you look at the defi nition of the GetDataUsingDataContract method in the

630 Part VI Building Web Applications

IService interface, you can see that it expects a parameter of the type CompositeType.

The CompositeType class is marked with the DataContract attribute, which specifi es that

the class must defi ne a type that can be serialized and deserialized as an XML stream

as part of a SOAP request or response message. Each member that you want to include

in the serialized stream sent over the network must be tagged with the DataMember
attribute.

9. Double-click the ProductsService.cs fi le to display it in the Code and Text Editor window.

 This fi le contains a class called Service that implements the IService interface and pro-

vides the GetData and GetDataUsingDataContract methods defi ned by this interface.

This class is the Web service. When a client application invokes a Web method in this

Web service, it generates a SOAP request message and sends it to the Web server host-

ing the Web service. The Web server creates an instance of this class and runs the cor-

responding method. When the method completes, the Web server constructs a SOAP

response message, which it sends back to the client application.

10. Double-click the Service.svc fi le to display it in the Code and Text Editor window.

 This is the service fi le for the Web service; it is used by the host environment (IIS, in

this case) to determine which class to load when it receives a request from a client

application.

 Note If the Error List window is open, you will notice that the Service.svc fi le appears to

contain two errors: “Keyword, identifi er, or string expected after verbatim specifi er: @” and

“A namespace does not directly contain members such as fi elds or methods.” When you

rebuild the solution later, these errors will disappear and you can safely ignore them.

 The Service property of the @ ServiceHost directive specifi es the name of the Web

 service class, and the CodeBehind property specifi es the location of the source code for

this class.

 Tip If you don’t want to deploy the source code for your WCF service to the Web server,

you can provide a compiled assembly instead. You can then specify the name and location

of this assembly by using the @ Assembly directive. For more information, search for

“@ Assembly directive” in the documentation provided with Visual Studio 2008.

 Now that you have seen the structure of a WCF service, you can defi ne the interface and

class that specifi es the service and data contracts for the ProductsService Web service and

then create a class that implements the service contract.

 Chapter 30 Creating and Using a Web Service 631

Defi ne the contracts for the ProductsService Web service

1. Display the IProductsService.cs fi le in the Code and Text Editor window. Change the

name of the IService interface to IProductsService, as shown here in bold type:

[ServiceContract]
public interface IProductsService
{
 ...
}

2. In the IProductsService interface, remove the defi nitions of the GetData and

GetDataUsingDataContract methods, and replace them with the HowMuchWillItCost
and GetProductInfo methods, shown in the following code. Make sure you retain the

OperationContract attribute for each Web method.

[ServiceContract]
public interface IProductsService
{
 [OperationContract]
 decimal HowMuchWillItCost(int productID, int howMany);

 [OperationContract]
 ProductInfo GetProductInfo(int productID);
}

The HowMuchWillItCost method takes a product ID and a quantity and returns a

decimal value specifying the amount this quantity will cost.

The GetProductInfo method takes a product ID and returns a ProductInfo object

 containing the details of the specifi ed product. You will defi ne the ProductInfo class in

the next step.

3. Remove the CompositeType class from the IProductsService.cs fi le, and add the

ProductInfo class, including the DataContract attribute, like this:

[DataContract]
public class ProductInfo
{
}

4. Add the following public properties to the ProductInfo class. There is one property for

each of the columns in the Products table in the database. Mark each property with the

DataMember attribute:

[DataContract]
public class ProductInfo
{
 [DataMember]
 public int ProductID {get; set;}

 [DataMember]
 public string ProductName {get; set;}

Defi ne the contracts for the ProductsService Web service

632 Part VI Building Web Applications
 [DataMember]
 public int? SupplierID {get; set;}

 [DataMember]
 public int? CategoryID {get; set;}

 [DataMember]
 public string QuantityPerUnit {get; set;}

 [DataMember]
 public decimal? UnitPrice {get; set;}

 [DataMember]
 public short? UnitsInStock {get; set;}

 [DataMember]
 public short? UnitsOnOrder {get; set;}

 [DataMember]
 public short? ReorderLevel {get; set;}

 [DataMember]
 public bool? Discontinued {get; set;}
}

 Notice that the properties that correspond to columns that allow null values in the

 database are defi ned by using nullable types (apart from QuantityPerUnit, which is a

reference type that allows null values automatically because it is a string). Also, you

should ensure that all properties support read and write access. The serialization

mechanism used by WCF is automatic and largely transparent as long as you follow a

few simple rules when defi ning the class. In particular, serialization can be used only

when the runtime transmits objects that contain public fi elds and properties; private

members will not be serialized. Also note that all properties must have both get and set
accessors. This is because the XML serialization process must be able to write this data

back to the object after it has been transferred. Additionally, the class must provide a

default (with no parameters) constructor.

 It is common to design classes used for SOAP purely as containers for transmitting data.

If necessary, you can defi ne additional functional classes that act as façades, providing

the business logic for these data structures. Users and applications can gain access to

the data by using these business façades.

 Note You can customize the serialization mechanism using the various SOAP attribute

classes of the System.Xml.Serialization namespace or defi ne your own XML serialization

mechanism by implementing the ISerializable interface of the System.Runtime.Serialization

namespace.

 Chapter 30 Creating and Using a Web Service 633

The next stage is to defi ne the ProductsService class that implements the IProductsService

interface. The methods in this class will retrieve product information from the Northwind

database, so you will start by adding an entity class and data context for retrieving this

information.

Implement the IProductsService interface

1. On the Website menu, click Add New Item.

2. In the Add New Item dialog box, click the LINQ to SQL Classes template, type Product.
dbml in the Name text box, select Visual C# in the Language drop-down list, and then

click Add.

3. If you are using Visual Studio 2008 Professional Edition or Enterprise Edition, on the

View menu, click Server Explorer.

4. If you are using Visual Web Developer 2008 Express Edition, on the View menu, click

Database Explorer.

5. In Server Explorer (if you are using Visual Studio 2008) or Database Explorer (if you are

using Visual Web Developer 2008 Express Edition), expand the data connection for the

Northwind database (YourComputer\sqlexpress.Northwind.dbo or Northwind.mdf), and

then expand Tables.

6. Click the Products table, and drag it onto the Object Relational Designer window.

7. On the File menu, click Save All.

8. Display the ProductsService.cs fi le in the Code and Text Editor window. Remove the

Service class from this fi le.

9. Add the ProductsService class to the fi le, and specify that it should implement the

IProductsService interface, as shown here:

public class ProductsService : IProductsService
{
}

10. Add the HowMuchWillItCost method to the Service class, as follows:

public class ProductsService : IProductsService
{
 public decimal HowMuchWillItCost(int productID, int howMany)
 {
 ProductDataContext pdc = new ProductDataContext();
 decimal? cost = pdc.Products.Single(
 p => p.ProductID == productID).UnitPrice;

 decimal totalCost = 0;
 if (cost.HasValue)

Implement the IProductsService interface

634 Part VI Building Web Applications

 {
 totalCost = cost.Value * howMany;
 }

 return totalCost;
 }
}

 This method connects to the database and executes a DLINQ query to retrieve the cost

of the product matching the supplied product ID from the Northwind database. If the

cost returned is not null, the method calculates the total cost of the request and returns

it; otherwise, the method returns the value 0.

 Note This method performs no validation of the input parameters. For example, you can

specify a negative value for the howMany parameter. In a production Web service, you

would trap errors such as this, log them, and return an exception. However, transmitting

meaningful reasons for an exception back to a client application has security implications

in a WCF service. The details are beyond the scope of this book. For more information, see

Microsoft Windows Communication Foundation Step by Step.

 11. Add the GetProductInfo method shown below in bold type to the Service class:

public class ProductsService : IProductsService
 ...
 public ProductInfo GetProductInfo(int productID)
 {
 ProductDataContext pdc = new ProductDataContext();
 Product product = pdc.Products.Single(p => p.ProductID == productID);

 ProductInfo prodInfo = null;
 if (product != null)
 {
 prodInfo = new ProductInfo();
 prodInfo.CategoryID = product.CategoryID;
 prodInfo.Discontinued = product.Discontinued;
 prodInfo.ProductID = product.ProductID;
 prodInfo.ProductName = product.ProductName;
 prodInfo.QuantityPerUnit = product.QuantityPerUnit;
 prodInfo.ReorderLevel = product.ReorderLevel;
 prodInfo.SupplierID = product.SupplierID;
 prodInfo.UnitPrice = product.UnitPrice;
 prodInfo.UnitsInStock = product.UnitsInStock;
 prodInfo.UnitsOnOrder = product.UnitsOnOrder;
 }

 return prodInfo;
 }
}

 These statements use DLINQ to connect to the Northwind Traders database and

retrieve the details for the specifi ed product from the database. Note that like the

HowMuchWillItCost method, this method does not handle exceptions.

 Chapter 30 Creating and Using a Web Service 635

Before you can use the Web service, you must update the confi guration in the Service.svc fi le

to refer to the ProductsService class in the ProductsService.cs fi le. You must also modify the

Web.confi g fi le to refl ect the new name of the Web service.

Confi gure the Web service

1. In Solution Explorer, double-click the Service.svc fi le to display it in the Code and
Text Editor window. Update the Service and CodeBehind attributes of the ServiceHost
 directive, as shown here in bold type:

<%@ ServiceHost Language=”C#” Debug=”true” Service=”ProductsService”
 CodeBehind=”~/App_Code/ProductsService.cs” %>

Note The Error List window for the Service.svc fi le might display the same errors as

before. Again, these errors should disappear when you rebuild the application, so you can

safely ignore them.

2. In Solution Explorer, double-click the Web.confi g fi le. In the Code and Text Editor
 window, locate the <system.serviceModel> element. This element contains the

 following <services> element, specifying the endpoint binding information for the Web

service implemented by this solution. (You can ignore the service that implements the

IMetadataExchange contract in this chapter.)

<system.serviceModel>
 <services>
 <service name=”Service” behaviorConfiguration=”ServiceBehavior”>
 <!-- Service Endpoints -->
 <endpoint address=”” binding=”wsHttpBinding” contract=”IService”/>
 ...
 </service>
 </services>
 <behaviors>
 ...
 </behaviors>
</system.serviceModel>

 WCF uses the notion of endpoints to associate a network address with a specifi c Web

service. If you are hosting a Web service by using IIS or the ASP.NET Development

Server, you should leave the address property of your endpoint blank because IIS listens

for incoming requests on an address specifi ed by its own confi guration information.

 Note You can build your own custom host applications if you don’t want to use IIS or the

ASP.NET Development Server. In these situations, you must specify an address for the ser-

vice as part of the endpoint defi nition. For more information about endpoints and custom

hosts, see Microsoft Windows Communication Foundation Step by Step.

Confi gure the Web service

636 Part VI Building Web Applications

3. In the Web.confi g fi le, change the name attribute of the Service element and the

 contract attribute of the endpoint element to refer to the ProductsService service and

the IProductsService contract, as shown here in bold type:

<system.serviceModel>
 <services>
 <service name=”ProductsService” behaviorConfiguration=”ServiceBehavior”>
 <!-- Service Endpoints -->
 <endpoint address=”” binding=”wsHttpBinding” contract=”IProductsService”/>
 ...
 </service>
 </services>
 <behaviors>
 ...
 </behaviors>
</system.serviceModel>

4. On the File menu, click Save All.

5. In Solution Explorer, right-click Service.svc, and then click View in Browser.

 Internet Explorer starts and displays the following page, confi rming that you have

 successfully created and deployed the Web service and providing helpful information

describing how to create a simple client application that can access the Web service.

 Note If you click the link shown on the Web page (http://localhost:4500/
NorthwindServices/Service.svc?wsdl), Internet Explorer displays a page containing the

WSDL description of the Web service. This is a long and complicated piece of XML, but

Visual Studio 2008 can take the information in this description and use it to generate a

class that a client application can use to communicate with the Web service.

6. Close Internet Explorer, and return to Visual Studio 2008.

 Chapter 30 Creating and Using a Web Service 637
Web Services, Clients, and Proxies
 You have seen that a Web service uses SOAP to provide a mechanism for receiving requests

and sending back results. SOAP uses XML to format the data being transmitted, which rides

on top of the HTTP protocol used by Web servers and browsers. This is what makes Web

services so powerful—SOAP, HTTP, and XML are well understood (in theory anyway) and are

the subjects of several standards committees. Any client application that “talks” SOAP can

communicate with a Web service. So how does a client “talk” SOAP? There are two ways: the

diffi cult way and the easy way.

Talking SOAP: The Diffi cult Way
 In the diffi cult way, the client application performs a number of steps. It must do the

following:

 1. Determine the URL of the Web service running the Web method.

 2. Perform a Web Services Description Language (WSDL) inquiry using the URL to obtain

a description of the Web methods available, the parameters used, and the values re-

turned. You saw how to do this by using Internet Explorer in the preceding exercise.

 3. Parse the WSDL document, convert each operation to a Web request, and serialize each

parameter into the format described by the WSDL document.

 4. Submit the request, along with the serialized data, to the URL by using HTTP.

 5. Wait for the Web service to reply.

 6. Using the formats specifi ed by the WSDL document, deserialize the data returned by

the Web service into meaningful values that your application can then process.

 This is a lot of work just to invoke a method, and it is potentially error-prone.

Talking SOAP: The Easy Way
 The bad news is that the easy way to use SOAP is not much different from the diffi cult way.

The good news is that the process can be automated because it is largely mechanical. As

mentioned earlier, many vendors, including Microsoft, supply tools that can generate a proxy

class based on a WSDL description. The proxy hides the complexity of using SOAP and ex-

poses a simple programmatic interface based on the methods published by the Web service.

The client application calls Web methods by invoking methods with the same name in the

proxy. The proxy converts these local method calls to SOAP requests and sends them to the

Web service. The proxy waits for the reply, deserializes the data, and then passes it back to

the client just like the return from any simple method call. This is the approach you will take

in the exercises in this section.

638 Part VI Building Web Applications

Consuming the ProductsService Web Service
 You have created a Web service call that exposes two Web methods: GetProductInfo to return

the details of a specifi ed product and HowMuchWillItCost to determine the cost of buying

n items of product x from Northwind Traders. In the following exercises, you will use this

Web service and create an application that consumes these methods. You’ll start with the

GetProductInfo method.

Open a Web service client application

1. Start another instance of Visual Studio 2008. This is important. The ASP.NET

Development Server stops if you close the NorthwindServices Web service project,

meaning that you won’t be able to access it from the client. (An alternative approach

you can use if you are running Visual Studio 2008 and not Visual Web Developer 2008

Express Edition is to create the client application as a project in the same solution as the

Web service.) When you host a Web service in a production environment by using IIS,

this problem does not arise because IIS runs independently of Visual Studio 2008.

Important If you have been using Visual Web Developer 2008 Express Edition for the

exercises in this part of the book, start Visual C# 2008 Express Edition rather than a second

instance of Visual Web Developer 2008 Express Edition (leave Visual Web Developer 2008

Express Edition running).

2. In the second instance of Microsoft Visual Studio 2008, open the ProductClient solution

in the \Microsoft Press\Visual CSharp Step By Step\Chapter 30\ProductClient folder in

your Documents folder.

3. In Solution Explorer, double-click the fi le ProductClient.xaml to display the form in the

Design View window. The form looks like this:

Open a Web service client application

 Chapter 30 Creating and Using a Web Service 639

The form enables the user to specify a product ID and retrieve the details of the

 product from the Northwind database. The user can also provide a quantity and

 retrieve a price for buying that quantity of the product. Currently, the buttons on the

form do nothing. In the following steps, you will add the necessary code to invoke the

methods from the ProductsService Web service to obtain the data and then display it.

Add code to call the Web service in the client application

1. On the Project menu, click Add Service Reference.

The Add Service Reference dialog box opens. In this dialog box, you can browse for Web

services and examine the Web methods that they provide.

2. In the Address text box, type http://localhost:4500/NorthwindServices/Service.svc,

and then click Go.

The ProductsService service appears in the Services box.

3. Expand the ProductsService service, and then click the IProductsService interface that

appears. In the Operations list box, verify that the two operations, GetProductInfo and

HowMuchWillItCost, appear, as shown in the following image.

4. Change the value in the Namespace text box to NorthwindServices, and then click OK.

A new folder called Service References appears in Solution Explorer. This folder contains

an item called NorthwindServices.

5. Click the Show All Files button on the Solution Explorer toolbar. Expand the

NorthwindServices folder, and then expand the Reference.svcmap folder. Double-click

the Reference.cs fi le and examine its contents in the Code and Text Editor window.

Add code to call the Web service in the client application

640 Part VI Building Web Applications

 This fi le contains several classes and interfaces, including a class called

ProductsServiceClient in a namespace called ProductClient.NorthwindServices. The

ProductsServiceClient is the proxy class generated by Visual Studio 2008 from the WSDL

description of the ProductsService Web service. It contains a number of constructors,

as well as methods called HowMuchWillItCost and GetProductInfo. The client applica-

tion can instantiate the ProductsServiceClient class and call these methods. When this

happens, these methods invoke code that packages up the information supplied as

parameters into a SOAP message that they transmit to the Web service. When the

Web service replies, the information returned is unpacked from the SOAP response

and passed back to the client application. In this way, the client application can call a

 method in a Web service in exactly the same way as it would call a local method.

6. Display the ProductClient.xaml form in the Design View window. Double-click the Get
Product button to generate the getProduct_Click event handler method for this button.

7. In the Code and Text Editor window, add the following using statement to the list at the

top of the ProductClient.xaml.cs fi le:

using ProductClient.NorthwindServices;

8. In the getProduct_Click method, create the variable shown here in bold type:

private void getProduct_Click(object sender, RoutedEventArgs e)
{
 ProductsServiceClient proxy = new ProductsServiceClient();
}

 This statement creates an instance of the ProductsServiceClient class that your code will

use to call the GetProductInfo Web method.

9. Add the code shown here in bold type to extract the product ID entered by the user on

the form, execute the GetProductInfo Web method by using the proxy object, and then

display the details of the product in the labels on the form.

private void getProduct_Click(object sender, RoutedEventArgs e)
{
 ProductsServiceClient proxy = new ProductsServiceClient();
 try
 {
 int prodID = Int32.Parse(this.productID.Text);
 ProductInfo product = proxy.GetProductInfo(prodID);
 this.productName.Content = product.ProductName;
 this.supplierID.Content = product.SupplierID;
 this.categoryID.Content = product.CategoryID;
 this.quantityPerUnit.Content = product.QuantityPerUnit;
 this.unitPrice.Content = String.Format(“{0:C}”, product.UnitPrice);
 this.unitsInStock.Content = product.UnitsInStock;
 this.unitsOnOrder.Content = product.UnitsOnOrder;
 this.reorderLevel.Content = product.ReorderLevel;
 this.discontinued.IsChecked = product.Discontinued;
 }

 Chapter 30 Creating and Using a Web Service 641

 catch (Exception ex)
 {
 MessageBox.Show(“Error fetching product details: “ +
 ex.Message, “Error”, MessageBoxButton.OK,
 MessageBoxImage.Error);
 }
 finally
 {
 if (proxy.State == System.ServiceModel.CommunicationState.Faulted)
 proxy.Abort();
 else
 proxy.Close();
 }
}

 You are probably aware of how unpredictable networks are, and this applies doubly to

the Internet. The try/catch block ensures that the client application catches any network

exceptions that might occur. It is also possible that the user might not enter a valid

integer into the ProductID text box on the form. The try/catch block also handles this

exception.

 The fi nally block examines the state of the proxy object. If an exception occurred in the

Web service (which could be caused by the user supplying a nonexistent product ID, for

example), the proxy will be in the Faulted state. In this case, the fi nally block calls the

Abort method of the proxy to acknowledge the exception and close the connection;

otherwise, it calls the Close method. The Abort and Close methods both close the com-

munications channel with the Web service and release the resources associated with

this instance of the ProductsServiceClient object.

10. Display the ProductClient.xaml form in the Design View window again. Double-click

the Calculate Cost button to generate the calcCost_Click event handler method for this

button.

11. In the calcCost_Click method, add the code shown here in bold type:

private void calcCost_Click(object sender, RoutedEventArgs e)
{
 ProductsServiceClient proxy = new ProductsServiceClient();
 try
 {
 int prodID = Int32.Parse(this.productID.Text);
 int number = Int32.Parse(this.howMany.Text);
 decimal cost = proxy.HowMuchWillItCost(prodID, number);
 this.totalCost.Content = String.Format(“{0:C}”, cost);
 }
 catch (Exception ex)
 {
 MessageBox.Show(“Error obtaining cost: “ +
 ex.Message, “Error”, MessageBoxButton.OK,
 MessageBoxImage.Error);
 }
 finally

642 Part VI Building Web Applications

 {
 if (proxy.State == System.ServiceModel.CommunicationState.Faulted)
 proxy.Abort();
 else
 proxy.Close();
 }
}

 This code follows a similar pattern to the getProduct_Click method. It creates an

 instance of the ProductsServiceClient class and calls the HowMuchWillItCost method

 using this instance, passing the product ID and the quantity required as parameters.

The return value is displayed on the form. The exception handler traps any errors,

and the fi nally block ensures that the network connection is closed when the method

fi nishes.

Test the application

1. Build and run the project. When the Product Details form appears, type 3 in the

Product ID text box, and then click Get Product.

After a short delay while the client instantiates the proxy and builds a SOAP request

containing the product ID, the proxy sends the request to the Web service. The Web

service deserializes the SOAP request to extract the product ID, reads the database,

creates a Product object, serializes it as XML, and then sends it back to the proxy. The

proxy deserializes the XML data and creates a ProductInfo object and then passes this

object to your code in the getButton_Click method. The details for Aniseed Syrup then

appear in the form as shown in the following graphic:

Tip If you get an exception with the message “Could not connect to http://localhost:4500/

NorthwindServices/Service.svc. TCP error code 10061: No connection could be made be-

cause the target machine actively refused it,” the ASP.NET Development Server has prob-

ably stopped running. (It shuts down if it is inactive for a time.) To restart it, switch to the

Visual Studio 2008 instance for the ProductsService Web service, right-click Service.svc in

Solution Explorer, and then click View in Browser. Close Internet Explorer when it appears.

Test the application

 Chapter 30 Creating and Using a Web Service 643

2. Type 24 in the Product ID text box, and then click Get Product.

 For reasons that are outside the scope of this book to explain, you will probably fi nd

that the details are displayed more quickly this time.

3. Type 10 in the How Many text box, and then click Calculate Cost. Verify that the value

displayed in the Total Cost fi eld on the form is 10 times the value shown in the Unit
Price fi eld.

4. Experiment by typing the IDs of other products. Notice that if you enter an ID for a

product that does not exist, the Web service returns an exception. As described ear-

lier, the error message returned does not contain any information that could be useful

to an attacker, although it does describe how you can enable meaningful error mes-

sages and log exceptions. When you have fi nished, close the form and return to Visual

Studio 2008.

 Congratulations. You have now built your fi rst WCF service together with a client application

that calls its methods.

 You have also completed all the exercises in this book. You should now be thoroughly

 conversant with the C# language and understand how to use Visual Studio 2008 to build

professional applications. However, this is not the end of the story. You have jumped the fi rst

hurdle, but the best C# programmers learn from continued experience, and you can gain

this experience only by building C# applications. As you do so, you will discover new ways to

use the C# language and the many features available in Visual Studio 2008 that I have not

had space to cover in this book. Also, remember that C# is an evolving language. Back in

2001, when we wrote the fi rst edition of this book, C# introduced the syntax and semantics

necessary for you to build applications that made use of .NET Framework 1.0. Some enhance-

ments were added to Visual Studio and .NET Framework 1.1 in 2003, and then in 2005, C#

2.0 emerged with support for generics and .NET Framework 2.0. As you have seen in this

book, C# 3.0, the latest release of the language aligned with Visual Studio 2008 and .NET

Framework 3.5, has added numerous features such as anonymous types, lambda expressions,

and most signifi cantly, LINQ. What will the next version of C# bring? Watch this space!

644 Part VI Building Web Applications
Chapter 30 Quick Reference
 To Do this

 Create a Web service Use the WCF Service template. Defi ne a service contract that specifi es the

Web methods exposed by the Web service by creating an interface with

the ServiceContract attribute. Tag each method with the OperationContract
 attribute. Create a class that implements this interface.

 Display the description of a

Web service

Right-click the .svc fi le in Solution Explorer, and click View in Browser. Internet

Explorer runs, moves to the Web service URL, and displays a page describing

how to create a client application that can access the Web service. Click the

WSDL link to display the WSDL description of the Web service.

 Pass complex data as Web

method parameters and

return values

Defi ne a class to hold the data and tag it with the DataContract attribute.

Ensure that each item of data is accessible either as a public fi eld or through

a public property that provides get and set access. Ensure that the class has a

default constructor (which might be empty).

 Add a service reference to a

client application and create

a proxy class

On the Project menu, click Add Service Reference. Type the URL of the Web

service in the Address text box at the top of the dialog box, and then click Go.

Specify the namespace for the proxy class, and then click OK.

 Invoke a Web method Create an instance of the proxy class. Call the Web method using the

proxy class.

John Sharp
John Sharp is a Principal Technologist at Content Master (www.contentmaster.com), part

of CM Group, a technical authoring company in the United Kingdom. He researches and

 develops technical content for training courses, seminars, and white papers. John is deeply

involved with Microsoft .NET Framework application development and interoperability. He

has written papers and courses, built tutorials, and delivered conference presentations cover-

ing distributed systems and Web services, application migration and interoperability between

Microsoft Windows/.NET Framework and UNIX/Linux/Java, as well as development using the

C# and J# languages. John has also authored Microsoft Windows Communication Foundation
Step by Step and Microsoft Visual J# Core Reference, both published by Microsoft Press.

	Cover
	Copyright Page

	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	Finding Your Best Starting Point in This Book
	Conventions and Features in This Book
	Conventions
	Other Features

	System Requirements
	Code Samples
	Installing the Code Samples
	Using the Code Samples

	Support for This Book
	Questions and Comments

	Part I: Introducing Microsoft Visual C# and Microsoft Visual Studio 2008
	Chapter 1: Welcome to C#
	Beginning Programming with the Visual Studio 2008 Environment
	Writing Your First Program
	Using Namespaces
	Creating a Graphical Application
	Chapter 1 Quick Reference

	Chapter 2: Working with Variables, Operators, and Expressions
	Understanding Statements
	Using Identifiers
	Identifying Keywords
	Using Variables
	Naming Variables
	Declaring Variables

	Working with Primitive Data Types
	Displaying Primitive Data Type Values

	Using Arithmetic Operators
	Operators and Types
	Examining Arithmetic Operators
	Controlling Precedence
	Using Associativity to Evaluate Expressions
	Associativity and the Assignment Operator

	Incrementing and Decrementing Variables
	Prefix and Postfix

	Declaring Implicitly Typed Local Variables
	Chapter 2 Quick Reference

	Chapter 3: Writing Methods and Applying Scope
	Declaring Methods
	Specifying the Method Declaration Syntax
	Writing return Statements
	Calling Methods
	Specifying the Method Call Syntax

	Applying Scope
	Defining Local Scope
	Defining Class Scope
	Overloading Methods

	Writing Methods
	Chapter 3 Quick Reference

	Chapter 4: Using Decision Statements
	Declaring Boolean Variables
	Using Boolean Operators
	Understanding Equality and Relational Operators
	Understanding Conditional Logical Operators
	Summarizing Operator Precedence and Associativity

	Using if Statements to Make Decisions
	Understanding if Statement Syntax
	Using Blocks to Group Statements
	Cascading if Statements

	Using switch Statements
	Understanding switch Statement Syntax
	Following the switch Statement Rules

	Chapter 4 Quick Reference

	Chapter 5: Using Compound Assignment and Iteration Statements
	Using Compound Assignment Operators
	Writing while Statements
	Writing for Statements
	Understanding for Statement Scope

	Writing do Statements
	Chapter 5 Quick Reference

	Chapter 6: Managing Errors and Exceptions
	Coping with Errors
	Trying Code and Catching Exceptions
	Handling an Exception
	Using Multiple catch Handlers
	Catching Multiple Exceptions

	Using Checked and Unchecked Integer Arithmetic
	Writing Checked Statements
	Writing Checked Expressions

	Throwing Exceptions
	Using a finally Block
	Chapter 6 Quick Reference

	Part II: Understanding the C# Language
	Chapter 7: Creating and Managing Classes and Objects
	Understanding Classification
	The Purpose of Encapsulation
	Defining and Using a Class
	Controlling Accessibility
	Working with Constructors
	Overloading Constructors

	Understanding static Methods and Data
	Creating a Shared Field
	Creating a static Field by Using the const Keyword

	Chapter 7 Quick Reference

	Chapter 8: Understanding Values and References
	Copying Value Type Variables and Classes
	Understanding Null Values and Nullable Types
	Using Nullable Types
	Understanding the Properties of Nullable Types

	Using ref and out Parameters
	Creating ref Parameters
	Creating out Parameters

	How Computer Memory Is Organized
	Using the Stack and the Heap

	The System.Object Class
	Boxing
	Unboxing
	Casting Data Safely
	The is Operator
	The as Operator

	Chapter 8 Quick Reference

	Chapter 9: Creating Value Types with Enumerations and Structures
	Working with Enumerations
	Declaring an Enumeration
	Using an Enumeration
	Choosing Enumeration Literal Values
	Choosing an Enumeration’s Underlying Type

	Working with Structures
	Declaring a Structure
	Understanding Structure and Class Differences
	Declaring Structure Variables
	Understanding Structure Initialization
	Copying Structure Variables

	Chapter 9 Quick Reference

	Chapter 10: Using Arrays and Collections
	What Is an Array?
	Declaring Array Variables
	Creating an Array Instance
	Initializing Array Variables
	Creating an Implicitly Typed Array
	Accessing an Individual Array Element
	Iterating Through an Array
	Copying Arrays

	What Are Collection Classes?
	The ArrayList Collection Class
	The Queue Collection Class
	The Stack Collection Class
	The Hashtable Collection Class
	The SortedList Collection Class
	Using Collection Initializers
	Comparing Arrays and Collections
	Using Collection Classes to Play Cards

	Chapter 10 Quick Reference

	Chapter 11: Understanding Parameter Arrays
	Using Array Arguments
	Declaring a params Array
	Using params object[]
	Using a params Array

	Chapter 11 Quick Reference

	Chapter 12: Working with Inheritance
	What Is Inheritance?
	Using Inheritance
	Base Classes and Derived Classes
	Calling Base Class Constructors
	Assigning Classes
	Declaring new Methods
	Declaring Virtual Methods
	Declaring override Methods
	Understanding protected Access

	Understanding Extension Methods
	Chapter 12 Quick Reference

	Chapter 13: Creating Interfaces and Defining Abstract Classes
	Understanding Interfaces
	Interface Syntax

	Interface Restrictions
	Implementing an Interface
	Referencing a Class Through Its Interface
	Working with Multiple Interfaces

	Abstract Classes
	Abstract Methods

	Sealed Classes
	Sealed Methods

	Implementing an Extensible Framework
	Summarizing Keyword Combinations
	Chapter 13 Quick Reference

	Chapter 14: Using Garbage Collection and Resource Management
	The Life and Times of an Object
	Writing Destructors
	Why Use the Garbage Collector?
	How Does the Garbage Collector Work?
	Recommendations

	Resource Management
	Disposal Methods
	Exception-Safe Disposal
	The using Statement
	Calling the Dispose Method from a Destructor

	Making Code Exception-Safe
	Chapter 14 Quick Reference

	Part III: Creating Components
	Chapter 15: Implementing Properties to Access Fields
	Implementing Encapsulation by Using Methods
	What Are Properties?
	Using Properties
	Read-Only Properties
	Write-Only Properties
	Property Accessibility

	Understanding the Property Restrictions
	Declaring Interface Properties
	Using Properties in a Windows Application

	Generating Automatic Properties
	Initializing Objects by Using Properties
	Chapter 15 Quick Reference

	Chapter 16: Using Indexers
	What Is an Indexer?
	An Example That Doesn’t Use Indexers
	The Same Example Using Indexers
	Understanding Indexer Accessors
	Comparing Indexers and Arrays

	Indexers in Interfaces
	Using Indexers in a Windows Application
	Chapter 16 Quick Reference

	Chapter 17: Interrupting Program Flow and Handling Events
	Declaring and Using Delegates
	The Automated Factory Scenario
	Implementing the Factory Without Using Delegates
	Implementing the Factory by Using a Delegate
	Using Delegates

	Lambda Expressions and Delegates
	Creating a Method Adapter
	Using a Lambda Expression as an Adapter
	The Form of Lambda Expressions

	Enabling Notifications with Events
	Declaring an Event
	Subscribing to an Event

	Unsubscribing from an Event
	Raising an Event

	Understanding WPF User Interface Events
	Using Events

	Chapter 17 Quick Reference

	Chapter 18: Introducing Generics
	The Problem with objects
	The Generics Solution
	Generics vs. Generalized Classes
	Generics and Constraints

	Creating a Generic Class
	The Theory of Binary Trees
	Building a Binary Tree Class by Using Generics

	Creating a Generic Method
	Defining a Generic Method to Build a Binary Tree

	Chapter 18 Quick Reference

	Chapter 19: Enumerating Collections
	Enumerating the Elements in a Collection
	Manually Implementing an Enumerator
	Implementing the IEnumerable Interface

	Implementing an Enumerator by Using an Iterator
	A Simple Iterator
	Defining an Enumerator for the Tree<TItem> Class by Using

	Chapter 19 Quick Reference

	Chapter 20: Querying In-Memory Data by Using Query Expressions
	What Is Language Integrated Query (LINQ)?
	Using LINQ in a C# Application
	Selecting Data
	Filtering Data
	Ordering, Grouping, and Aggregating Data
	Joining Data
	Using Query Operators
	Querying Data in Tree<TItem> Objects
	LINQ and Deferred Evaluation

	Chapter 20 Quick Reference

	Chapter 21: Operator Overloading
	Understanding Operators
	Operator Constraints
	Overloaded Operators
	Creating Symmetric Operators

	Understanding Compound Assignment
	Declaring Increment and Decrement Operators
	Defining Operator Pairs
	Implementing an Operator
	Understanding Conversion Operators
	Providing Built-In Conversions
	Implementing User-Defined Conversion Operators
	Creating Symmetric Operators, Revisited
	Adding an Implicit Conversion Operator

	Chapter 21 Quick Reference

	Part IV: Working with Windows Applications
	Chapter 22: Introducing Windows Presentation Foundation
	Creating a WPF Application
	Creating a Windows Presentation Foundation Application

	Adding Controls to the Form
	Using WPF Controls
	Changing Properties Dynamically

	Handling Events in a WPF Form
	Processing Events in Windows Forms

	Chapter 22 Quick Reference

	Chapter 23: Working with Menus and Dialog Boxes
	Menu Guidelines and Style
	Menus and Menu Events
	Creating a Menu
	Handling Menu Events

	Shortcut Menus
	Creating Shortcut Menus

	Windows Common Dialog Boxes
	Using the SaveFileDialog Class

	Chapter 23 Quick Reference

	Chapter 24: Performing Validation
	Validating Data
	Strategies for Validating User Input

	An Example—Customer Information Maintenance
	Performing Validation by Using Data Binding
	Changing the Point at Which Validation Occurs

	Chapter 24 Quick Reference

	Part V: Managing Data
	Chapter 25: Querying Information in a Database
	Querying a Database by Using ADO.NET
	The Northwind Database
	Creating the Database
	Using ADO.NET to Query Order Information

	Querying a Database by Using DLINQ
	Defining an Entity Class
	Creating and Running a DLINQ Query
	Deferred and Immediate Fetching
	Joining Tables and Creating Relationships
	Deferred and Immediate Fetching Revisited
	Defining a Custom DataContext Class
	Using DLINQ to Query Order Information

	Chapter 25 Quick Reference

	Chapter 26: Displaying and Editing Data by Using Data Binding
	Using Data Binding with DLINQ
	Using DLINQ to Modify Data
	Updating Existing Data
	Handling Conflicting Updates
	Adding and Deleting Data

	Chapter 26 Quick Reference

	Part VI: Building Web Applications
	Chapter 27: Introducing ASP.NET
	Understanding the Internet as an Infrastructure
	Understanding Web Server Requests and Responses
	Managing State
	Understanding ASP.NET

	Creating Web Applications with ASP.NET
	Building an ASP.NET Application
	Understanding Server Controls
	Creating and Using a Theme

	Chapter 27 Quick Reference

	Chapter 28: Understanding Web Forms Validation Controls
	Comparing Server and Client Validations
	Validating Data at the Web Server
	Validating Data in the Web Browser
	Implementing Client Validation

	Chapter 28 Quick Reference

	Chapter 29: Protecting a Web Site and Accessing Data with Web Forms
	Managing Security
	Understanding Forms-Based Security
	Implementing Forms-Based Security

	Querying and Displaying Data
	Understanding the Web Forms GridView Control
	Displaying Customer and Order History Information
	Paging Data

	Editing Data
	Updating Rows Through a GridView Control

	Navigating Between Forms
	Chapter 29 Quick Reference

	Chapter 30: Creating and Using a Web Service
	What Is a Web Service?
	The Role of SOAP
	What Is the Web Services Description Language?
	Nonfunctional Requirements of Web Services
	The Role of Windows Communication Foundation

	Building a Web Service
	Creating the ProductsService Web Service

	Web Services, Clients, and Proxies
	Talking SOAP: The Difficult Way
	Talking SOAP: The Easy Way
	Consuming the ProductsService Web Service

	Chapter 30 Quick Reference

	About the Author

